

Elliott Laboratories Inc. 684 West Maude Avenue Elliott Laboratories Inc. 684 West Maude Avenue 408-245-7800 Phone www.elliottlabs.com Sunnyvale, CA 94086-3518 408-245-3499 Fax

May 28, 2002

American TCB 6731 Whittier Ave. Suite C110 McLean, VA. 22101

Gentlemen:

The enclosed documents constitute a formal submittal and application for a Grant of Equipment Authorization pursuant to Subpart C of Part 15 of FCC Rules (CFR 47) regarding intentional radiators. Data within this report demonstrates that the equipment tested complies with the FCC limits for intentional radiators.

Elliott Laboratories, as duly authorized agent prepared this submittal. A copy of the letter of our appointment as agent is enclosed.

If there are any questions or if further information is needed, please contact Elliott Laboratories for assistance.

Sincerely,

Juan man

Juan Martinez Senior EMC Engineer

JM/dmg Enclosures: Emissions Test Report with Exhibits

Elliott Laboratories Inc. 684 West Maude Avenue www.elliottlabs.com Sunnyvale, CA 94086-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart C Specifications for an Intentional Radiator on the Intel Corporation Models: WSAP2000

FCC ID: J3OWSAP2000 GRANTEE: Intel Corporation 2300 Corporate Center Drive Thousand Oaks, CA 91320 TEST SITE: Elliott Laboratories, Inc. 684 W. Maude Avenue Sunnyvale, CA 94086

REPORT DATE: May 28, 2002

FINAL TEST DATE:

January 21, 2002

Juan man_

AUTHORIZED SIGNATORY:

Juan Martinez Senior EMC Engineer

This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

TABLE OF CONTENTS

COVER PAGE	
TABLE OF CONTENTS	2
SCOPE	3
OBJECTIVE	3
STATEMENT OF COMPLIANCE	3
EMISSION TEST RESULTS	4
LIMITS OF CONDUCTED INTERFERENCE VOLTAGE	
LIMITS OF ANTENNA CONDUCTED POWER	
LIMITS OF RADIATED INTERFERENCE FIELD STRENGTH	4
LIMITS OF POWER AND BANDWIDTH	
MEASUREMENT UNCERTAINTIES	5
EQUIPMENT UNDER TEST (EUT) DETAILS	6
GENERAL	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EXTERNAL I/O CABLING	
EUT OPERATION DURING EMISSIONS	7
TEST SITE	
GENERAL INFORMATION	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
INSTRUMENT CONTROL COMPUTER	9
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
POWER METER.	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	11
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207	13
RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
EXHIBIT 1: Test Equipment Calibration Data	
EXHIBIT 2: Test Data Log Sheets	

SCOPE

An electromagnetic emissions test has been performed on the Intel Corporation models WSAP2000 pursuant to Subpart C of Part 15 of FCC Rules for intentional radiators. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Intel Corporation models WSAP2000 and therefore apply only to the tested sample. The sample was selected and prepared by Jim Baer of Intel Corporation

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

STATEMENT OF COMPLIANCE

The tested sample of Intel Corporation models WSAP2000 complied with the requirements of Subpart C of Part 15 of the FCC Rules for low power intentional radiators.

Maintenance of FCC compliance is the responsibility of the manufacturer. Any modification of the product, which may result in increased emissions, should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

EMISSION TEST RESULTS

The following emissions tests were performed on the Intel Corporation models WSAP2000. The actual test results are contained in an exhibit of this report.

LIMITS OF CONDUCTED INTERFERENCE VOLTAGE

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.207.

The following measurement was extracted from the data recorded during the conducted emissions scan and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

120V, 60Hz						
Frequency	Level	Power	FCC	15.207	Detector	Comments
MHz	dBuV	Lead	Limit	Margin	QP/Ave	
16.6	38.5	Neutral	48.0	-9.5	QP	

LIMITS OF ANTENNA CONDUCTED POWER

This is a pre-approved module. Original FCC ID number is J3OM3AWEB56GA. This is the reason that no Antenna Conducted measurements were performed. The only change made was the antenna.

LIMITS OF RADIATED INTERFERENCE FIELD STRENGTH

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.247 and 15.209 in the case of emissions falling within the frequency bands specified in Section 15.205.

The following measurement was extracted from the data recorded during the radiated electric field emissions scan and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

Frequency	Level	Pol	15.2	247 (c)	Detector	Azimuth	Height	Comments
MHz	dBuV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.0	53.4	h	54.0	-0.6	Avg			Note 1

Note 1: EUT operating on the Lowest available channel in the 2.402 - 2.4835 GHz band. Signal level calculated using the relative measurements (-50.67 dBc for peak and -53.00 dBc for average) applied to the highest peak and average field strength measurements of the fundamental signal level.

LIMITS OF POWER AND BANDWIDTH

This is a pre-approved module. Original FCC ID number is J3OM3AWEB56GA. This is the reason that no Antenna Conducted measurements were performed. The only change made was the antenna.

