

May 28, 2002

American TCB 6731 Whittier Ave. Suite C110 McLean, VA. 22101

Gentlemen:

The enclosed documents constitute a formal submittal and application for a Grant of Equipment Authorization pursuant to Subpart C of Part 15 of FCC Rules (CFR 47) regarding intentional radiators. Data within this report demonstrates that the equipment tested complies with the FCC limits for intentional radiators.

Elliott Laboratories, as duly authorized agent prepared this submittal. A copy of the letter of our appointment as agent is enclosed.

If there are any questions or if further information is needed, please contact Elliott Laboratories for assistance.

Sincerely,

Juan Martinez

Senior EMC Engineer

JM/dmg

Enclosures: Emissions Test Report with Exhibits

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart C Specifications for an Intentional Radiator on the Intel Corporation Models: WSAP2000

FCC ID: **J3OWSAP2000**

GRANTEE: **Intel Corporation**

> 2300 Corporate Center Drive Thousand Oaks, CA 91320

TEST SITE: Elliott Laboratories, Inc.

> 684 W. Maude Avenue Sunnyvale, CA 94086

REPORT DATE: May 28, 2002

FINAL TEST DATE: January 21, 2002

AUTHORIZED SIGNATORY:

Juan Martinez

Senior EMC Engineer

This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

TABLE OF CONTENTS

COVER PAGE	1
TABLE OF CONTENTS	2
SCOPE	3
OBJECTIVE	3
STATEMENT OF COMPLIANCE	3
EMISSION TEST RESULTS	4
LIMITS OF CONDUCTED INTERFERENCE VOLTAGE	4
LIMITS OF ANTENNA CONDUCTED POWER	
LIMITS OF RADIATED INTERFERENCE FIELD STRENGTH	4
LIMITS OF POWER AND BANDWIDTH	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	6
GENERAL	6
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EXTERNAL I/O CABLING	7
EUT OPERATION DURING EMISSIONS	7
TEST SITE	8
GENERAL INFORMATION	8
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
INSTRUMENT CONTROL COMPUTER	9
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
POWER METER	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	11
EUT AND CABLE PLACEMENT	11
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207	
RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209 SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONSSAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS EXHIBIT 1: Test Equipment Calibration Data	
EXHIBIT 1: Test Equipment Caubration Data EXHIBIT 2: Test Data Log Sheets	
12A111D11 4. TEN DUIG LAY MICEIN	L

SCOPE

An electromagnetic emissions test has been performed on the Intel Corporation models WSAP2000 pursuant to Subpart C of Part 15 of FCC Rules for intentional radiators. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Intel Corporation models WSAP2000 and therefore apply only to the tested sample. The sample was selected and prepared by Jim Baer of Intel Corporation

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

STATEMENT OF COMPLIANCE

The tested sample of Intel Corporation models WSAP2000 complied with the requirements of Subpart C of Part 15 of the FCC Rules for low power intentional radiators.

Maintenance of FCC compliance is the responsibility of the manufacturer. Any modification of the product, which may result in increased emissions, should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R47372 Page 3 of 15 pages

EMISSION TEST RESULTS

The following emissions tests were performed on the Intel Corporation models WSAP2000. The actual test results are contained in an exhibit of this report.

LIMITS OF CONDUCTED INTERFERENCE VOLTAGE

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.207.

The following measurement was extracted from the data recorded during the conducted emissions scan and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

120V, 60Hz

Frequency	Level	Power	EN55022 B		Detector	Comments
MHz	dBuV	Lead	Limit	Margin	QP/Ave	
0.150	50.4	Line 1	55.7	-5.3	AV	

LIMITS OF ANTENNA CONDUCTED POWER

This is a pre-approved module. Original FCC ID number is J3OM3AWEB56GA. This is the reason that no Antenna Conducted measurements were performed. The only change made was the antenna.

LIMITS OF RADIATED INTERFERENCE FIELD STRENGTH

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.247 and 15.209 in the case of emissions falling within the frequency bands specified in Section 15.205.