MEASUREMENT UNCERTAINTIES

ISO Guide 25 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.2

GENERAL

The Dual Accesspoint contains a 2.4 GHz Mini PCI DSS Radio Module and a 5.15 - 5.35 GHz UNII Mini PCI Radio. There will be three model names that will cover 3 configurations. All will be using the same FCC ID number.

1) WSAP2000 will correspond to the single band 2.4 GHz Mini PCI DSSS module (15.247) in the Accespoint, only.

The device provides wireless network capabilities and will be used indoors. FCC has approved the 2.4 GHz Mini PCI as a modular device (FCC ID: J3OM3AWEB56GA). Both cards were transmitting at the same time, in the Accesspoint, to demonstrate that the Mini PCI emissions will still be in compliance. Normally, the EUT would be tabletop during operation. The EUT was treated as tabletop equipment during testing to simulate the end user environment.

The EUT uses a combination of five integral antennas to provide different radiation pattern directions. The 2.4 GHz antenna is embedded in the same PCB antenna used for the 5 GHz UNII transmitter, which has a gain of 6.2 dBi.

The sample was received on January 21, 2002 and tested on January 21, 2002. The EUT consisted of the following component(s):

Manufacturer	Model	Description	S/N	FCC ID
Intel	WSAP2000	Accesspoint w/ 2.4 GHz MINI PCI card, only.	N/A	J30WDAP2000
Yhi	YC-1018-S05-U	Power Supply	176890	N/A

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 25 cm wide by 4 cm deep by 15 cm high.

MODIFICATIONS

The EUT required the following modifications in order to comply with the emission specifications:

Mod. #	Test	Date	Modification
1	Radiated Digital	2/6/2002	Added finger to back side of 2.4 GHz MPCI card
			for better grounding.
2	Radiated Digital	2/7/2002	AP Motherboard ground plane improved. Also the
			modification above was still used.

SUPPORT EQUIPMENT

No local support equipment was used for emissions testing.

The following equipment was used as remote support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
3Com	OfficeConnect	Hub	0100\7P1F036035	-
IBM	Thinkpad	Laptop	-	-

EXTERNAL I/O CABLING

The I/O cabling configuration during emissions testing was as follows:

		Cable(s)				
Port	Connected To	Description	Shielded or Unshielded	Length(m)		
Ethernet	Remote Hub	RJ-45	Un-shielded	10		

EUT OPERATION DURING EMISSIONS

2.4 GHz DSSS radio module was tested at maximum output power. The radio was tested at low, middle, and high channels for the radiated emissions.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on January 21, 2002 at the Elliott Laboratories Open Area Test Site #4 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

POWER METER

A power meter and thermister mount are used for all direct output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table-mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360 , the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions, which have values close to the specification limit, may also be measured with a tuned dipole antenna to determine compliance.

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207

Frequency Range (MHz)	Limit (uV)	Limit (dBuV)
0.450 to 30.000	250	48
RADIATED E	MISSIONS SPECIFICATION LIMITS, S	ECTION 15.209
Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

^{*} Broadband Level - Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

- R_r = Receiver Reading in dBuV/m
- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

EXHIBIT 1: Test Equipment Calibration Data

Engineer: jmartinez						
Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Hewlett Packard	High Pass filter, 8.2GHz	P/N 84300-80039	1156	12	3/27/2001	3/27/2002
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	868	12	11/13/2001	11/13/2002
EMCO	Horn antenna, D. Ridge 1-18GHz (SA40 system antenna)	3115	1142	12	1/29/2001	1/29/2002
Hewlett Packard	Spectrum Analyzer 9KHz - 26GHz	8563E	284	12	2/22/2001	2/22/2002
Conducted Emissio	ns, 07-Feb-02					
Engineer: Rafael						
Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	812	12	1/23/2002	1/23/2003
Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	1316	12	5/9/2001	5/9/2002
Solar Electronics	LISN	8012-50-R-24-BNC	305	12	7/30/2001	7/30/2002
Radiated Emissions	s, 30 - 1000 MHz, 07-Feb-02					
Engineer: Rafael						
Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
EMCO	Biconical Antenna, 30-300 MHz	3110B	1320	12	5/23/2001	5/23/2002
EMCO	Log Periodic Antenna, 0.2-1 GHz	3146	1294	12	3/27/2001	3/27/2002
Rohde & Schwarz	Test Receiver, 20-1300 MHz	ESVP	1317	12	5/9/2001	5/9/2002
Antenna Conducte	Emissions, 12-Feb-02					
Engineer: jmartinez						
Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Hewlett Packard	Microwave EMI test system (SA40, 30Hz - 40GHz)	84125C	1149	12	2/5/2001	2/5/2002

Radiated Emissions, 1 - 18GHz, 22-Jan-02

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T 45966 14 Pages

Elliott EMC Te					
Client:	Intel Corporation	Job Number:	J45759		
Model:	WDAP5000, WSAP2000, & WSAP5000	T-Log Number:	T45966		
		Proj Eng:	Mark Briggs		
Contact:	Robert Paxman				
Emissions Spec:	FCC Part 15 B and E, RSS-210, EN55022	Class:	В		
Immunity Spec:	N/A	Environment:	-		

EMC Test Data

For The

Intel Corporation

Model

WDAP5000, WSAP2000, & WSAP5000

Elliott

EMC Test Data

Client:	Intel Corporation	Job Number:	J45759
Model:	WDAP5000, WSAP2000, & WSAP5000	T-Log Number:	T45966
		Proj Eng:	Mark Briggs
Contact:	Robert Paxman		
Emissions Spec:	FCC Part 15 B and E, RSS-210, EN55022	Class:	В
Immunity Spec:	N/A	Environment:	-

EUT INFORMATION

General Description

The EUT Dual Accesspoint. It contains a 2.4 GHz Mini PCI Spread Spectrum Radio Module and a 5.15 - 5.35 GHz UNII Mini PCI Radio. The device provides wireless network capabilities and will be used indoors. The 2.4 GHz Mini PCI has been approved by FCC as Modular devices(FCC ID: J3OM3AWEB56GA). Both cards were transmitting at the same time, in the Accesspoint, to demonstrate that the Mini PCI emissions will still be in compliance.

Normally, the EUT would be placed on a tabletop during operation. The EUT was treated as tabletop equipment during testing to simulate the end-user environment. EUT electrical rating is 120Vac, 60Hz.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Intel	WSAP2000	Accesspoint w/ 2.4 GHz MINI PCI card, only.	-	J30WDAP2000
Yhi	YC-1018-S05-U	Power Supply	176890	N/A

Antenna

The EUT uses a combination of five integral antennas to provide different radiation patterns. The maximum gain of the integral PCB antenna is approximately 1.8 dBi for the OMNI pattern and 5.6 for the Half-Round Front Pattern. This are based on the 5 GHz UNII transmitter. In same PCB antenna is embedded the 2.4 GHz antenna, which has about a 6.2 dBi gain.

Elliott

EMC Test Data

e			
Client:	Intel Corporation	Job Number:	J45759
Model:	WDAP5000, WSAP2000, & WSAP5000	T-Log Number:	T45966
		Proj Eng:	Mark Briggs
Contact:	Robert Paxman		
Emissions Spec:	FCC Part 15 B and E, RSS-210, EN55022	Class:	В
Immunity Spec:	N/A	Environment:	-

EUT Enclosure

The EUT enclosure is primarily constructed of plastic. It measures approximately 25 cm wide by 4 cm deep by 15 cm high.

Modification History

Mod. #	Test	Date	Modification
1	Radiated Digital	2/6/2002	Added finger to back side of 2.4 GHz MPCI card for better
			grounding.
2	Radiated Digital	2/6/2002	AP Motherboard ground plane improved. Also the modification
			above was still used.

Ellio	tt		EM	IC Test Data
Client:	Intel Corporation		Job Number:	J45759
Model:	WDAP5000, WSAP2000, & WSAP5000		T-Log Number:	T45966
			Proj Eng:	Mark Briggs
Contact:	Robert Paxman			
Emissions Spec:	FCC Part 15 B and E, R	SS-210, EN55022	Class:	В
Immunity Spec:	N/A		Environment:	-
Manufacturer	Lo Model	Description	Serial Number	FCC ID
	1			
	Model	Description	Serial Number	FCC ID
None	-	-	-	-
Manufacturer	Re Model	mote Support Equi	pment Serial Number	FCC ID
3Com	OfficeConnect	Hub	0100\7P1F036035	-
IBM	Thinkpad	Laptop	-	-
	0 IT	Interface Ports	Cable(s)	
Port	Connected To	Description	Shielded or Unshiel	
Ethernet	Remote Hub	RJ-45	Un-shielded	10

EUT Operation During Emissions Testing (Digital and Radio)

The radio was transmitting at full power on the specified channels 5.18, 5.26, and 5.32GHz (maximum allowed) and at a data rate of 6 Mb/s. The channels were selected since they are at the top, center and bottom of the allocated bands.

The radio was transmitting at full power on the specified channels (center channel for radiated emissions measurements below 1GHz). The channels were selected since they are at the top, center, and bottom of the allocated bands. The RF data rate was 6 Mb/s in normal mode and 12 Mb/s in turbo mode. A data link was established between the remote PC and the EUT via the hub at 100Mb/s.

The Ethernet data rate of 100 Mb/s was selected over 10 Mb/s as preliminary testing identified this as being the worst-case Ethernet data rate. Preliminary testing also showed that an RF data rate of 6 Mb/s produced the highest power spectral density in normal mode and 12 Mb/s produced the highest output power spectral density in turbo mode.