The following measurement was extracted from the data recorded during the radiated electric field emissions scan and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

Ī	Frequency	Level	Pol	15.247 (c)		Detector	Azimuth	Height	Comments
	MHz	dBuV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
Ī	2390.0	53.4	h	54.0	-0.6	Avg			Note 1

Note 1: EUT operating on the Lowest available channel in the 2.402 - 2.4835 GHz band. Signal level calculated using the relative measurements (-50.67 dBc for peak and -53.00 dBc for average) applied to the highest peak and average field strength measurements of the fundamental signal level.

File: R47372 Page 4 of 15 pages

LIMITS OF POWER AND BANDWIDTH

This is a pre-approved module. Original FCC ID number is J3OM3AWEB56GA. This is the reason that no Antenna Conducted measurements were performed. The only change made was the antenna.

MEASUREMENT UNCERTAINTIES

ISO Guide 25 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Frequency Range (MHz)	Calculated Uncertainty (dB)
0.15 to 30	± 2.4 ± 3.2
	(MHz)

File: R47372 Page 5 of 15 pages

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Dual Accesspoint contains a 2.4 GHz Mini PCI DSS Radio Module and a 5.15 - 5.35 GHz UNII Mini PCI Radio. There will be three model names that will cover 3 configurations. All will be using the same FCC ID number.

1) WSAP2000 will correspond to the single band 2.4 GHz Mini PCI DSSS module (15.247) in the Accespoint, only.

The device provides wireless network capabilities and will be used indoors. FCC has approved the 2.4 GHz Mini PCI as a modular device (FCC ID: J3OM3AWEB56GA). Both cards were transmitting at the same time, in the Accesspoint, to demonstrate that the Mini PCI emissions will still be in compliance. Normally, the EUT would be tabletop during operation. The EUT was treated as tabletop equipment during testing to simulate the end user environment.

The EUT uses a combination of five integral antennas to provide different radiation pattern directions. The 2.4 GHz antenna is embedded in the same PCB antenna used for the 5 GHz UNII transmitter, which has a gain of 6.2 dBi.

The sample was received on January 21, 2002 and tested on January 21, 2002. The EUT consisted of the following component(s):

Manufacturer	Model	Description	S/N	FCC ID
Intel	WSAP2000	Accesspoint w/ 2.4 GHz MINI PCI card, only.	N/A	J30WDAP2000
Yhi	YC-1018-S05-U	Power Supply	176890	N/A

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 25 cm wide by 4 cm deep by 15 cm high.

File: R47372 Page 6 of 15 pages

MODIFICATIONS

The EUT required the following modifications in order to comply with the emission specifications:

Mod. #	Test Date		Modification
1	Radiated Digital	2/6/2002	Added finger to back side of 2.4 GHz MPCI card
			for better grounding.
2	Radiated Digital	2/7/2002	AP Motherboard ground plane improved. Also the
			modification above was still used.

SUPPORT EQUIPMENT

No local support equipment was used for emissions testing.

The following equipment was used as remote support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
3Com	OfficeConnect	Hub	0100\7P1F036035	-
IBM	Thinkpad	Laptop	-	-

EXTERNAL I/O CABLING

The I/O cabling configuration during emissions testing was as follows:

		Cable(s)			
Port	Connected To	Description	Shielded or Unshielded	Length(m)	
Ethernet	Remote Hub	RJ-45	Un-shielded	10	

EUT OPERATION DURING EMISSIONS

2.4 GHz DSSS radio module was tested at maximum output power. The radio was tested at low, middle, and high channels for the radiated emissions.

File: R47372 Page 7 of 15 pages

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on January 21, 2002 at the Elliott Laboratories Open Area Test Site #4 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

File: R47372 Page 8 of 15 pages

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

POWER METER

A power meter and thermister mount are used for all direct output power measurements from transmitters as they provide a broadband indication of the power output.

File: R47372 Page 9 of 15 pages

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND FOUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table-mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R47372 Page 10 of 15 pages

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360 , the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions, which have values close to the specification limit, may also be measured with a tuned dipole antenna to determine compliance.

File: R47372 Page 11 of 15 pages

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

File: R47372 Page 12 of 15 pages

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207

Frequency Range	Limit	Limit
(MHz)	(uV)	(dBuV)
0.450 to 30.000	250	48

RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

File: R47372 Page 13 of 15 pages

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 R_r = Receiver Reading in dBuV

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

* Broadband Level - Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

File: R47372 Page 14 of 15 pages

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 $D_m = Measurement Distance in meters$

 D_S = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

File: R47372 Page 15 of 15 pages

EXHIBIT 1: Test Equipment Calibration Data

File: R«FileNum» Exhibit Page 1 of 2

Radiated Emissions, 1 - 18GHz, 22-Jan-02

Engineer:	

Manufacturer	<u>Description</u>	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Hewlett Packard	High Pass filter, 8.2GHz	P/N 84300-80039	1156	12	3/27/2001	3/27/2002
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	868	12	11/13/2001	11/13/2002
EMCO	Horn antenna, D. Ridge 1-18GHz (SA40 system antenna)	3115	1142	12	1/29/2001	1/29/2002
Hewlett Packard	Spectrum Analyzer 9KHz - 26GHz	8563E	284	12	2/22/2001	2/22/2002

Conducted Emissions, 07-Feb-02

Engineer: Rafael

Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	812	12	1/23/2002	1/23/2003
Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	1316	12	5/9/2001	5/9/2002
Solar Electronics	LISN	8012-50-R-24-BNC	305	12	7/30/2001	7/30/2002

Radiated Emissions, 30 - 1000 MHz, 07-Feb-02

Engineer: Rafael

Manufacturer	<u>Description</u>	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
EMCO	Biconical Antenna, 30-300 MHz	3110B	1320	12	5/23/2001	5/23/2002
EMCO	Log Periodic Antenna, 0.2-1 GHz	3146	1294	12	3/27/2001	3/27/2002
Rohde & Schwarz	Test Receiver, 20-1300 MHz	ESVP	1317	12	5/9/2001	5/9/2002

Antenna Conducte Emissions, 12-Feb-02

Engineer: jmartinez

<u>Manufacturer</u>	<u>Description</u>	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Hewlett Packard	Microwave EMI test system (SA40, 30Hz - 40GHz)	84125C	1149	12	2/5/2001	2/5/2002

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T 45966 14 Pages

File: R«FileNum» Exhibit Page 2 of 2

Elliott
Client: Intel Corporation

Client:	Intel Corporation	Job Number:	J45759
Model:	WDAP5000, WSAP2000, & WSAP5000	T-Log Number:	T45966
		Proj Eng:	Mark Briggs
Contact:	Robert Paxman		
Emissions Spec:	FCC Part 15 B and E, RSS-210, EN55022	Class:	В
Immunity Spec:	N/A	Environment:	-

EMC Test Data

For The

Intel Corporation

Model

WDAP5000, WSAP2000, & WSAP5000

Client:	Intel Corporation	Job Number:	J45759
Model:	WDAP5000, WSAP2000, & WSAP5000	T-Log Number:	T45966
		Proj Eng:	Mark Briggs
Contact:	Robert Paxman		
Emissions Spec:	FCC Part 15 B and E, RSS-210, EN55022	Class:	В
Immunity Spec:	N/A	Environment:	-

EUT INFORMATION

General Description

The EUT Dual Accesspoint. It contains a 2.4 GHz Mini PCI Spread Spectrum Radio Module and a 5.15 - 5.35 GHz UNII Mini PCI Radio. The device provides wireless network capabilities and will be used indoors. The 2.4 GHz Mini PCI has been approved by FCC as Modular devices(FCC ID: J3OM3AWEB56GA). Both cards were transmitting at the same time, in the Accesspoint, to demonstrate that the Mini PCI emissions will still be in compliance.