For Intentional Radiated Emission the EUT was test in to separate modes. The EUT has the ability to change the pattern of the antenna per software means. One of the modes was the OMNI pattern, tested for both Normal and Turbo mode. The Second mode was the Half-Round Front pattern, tested for both Normal mode, only. The same antenna can be program to radiate on either pattern.

2.4 GHz DSSS radio module was tested at maximum output power. The radio was tested at low, middle, and high channels.

Elli	ott			EN	IC Test D
Client: Intel Corp				Job Number:	J45759
Model: WDAP50	00, WSAP2000, & WSAP5000		T-l	Log Number:	T45966
			Proj Eng:	Mark Briggs	
Contact: Robert Pa	axman				
Spec: FCC Part	15 B and E, RSS-210, EN55022	2		Class	В
	Radi	ated Emissio	ns		
est Specifics					
-	The objective of this test session the specification listed above.	n is to perform engineeri	ng evaluati	on testing of	the EUT with respe
Date of Test:	2/7/2002	Config. Used:	See runs l	below	
Test Engineer:		Config Change:			
Test Location:	SVOATS #2	EUT Voltage:	120V/60H	Z	
mbient Conditi	Rel. Humidity:				
Summary of Res	sults				
Run #	Test Performed	Limit	Result	Μ	argin
2	RE, Maximized Emissions	EN55022B	Pass	-3.9dB @	362.998MHz
Modifications are c Deviations From	ade During Testing: letailed under each run description The Standard e made from the requirements of				

E	Ellic	ott						EMC Test Data
Client:	Intel Corp	oration					J	Job Number: J45759
Model:	WDAP500	0, WSA	P2000, & W	/SAP5000			T-L	og Number: T45966
								Proj Eng: Mark Briggs
Contact:	Robert Pa	xman						
Spec:	FCC Part	15 B an	d E, RSS-21	10, EN5502	2			Class: B
Run #1: Pr New mother Both Cards	rboard on	AP, 2.4	& 5GHz Ca) MHz inger contac	cts		
Frequency	Level	Pol	EN55	022 B	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
362.998	33.1	h	37.0	-3.9	QP	20	2.6	
890.990	32.7	V	37.0	-4.3	QP	20	1.8	
890.990	32.2	h	37.0	-4.8	QP	215	1.0	
362.998	28.8	۷	37.0	-8.2	QP	250	1.0	
824.995	25.9	h	37.0	-11.1	QP	170	1.1	
791.995	22.5	h	37.0	-14.5	QP	200	1.0	
824.995	20.3	V	37.0	-16.7	QP	40	1.5	
791.995	18.8	V	37.0	-18.2	OP	40	1.0	

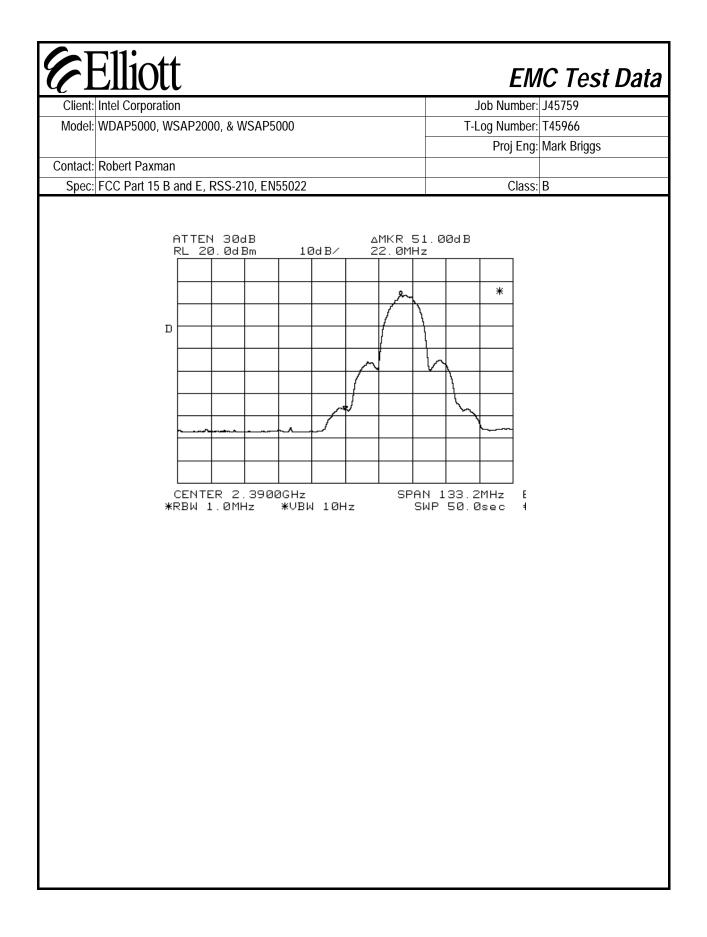
Run #2: Maximized Emissions from Run #1

New motherboard on AP, 2.4 & 5GHz Card w/ the finger contacts

Both Cards active (2.4 & 5GHz)