Normally, the EUT would be placed on a tabletop during operation. The EUT was treated as tabletop equipment during testing to simulate the end-user environment. EUT electrical rating is 120Vac, 60Hz.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Intel	WSAP2000	Accesspoint w/ 2.4 GHz MINI PCI card, only.	-	J30WDAP2000
Yhi	YC-1018-S05-U	Power Supply	176890	N/A

Antenna

The EUT uses a combination of five integral antennas to provide different radiation patterns. The maximum gain of the integral PCB antenna is approximately 1.8 dBi for the OMNI pattern and 5.6 for the Half-Round Front Pattern. This are based on the 5 GHz UNII transmitter. In same PCB antenna is embedded the 2.4 GHz antenna, which has about a 6.2 dBi gain.

Client:	Intel Corporation	Job Number:	J45759
Model:	WDAP5000, WSAP2000, & WSAP5000	T-Log Number:	T45966
		Proj Eng:	Mark Briggs
Contact:	Robert Paxman		
Emissions Spec:	FCC Part 15 B and E, RSS-210, EN55022	Class:	В
Immunity Spec:	N/A	Environment:	-

EUT Enclosure

The EUT enclosure is primarily constructed of plastic. It measures approximately 25 cm wide by 4 cm deep by 15 cm high.

Modification History

Mod. #	Test	Date	Modification
1	Radiated Digital	2/6/02	Added finger to back side of 2.4 GHz MPCI card for better
			grounding.
2	Radiated Digital	2/6/02	AP Motherboard ground plane improved. Also the modification
			above was still used.

Client:	Intel Corporation	Job Number:	J45759
Model:	WDAP5000, WSAP2000, & WSAP5000	T-Log Number:	T45966
		Proj Eng:	Mark Briggs
Contact:	Robert Paxman		
Emissions Spec:	FCC Part 15 B and E, RSS-210, EN55022	Class:	В
Immunity Spec:	N/A	Environment:	-

Test Configuration #1

Local Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
None	-	-	-	-

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
3Com	OfficeConnect	Hub	0100\7P1F036035	-
IBM	Thinkpad	Laptop	-	-

Interface Ports

		Cable(s)				
Port	Connected To	Description	Shielded or Unshielded	Length(m)		
Ethernet	Remote Hub	RJ-45	Un-shielded	10		

EUT Operation During Emissions Testing (Digital and Radio)

The radio was transmitting at full power on the specified channels 5.18, 5.26, and 5.32GHz (maximum allowed) and at a data rate of 6 Mb/s. The channels were selected since they are at the top, center and bottom of the allocated bands.

The radio was transmitting at full power on the specified channels (center channel for radiated emissions measurements below 1GHz). The channels were selected since they are at the top, center, and bottom of the allocated bands. The RF data rate was 6 Mb/s in normal mode and 12 Mb/s in turbo mode. A data link was established between the remote PC and the EUT via the hub at 100Mb/s.

The Ethernet data rate of 100 Mb/s was selected over 10 Mb/s as preliminary testing identified this as being the worst-case Ethernet data rate. Preliminary testing also showed that an RF data rate of 6 Mb/s produced the highest power spectral density in normal mode and 12 Mb/s produced the highest output power spectral density in turbo mode.

For Intentional Radiated Emission the EUT was test in to separate modes. The EUT has the ability to change the pattern of the antenna per software means. One of the modes was the OMNI pattern, tested for both Normal and Turbo mode. The Second mode was the Half-Round Front pattern, tested for both Normal mode, only. The same antenna can be program to radiate on either pattern.

2.4 GHz DSSS radio module was tested at maximum output power. The radio was tested at low, middle, and high channels.

Elliott	EMC Test Data
Client: Intel Corporation	Job Number: J45759
Model: WDAP5000, WSAP2000, & WSAP5000	T-Log Number: T45966
	Proj Eng: Mark Briggs
Contact: Robert Paxman	
Spec: FCC Part 15 B and E, RSS-210, EN55022	Class: B

Radiated Emissions

Test Specifics

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to

the specification listed above.

Date of Test: 2/7/02 Config. Used: See runs below

Test Engineer: Rafael Config Change: None
Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT was located on the turntable for radiated emissions testing. Remote support equipment was located approximately 30 meters from the test area with all I/O connections routed overhead.

On the OATS, the measurement antenna was located 10 meters from the EUT for the measurement range 30 - 1000 MHz.

Ambient Conditions: Temperature: 10.6°C

Rel. Humidity: 82%

Summary of Results

Run #	Test Performed	Limit	Result	Margin
2	RE, Maximized Emissions	EN55022B	Pass	-3.9dB @ 362.998MHz

Modifications Made During Testing:

Modifications are detailed under each run description.

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client:	Intel Corporation	Job Number:	J45759
Model:	WDAP5000, WSAP2000, & WSAP5000	T-Log Number:	T45966
		Proj Eng:	Mark Briggs
Contact:	Robert Paxman		
Spec:	FCC Part 15 B and E, RSS-210, EN55022	Class:	В

Run #1: Preliminary Radiated Emissions, 30-1000 MHz

New motherboard on AP, 2.4 & 5GHz Card w/ the finger contacts

Both Cards active (2.4 & 5GHz)

			_,					
Frequency	Level	Pol	EN55	022 B	Detector	Azimuth	Height	Comments
MHz	$dB\mu V/m$	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
362.998	33.1	h	37.0	-3.9	QP	20	2.6	
890.990	32.7	V	37.0	-4.3	QP	20	1.8	
890.990	32.2	h	37.0	-4.8	QP	215	1.0	
362.998	28.8	٧	37.0	-8.2	QP	250	1.0	
824.995	25.9	h	37.0	-11.1	QP	170	1.1	
791.995	22.5	h	37.0	-14.5	QP	200	1.0	
824.995	20.3	٧	37.0	-16.7	QP	40	1.5	
791.995	18.8	٧	37.0	-18.2	QP	40	1.0	

Run #2: Maximized Emissions from Run #1

New motherboard on AP, 2.4 & 5GHz Card w/ the finger contacts

Both Cards active (2.4 & 5GHz)

F	requency	Level	Pol	EN55	022 B	Detector	Azimuth	Height	Comments
	MHz	$dB\mu V / m$	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
	362.998	33.1	h	37.0	-3.9	QP	25	2.5	
	890.990	32.7	V	37.0	-4.3	QP	30	1.8	
	890.990	32.2	h	37.0	-4.8	QP	225	1.1	
	362.998	28.8	V	37.0	-8.2	QP	265	1.0	
	824.995	25.9	h	37.0	-11.1	QP	180	1.1	
	791.995	22.5	h	37.0	-14.5	QP	195	1.0	

Elliott	EMC Test Data
Client: Intel Corporation	Job Number: J45759
Model: WDAP5000, WSAP2000, & WSAP5000	T-Log Number: T45966
	Proj Eng: Mark Briggs
Contact: Robert Paxman	
Spec: FCC Part 15 B and E, RSS-210, EN55022	Class: B

Conducted Emissions - Power Ports

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 2/7/02 Config. Used: 1
Test Engineer: Rafael Config Change: None
Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

General Test Configuration

For tabletop equipment, the EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN.

Ambient Conditions: Temperature: 10.6°C

Rel. Humidity: 82%

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power 120V/60Hz	EN55022 B	Pass	-5.3dB @ .15MHz