			/					
Frequency	Level	Pol	EN55	022 B	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
362.998	33.1	h	37.0	-3.9	QP	25	2.5	
890.990	32.7	V	37.0	-4.3	QP	30	1.8	
890.990	32.2	h	37.0	-4.8	QP	225	1.1	
362.998	28.8	V	37.0	-8.2	QP	265	1.0	
824.995	25.9	h	37.0	-11.1	QP	180	1.1	
791.995	22.5	h	37.0	-14.5	QP	195	1.0	

Job Number T-Log Number Proj Eng Class wer Ports cation testing of the E	r: T45966 j: Mark Briggs
T-Log Number Proj Eng Class wer Ports cation testing of the E	r: T45966 j: Mark Briggs :: B
Proj Eng Class wer Ports cation testing of the E	y: Mark Briggs
Class	: В
wer Ports	
wer Ports	
cation testing of the E	EUT with respect to the
Ū	EUT with respect to the
None	
20V/60Hz	
Result M	largin
Pass -9.5dB	@ 16.6MHz
12	20V/60Hz a vertical coupling p Result <u>N</u>


E	Ellic	ott					EM	IC Test Data
Client:	Intel Corp	oration					Job Number:	J45759
Model:	WDAP50	00, WSAI	P2000, & W	/SAP5000			T-Log Number:	T45966
	l						Proj Eng:	Mark Briggs
Contact:	Robert Pa	axman						
Spec:	FCC Part	15 B and	E, RSS-21	10, EN5502	2		Class:	В
Run #1: A Frequency		Port Con Power	ducted Em 15.	,	,	120V/60Hz Comments		
				207	Dottootor	oonninonto		
MHz	dBuV	Lead	Limit	Margin	Function	Commente		
MHz 16.600	dBuV 38.5							
		Lead	Limit	Margin	Function			
16.600	38.5	Lead Neutral	Limit 48.0	Margin -9.5	Function QP			
16.600 2.743	38.5 38.4	Lead Neutral Neutral	Limit 48.0 48.0	Margin -9.5 -9.6	Function QP QP			
16.600 2.743 3.780	38.5 38.4 37.6	Lead Neutral Neutral Neutral	Limit 48.0 48.0 48.0	Margin -9.5 -9.6 -10.4	Function QP QP QP			

Elli	ott			EM	IC Test	[•] Data
Client: Intel Corp	oration		J	ob Number:	J45759	
Model: WDAP500	00, WSAP2000, & WSAP5000		T-L	og Number:	T45966	
				Proj Eng:	Mark Briggs	
Contact: Robert Pa	xman					
Spec: FCC Part	15 B and E, RSS-210, EN55022	2		Class:	В	
	FCC Part ?	15.247 Subpar	t C Te	st		
•	The objective of this test sessio specification listed above.	n is to perform final quali	fication test	ing of the El	UT with respec	ct to the
Date of Test: Test Engineer: Test Location:	Jmartinez	Config. Used: Config Change: Host Unit Voltage	None)Hz		
For radiated emissi When measuring th spectrum analyzer measurements are	ed on the turntable for radiated ons testing the measurement ar the conducted emissions from the or power meter via a suitable att corrected to allow for the extern	ntenna was located 3 me e EUT's antenna port, the tenuator to prevent overlo nal attenuators and cables	ters from the e antenna pe pading the r	ort of the EL	JT was conned	
Ambient Condition	DNS: Temperature: Rel. Humidity:					
Summary of Res	ults					
Run #	Test Performed	Limit	Result	Com	nments	
1	RE, 1000 - 24,000 MHz - Spurious Emissions	15.247/15.205	Pass	Refer to in	dividual runs	
No modifications we Deviations From No deviations were	ade During Testing: ere made to the EUT during test The Standard made from the requirements of na Gain: <u>6.2</u> dBi					