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	Proj Eng: Mark Briggs	Proj Eng: Mark Briggs		Elli(Job Number:	J45759
Contact: Robert Paxman Spec: FCC Part 15 B and E, RSS-210, EN55022 Class: B Pun #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Frequency Level Power EN55022B Detector Comments MHz dBuV Lead Limit Margin Function 0.150 50.4 Line 1 55.7 -5.3 AV 0.150 50.4 Neutral 55.7 -5.3 AV 2.743 36.9 Neutral 46.0 -9.1 AV 0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	Contact: Robert Paxman Spec: FCC Part 15 B and E, RSS-210, EN55022 Class: B Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Frequency Level Power EN55022B Detector Comments MHz dBuV Lead Limit Margin Function 0.150 50.4 Line 1 55.7 -5.3 AV 0.150 50.4 Neutral 55.7 -5.3 AV 2.743 36.9 Neutral 46.0 -9.1 AV 0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	Contact: Robert Paxman Spec: FCC Part 15 B and E, RSS-210, EN55022 Class: B Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Frequency Level Power EN55022B Detector Comments MHz dBuV Lead Limit Margin Function 0.150 50.4 Line 1 55.7 -5.3 AV 0.150 50.4 Neutral 55.7 -5.3 AV 2.743 36.9 Neutral 46.0 -9.1 AV 0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.8 QP	Model:	WDAP50	00, WSAF	2000, & W	/SAP5000			T-Log Number:	T45966
Spec: FCC Part 15 B and E, RSS-210, EN55022 Class: B Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz requency Level Power EN55022B Detector Comments MHz dBuV Lead Limit Margin Function 0.150 50.4 Line 1 55.7 -5.3 AV 0.150 50.4 Neutral 55.7 -5.3 AV 2.743 36.9 Neutral 46.0 -9.1 AV 0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6	Spec: FCC Part 15 B and E, RSS-210, EN55022 Class: B Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Grequency Level Power EN55022B Detector Comments MHz dBuV Lead Limit Margin Function 0.150 50.4 Line 1 55.7 -5.3 AV 0.150 50.4 Neutral 55.7 -5.3 AV 2.743 36.9 Neutral 46.0 -9.1 AV 0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.	Spec: FCC Part 15 B and E, RSS-210, EN55022 Class: B Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Frequency Level Power EN55022B Detector Comments MHz dBuV Lead Limit Margin Function 0.150 50.4 Line 1 55.7 -5.3 AV 0.150 50.4 Neutral 55.7 -5.3 AV 2.743 36.9 Neutral 46.0 -9.1 AV 0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.8 Line 1 63.6								Proj Eng:	Mark Briggs
Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz requency Level Power EN55022B Detector Comments MHz dBuV Lead Limit Margin Function 0.150 50.4 Line 1 55.7 -5.3 AV 0.150 50.4 Neutral 55.7 -5.3 AV 2.743 36.9 Neutral 46.0 -9.1 AV 0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line	Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Grequency Level Power EN55022B Detector Comments MHz dBuV Lead Limit Margin Function 0.150 50.4 Line 1 55.7 -5.3 AV 0.150 50.4 Neutral 55.7 -5.3 AV 2.743 36.9 Neutral 46.0 -9.1 AV 0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line	Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Frequency Level Power EN55022B Detector Comments MHz dBuV Lead Limit Margin Function 0.150 50.4 Line 1 55.7 -5.3 AV 0.150 50.4 Neutral 55.7 -5.3 AV 2.743 36.9 Neutral 46.0 -9.1 AV 0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line	Contact:	Robert Pa	axman						
frequency Level Power EN55022B Detector Comments MHz dBuV Lead Limit Margin Function 0.150 50.4 Line 1 55.7 -5.3 AV 0.150 50.4 Neutral 55.7 -5.3 AV 2.743 36.9 Neutral 46.0 -9.1 AV 0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	Frequency Level Power EN55022B Detector Comments MHz dBuV Lead Limit Margin Function 0.150 50.4 Line 1 55.7 -5.3 AV 0.150 50.4 Neutral 55.7 -5.3 AV 2.743 36.9 Neutral 46.0 -9.1 AV 0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	Frequency Level Power EN55022B Detector Comments MHz dBuV Lead Limit Margin Function 0.150 50.4 Line 1 55.7 -5.3 AV 0.150 50.4 Neutral 55.7 -5.3 AV 2.743 36.9 Neutral 46.0 -9.1 AV 0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	Spec:	FCC Part	15 B and	E, RSS-2	10, EN5502	2		Class:	В
frequency Level Power EN55022B Detector Comments MHz dBuV Lead Limit Margin Function 0.150 50.4 Line 1 55.7 -5.3 AV 0.150 50.4 Neutral 55.7 -5.3 AV 2.743 36.9 Neutral 46.0 -9.1 AV 0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	Frequency Level Power EN55022B Detector Comments MHz dBuV Lead Limit Margin Function 0.150 50.4 Line 1 55.7 -5.3 AV 0.150 50.4 Neutral 55.7 -5.3 AV 2.743 36.9 Neutral 46.0 -9.1 AV 0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	Frequency Level Power EN55022B Detector Comments MHz dBuV Lead Limit Margin Function 0.150 50.4 Line 1 55.7 -5.3 AV 0.150 50.4 Neutral 55.7 -5.3 AV 2.743 36.9 Neutral 46.0 -9.1 AV 0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	#1. A.C	· Dawar F	last Cand	lucate al Fina	iooloma Oʻ	IE 20MII-	1201// 011-		
MHz dBuV Lead Limit Margin Function 0.150 50.4 Line 1 55.7 -5.3 AV 0.150 50.4 Neutral 55.7 -5.3 AV 2.743 36.9 Neutral 46.0 -9.1 AV 0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	MHz dBuV Lead Limit Margin Function 0.150 50.4 Line 1 55.7 -5.3 AV 0.150 50.4 Neutral 55.7 -5.3 AV 2.743 36.9 Neutral 46.0 -9.1 AV 0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	MHz dBuV Lead Limit Margin Function 0.150 50.4 Line 1 55.7 -5.3 AV 0.150 50.4 Neutral 55.7 -5.3 AV 2.743 36.9 Neutral 46.0 -9.1 AV 0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP									
0.150 50.4 Line 1 55.7 -5.3 AV 0.150 50.4 Neutral 55.7 -5.3 AV 2.743 36.9 Neutral 46.0 -9.1 AV 0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	0.150 50.4 Line 1 55.7 -5.3 AV 0.150 50.4 Neutral 55.7 -5.3 AV 2.743 36.9 Neutral 46.0 -9.1 AV 0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	0.150 50.4 Line 1 55.7 -5.3 AV 0.150 50.4 Neutral 55.7 -5.3 AV 2.743 36.9 Neutral 46.0 -9.1 AV 0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	. ,								
2.743 36.9 Neutral 46.0 -9.1 AV 0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	2.743 36.9 Neutral 46.0 -9.1 AV 0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	2.743 36.9 Neutral 46.0 -9.1 AV 0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP						<u> </u>			
0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	0.150 56.0 Neutral 65.7 -9.7 QP 0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	0.150	50.4	Neutral	55.7	-5.3	AV			
0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	0.150 55.4 Line 1 65.7 -10.3 QP 1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	2.743	36.9		46.0	-9.1	AV			
1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	1.846 32.0 Line 1 46.0 -14.0 AV 0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP						<u> </u>			
0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	0.199 36.3 Neutral 53.6 -17.3 AV 0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP									
0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	0.200 36.2 Line 1 53.6 -17.4 AV 2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP									
2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	2.743 38.4 Neutral 56.0 -17.6 QP 0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP									
0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP	0.199 44.9 Neutral 63.6 -18.7 QP 0.200 44.8 Line 1 63.6 -18.8 QP						<u> </u>			
0.200 44.8 Line 1 63.6 -18.8 QP	0.200 44.8 Line 1 63.6 -18.8 QP	0.200 44.8 Line 1 63.6 -18.8 QP									
1.040 34.7 LIIIe I 30.0 -21.3 QP	1.040 34.7 LIIIE	1.040 34.7 LIIIe 30.0 -21.3 QP									
			1.846	34.7	Line 1	56.0	-21.3	QP			