Client	Intel Corp	oration		J	ob Number:	J45759			
Model	WDAP500)0, WSA	P2000, & W	T-L	og Number:	T45966			
					Proj Eng:	Mark Briggs			
Contact	Robert Pa	xman							
Spec	FCC Part	15 B an	d E, RSS-21	10, EN5502	2			Class:	В
		-	s Emission		0000 MHz				
			02.11a card		Datastan	A _!	11. Salat	0	
Frequency MHz	dBµV/m	Pol v/h	Limit	/ 15.247 Margin	Detector Pk/QP/Avg	Azimuth	Height	Comments	
			High Chan		Ŭ.	degrees	meters		
4824.0		h	74.0	-25.4	Pk	108	1.0	Note 2	
4824.0		h	54.0	-17.9	Avg	108		Note 2	
2483.7		h	74.0	-15.9	Pk	5	1.6	Note 2; Sp	urious emission
2483.7		h	54.0	-1.0	Avg	5			urious emission
2489.0		<u>h</u>	54.0	-15.7	Pk	167			urious emission
2494.0		h	54.0	-7.0	Pk	160			urious emission
2483.7 2489.0		V	54.0 54.0	-6.1 -8.9	Pk Pk	70 70			urious emission urious emission
2489.0	-	V V	54.0 54.0	-8.9 -3.9	PK Pk	70			urious emission
	iddle Chan	-		-3.7	ΤK	70	1.4		
4874.0		V	54.0	-6.2	Pk	138	1.4	Peak readi	ng, average limit
7310.2	50.6	V	74.0	-23.4	Pk	70	1.2	Restricted	
7310.2		V	54.0	-15.6	Avg	70		Restricted	
9747.8		V	74.0	-23.3	Pk	0		Non-Restri	cted
4874.0		<u>H</u>	74.0	-24.1	Pk	133		Restricted	
4874.0 7310.2		H H	54.0 74.0	-10.0 -23.8	Avg Pk	133 0		Restricted Restricted	
7310.2		<u>п</u> Н	54.0	-23.0 -16.0	Avg	0		Restricted	
9747.8		<u> </u>	74.0	-22.1	Pk	23		Non-Restrie	cted
	ow Channe			/		25			
	58.4			-34.6	Pk	90	1.4	Note 3; Sp	urious emission
2455.7		h	93.0	-41.1	Pk	90			urious emission
2433.7		V	93.0	-39.2	Pk	90			urious emission
2455.7	46.9	V	93.0	-46.1	Pk	245	1.5	Note 3; Sp	urious emission
lata 1.	No hormo		alan dataat	d havand ()nd harmania	uithin 20 dD	of the limit		
Note 1: Note 2:	Restricted			ea beyona z	2nd narmonic	within 20-dB	or the limit	•	
Vote 2:	Non-Rest								
vole 3:	Non-Resu	icted en	nissions						

	Ellic Intel Corpo						J	ob Number:	J45759
Model	WDAP500	0, WSA	P2000, & W	/SAP5000			T-Lo	og Number:	T45966
								Proj Eng:	Mark Briggs
Contact	Robert Pa	xman							
Spec	FCC Part	15 B an	d E, RSS-21	10. EN5502	2			Class:	В
			s Emission						
		-			CI transmitt	ing also.			
requency	· · · ·	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
UT on th	-	nnel 2.4	480GHz. W	ith 802.11a/	a on at full p	ower.			
2483.7		h	74.0	-15.8	Pk	5		Note 2	
2483.7	53.2	h	54.0	-0.8	Avg	5		Note 2	
2489.0		h	54.0	-8.9	Pk	223			urious emission
2494.0		h	54.0	-3.9	Pk	85			urious emission
2351.7	52.2	h	54.0	-1.8	Pk	0			urious emission
2505.0		h	54.0	-3.9	Pk	155			urious emission
2483.7	51.7	V	54.0	-2.3	Pk	266			urious emission
2489.0		V	54.0	-12.3	Pk Pk	266			urious emission
2494.0		V	54.0	-10.6	PK	266	1.3	Note 2 Spt	rious emission
4874.0	ddle Chan 49.5	Nei 2.43 V	7 IVIHZ 74.0	-24.5	Pk	116	1 1	Restricted	
4874.0		V V	74.0 54.0	-24.5 -15.1	PK Avg	116		Restricted	
7311.5		V	74.0	-15.1	Pk	200		Restricted	
7311.2		V	54.0	-17.7	Avg	200		Restricted	
9747.8	56.7	V	74.0	-17.3	Pk	42		Non-Restric	red
9747.8	54.4	H	74.0	-19.6	Pk	6		Non-Restric	
7310.2		H	74.0	-21.7	Pk	325		Restricted	
7310.2		H	54.0	-12.5	Avg	325		Restricted	
4874.0		Н	74.0	-22.7	Pk	113		Restricted	
4874.0		Н	54.0	-8.5	Avg	113		Restricted	
UT On L	w Channe	el (2.412	GHz) w/ 80)2.11a on a	t full power				
4824.0	46.9	h	74.0	-27.1	Pk	176	1.5	Note 1; Not	te: 2
4824.0		h	54.0	-25.3	Avg	176	1.5	Note 1; Not	te: 2
2433.7		h	92.0	-34.3	Pk	176			urious emission
2455.7		h	92.0	-44.2	Pk	309			urious emission
2433.7		V	92.0	-39.1	Pk	85			urious emission
2455.7		V	92.0	-48.2	Pk	85			urious emission
2367.7		V	54.0	-8.6	Pk	264			urious emission
2367.7	48.2	h	54.0	-5.8	Pk	162	1.6	Note 3; Spi	urious emission
loto 1.	No horme	ala ami-	cion datact	d housed ?	nd hormonia		of the lime!		
lote 1:				eu beyond 2		within 20-dB	o u the limit		
Note 2: Note 3:	Restricted Non-Restr								

Contact: Rol Spec: FC Fundamental 1 2413.249 1 2413.352 1 2413.389 1 2412.352 1 2413.389 1 2412.394 1 Band Edge Fie Frequency L	DAP5000 bert Pax C Part 1 Banded 08.8 01.6 13.5 06.4 eld Stre evel	0, WSA (man 5 B and Ige Low V V H H	P2000, & W I E, RSS-21 / Channel - - -		2 Pk			Job Number: J45759 Log Number: T45966 Proj Eng: Mark Briggs Class: B
Contact: Rol Spec: FC Fundamental 1 2413.249 1 2413.389 1 2413.389 1 2412.394 1 8and Edge Fie Frequency L MHz dB 2390.0 2390.0	bert Pax C Part 1 Banded 08.8 01.6 13.5 06.4 eld Stre evel	rman 5 B and Ige Low V V H H	I E, RSS-21 / Channel - -					Proj Eng: Mark Briggs
Spec: FC0 Fundamental 1 2413.249 1 2412.352 1 2413.389 1 2412.394 1 2412.394 1 Sand Edge Fie Frequency L MHz dB 2390.0 2390.0	C Part 1 Banded 08.8 01.6 13.5 06.4 eld Stre evel	5 B and Ige Low V V H H	r Channel - -	0, EN5502 -				
Spec: FC Fundamental 1 2413.249 1 2412.352 1 2413.389 1 2412.394 1 2412.394 1 Sand Edge Fie Frequency L MHz dB 2390.0 2390.0	C Part 1 Banded 08.8 01.6 13.5 06.4 eld Stre evel	5 B and Ige Low V V H H	r Channel - -	0, EN5502 -				Class: B
Fundamental 2413.249 1 2412.352 1 2413.389 1 2412.394 1 2412.394 1 3and Edge Fie Frequency L MHz dB 2390.0 2390.0	Banded 08.8 01.6 13.5 06.4 eld Stre .evel	lge Low V V H H	r Channel - -	-				010351 D
2413.249 1 2412.352 1 2413.389 1 2412.394 1 3and Edge Fie Frequency L MHz dB 2390.0 2390.0	08.8 01.6 13.5 06.4 eld Stre	V V H H	-	-	Pk			
2412.352 1 2413.389 1 2412.394 1 3and Edge Fie Frequency L MHz dB 2390.0 2390.0	01.6 13.5 06.4 eld Stre .evel	V H H	-	-		78	1.2	Peak reading, peak limit
2412.394 1 Band Edge Fie Frequency L MHz dB 2390.0 2390.0	06.4 e ld Stre .evel	Η	-		Avg	78	1.2	Average reading, average limit
Band Edge FigFrequencyLMHzdB2390.02390.0	eld Stre .evel			-	Pk	89	1.8	Peak reading, peak limit
Frequency L MHz dB 2390.0 2390.0	evel		-	-	Avg	89	1.8	Average reading, average limit
Frequency L MHz dB 2390.0 2390.0	evel							
MHz dB 2390.0 2390.0		-						T
2390.0 2390.0		Pol		15.247	Detector	Azimuth	Height	Comments
2390.0	βμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Nata 1
	58.3 48.6	V	74.0 54.0	-15.7 -5.4	Pk			Note 1 Note 1
	48.0	v h	54.0 74.0	-5.4 -11.0	Avg Pk			Note 1
2390.0	53.4	h	54.0	-0.6	Avg			Note 1
			EN 30dI 20.0dBr		Ød B/	AMKR 50 24. 2MHz		
						• n		
							- ~~~	America
							1 1 2 2 21	
		KRB1	11ER 2.3 1 1.0MHz	s∋ooGHz ≤ ¥VB		z SPAR	1 133.21 ID E0 0.	

Client:	Intel Corpo						J	ob Number:	J45759
Model:	WDAP500	0, WSA	P2000, & W	SAP5000			T-L	og Number:	T45966
								Proj Eng:	Mark Briggs
Contact:	Robert Pax	kman						, ,	
Spec:	FCC Part 2	15 B and	d E, RSS-21	0, EN5502	2			Class:	В
			h Channel)						
2409.163		V	-	-	Pk	277	1.8	Peak readi	ng, peak limit
2409.273	98.8	V	-	-	Avg	277	1.8	Average re	ading, average limit
2411.792	112.3	h	-	-	Pk	7	1.8		ng, peak limit
2411.072	106.3	h	-	-	Avg	7	1.8	Average re	ading, average limit
			alculations	45.047		A 1 11			
requency MHz	Level	Pol v/h	15.209 / Limit		Detector Pk/QP/Avg	Azimuth	Height	Comments	
2483.5	dBµV/m 55.2	V/II V	74.0	Margin -18.8	PK/QP/AVg	degrees	meters	Note 1	
2483.5	45.5	v V	74.0 54.0	-18.5	Avg			Note 1	
2483.5	61.8	h	74.0	-12.2	Pk			Note 1	
2100.0	01.0	11							
ote 1:	relative me	easurem	ents (-50.50) dBc for pe		84 dBc for av		•	
lote 1:	EUT opera relative me field streng	iting on easurem ath meas	the Highest ents (-50.50 surements o	available c) dBc for pe If the funda	hannel in the eak and -53.3 mental signa	84 dBc for av		nd. Signal I	evel calculated using tl ghest peak and averag
lote 1:	EUT opera relative me field streng	iting on easurem ath meas	the Highest ents (-50.50 surements o	available c) dBc for pe f the funda	hannel in the eak and -53.3 mental signa	84 dBc for av		nd. Signal I	
lote 1:	EUT opera relative me field streng	iting on easurem ath meas	the Highest ents (-50.50 surements o	available c) dBc for pe If the funda	hannel in the eak and -53.3 mental signa	84 dBc for av		nd. Signal I	
ote 1:	EUT opera relative me field streng	iting on easurem ath meas	the Highest ents (-50.50 surements o	available c) dBc for pe If the funda	hannel in the eak and -53.3 mental signa	84 dBc for av		nd. Signal I	
ote 1:	EUT opera relative me field streng	iting on easurem ath meas	the Highest ents (-50.50 surements o	available c) dBc for pe If the funda	hannel in the eak and -53.3 mental signa	84 dBc for av		nd. Signal I	
ote 1:	EUT opera relative me field streng	iting on easurem ath meas	the Highest ents (-50.50 surements o	available c) dBc for pe If the funda	hannel in the eak and -53.3 mental signa	84 dBc for av		nd. Signal I	
ote 1:	EUT opera relative me field streng	iting on easurem ath meas	the Highest ents (-50.50 surements o	available c) dBc for pe If the funda	hannel in the eak and -53.3 mental signa	84 dBc for av		nd. Signal I	
ote 1:	EUT opera relative me field streng	iting on easurem ath meas	the Highest ents (-50.50 surements o	available c) dBc for pe If the funda	hannel in the eak and -53.3 mental signa	84 dBc for av	erage) app	ind. Signal I lied to the hi	ghest peak and averag
ote 1:	EUT opera relative me field streng	iting on easurem ath meas	the Highest ents (-50.50 surements o	available c) dBc for pe If the funda	hannel in the eak and -53.3 mental signa	34 dBc for av I level.	erage) app	ind. Signal I lied to the hi	ghest peak and averag
ote 1:	EUT opera relative me field streng	iting on easurem ath meas	the Highest ents (-50.50 surements o	available c) dBc for pe If the funda	hannel in the eak and -53.3 mental signa	84 dBc for av Il level.	erage) app	ind. Signal I lied to the hi	ghest peak and averag
ote 1:	EUT opera relative me field streng	ting on easurem th meas 1	the Highest ents (-50.50 surements o	available c) dBc for pe f the funda	Hannel in the eak and -53.3 mental signa dB	84 dBc for av Il level.	erage) app	ind. Signal I lied to the hi	ghest peak and averag
ote 1:	EUT opera relative me field streng	ting on easurem th meas 1	the Highest ents (-50.50 surements o	available c) dBc for pe f the funda IKR 50.500 24.4MHz	Hannel in the eak and -53.3 mental signa dB	84 dBc for av Il level.	erage) app	ind. Signal I lied to the hi	ghest peak and averag
ote 1:	EUT opera relative me field streng	ting on easurem th meas 1	the Highest ents (-50.50 surements o	available c) dBc for pe f the funda	Hannel in the eak and -53.3 mental signa dB	ATTEN RL 20.	erage) app	ind. Signal I lied to the hi	ghest peak and averag
ote 1:	EUT opera relative me field streng	ting on easurem th meas 1	the Highest ents (-50.50 surements o	available c) dBc for pe f the funda	Hannel in the eak and -53.3 mental signa dB	ATTEN RL 20.	erage) app	ind. Signal I lied to the hi	ghest peak and averag
ote 1:	EUT opera relative me field streng	ting on easurem th meas 1	the Highest ents (-50.50 surements o	available c) dBc for pe f the funda	Hannel in the eak and -53.3 mental signa dB	ATTEN RL 20.	erage) app	ind. Signal I lied to the hi	ghest peak and averag
ote 1:	EUT opera relative me field streng	ting on easurem th meas 1	the Highest ents (-50.50 surements o	available c) dBc for pe f the funda	Hannel in the eak and -53.3 mental signa dB	ATTEN RL 20.	erage) app	ind. Signal I lied to the hi	MKR 50.50d B 24.4MHz
ote 1:	EUT opera relative me field streng	ting on easurem th meas 1	the Highest ents (-50.50 surements o	available c) dBc for pe f the funda	Hannel in the eak and -53.3 mental signa dB	ATTEN RL 20.	erage) app	ind. Signal I lied to the hi	MKR 50.50d B 24.4MHz