Elliott EMC Test D.							
Client:	Intel Corporation	Job Number:	J45759				
Model:	WDAP5000, WSAP2000, & WSAP5000	T-Log Number:	T45966				
		Proj Eng:	Mark Briggs				
Contact:	Robert Paxman						
Spec:	FCC Part 15 B and E, RSS-210, EN55022	Class:	В				

FCC Part 15.247 Subpart C Test

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test:	1/21/02	Config. Used: 1
Test Engineer:	Jmartinez	Config Change: None
Test Location:	SVOATS# 4	Host Unit Voltage 120Vac, 60Hz

General Test Configuration

The EUT was located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT unless stated otherwise.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: Temperature: 11°C Rel. Humidity: 80%

Summary of Results

Run #	Test Performed	Limit	Result	Comments
1	RE, 1000 - 24,000 MHz -	15.247/15.205	Dace	Refer to individual runs
l	Spurious Emissions	10.247/10.200	Pass	Refer to individual runs

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

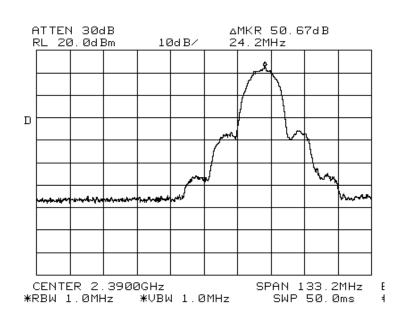
2.4GHz antenna Gain:	6.2 dl	Зi

Client:	Intel Corp						l.	ob Number:	145759
	-		NP2000, & W	/SAP5000				og Number:	
Wiodei.	WD/II 500	, w 31	11 2000, Q V	20711 0000			, ,	•	Mark Briggs
Contact	Robert Pa	vman						T TOJ ETIG.	Wark Driggs
			4 L DCC 3	10 FNEE02	າາ			Class	D
•			d E, RSS-2					Class:	В
		-	s Emission 02.11a card		UUUU IVIHZ				
Frequency		Pol		/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
			High Chan						
4824.0	1	h	74.0	-25.4	Pk	108	1.0	Note 2	
4824.0	36.1	h	54.0	-17.9	Avg	108	1.0	Note 2	
2483.7	58.1	h	74.0	-15.9	Pk	5	1.6	Note 2; Sp	urious emission
2483.7	53.0	h	54.0	-1.0	Avg	5			urious emission
2489.0	38.3	h	54.0	-15.7	Pk	167			urious emission
2494.0	47.0	h	54.0	-7.0	Pk	160			urious emission
2483.7	47.9	V	54.0	-6.1	Pk	70			urious emission
2489.0		V	54.0	-8.9	Pk	70			urious emission
2494.0 EUT on Mi		V	54.0	-3.9	Pk	70	1.4	Note 2' Spi	urious emission
4874.0		v V	т	-6.2	Pk	138	1 /	Dook roadi	na avorago limit
7310.2			54.0 74.0	-0.2	Pk Pk	70		Restricted	ng, average limit
7310.2		V	54.0	-15.6	Avg	70		Restricted	
9747.8		V	74.0	-23.3	Pk	0		Non-Restri	cted
4874.0		H	74.0	-24.1	Pk	133		Restricted	otou
4874.0		Н	54.0	-10.0	Avg	133		Restricted	
7310.2		Н	74.0	-23.8	Pk	0		Restricted	
7310.2	38.0	Н	54.0	-16.0	Avg	0	1.4	Restricted	
9747.8	51.9	Н	74.0	-22.1	Pk	23	1.3	Non-Restri	cted
EUT On Lo			1	_					
2433.7		h	93.0	-34.6	Pk	90			urious emission
2455.7	52.0	h	93.0	-41.1	Pk	90			urious emission
2433.7	53.8	V	93.0	-39.2	Pk	90			urious emission
2455.7	46.9	V	93.0	-46.1	Pk	245	1.5	Note 3; Sp	urious emission
Note 1:	No harma	nic omic	cion dotact	od hovord i	and harmonia	within 20-dB	of the limit		
				eu beyond i	ZIIU HAHIIIUHIC	WILLIIII ZU-UB	or the infill		
Note 2:	Restricted emissions Non-Restricted emissions								

	744 6								1		
E		ott						EM	IC Test Data		
Client:	Intel Corp	oration			J	ob Number:	J45759				
			P2000, & W	/SAP5000			T-L	og Number:	T45966		
			. =000, 0					•	Mark Briggs		
Contact	Robert Pa	vman						T TOJ ETIG.	Mark Briggs		
			1 F DCC 22	O ENEEDO	2			Class	D		
			d E, RSS-21					Class:	В		
	Run #1b: Radiated Spurious Emissions, 1000 - 40000 MHz Still testing 802.11b card, but with 802.11a MINI PCI transmitting also.										
Frequency	Level	Pol		/ 15.407	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg		meters	Comments			
	_				on at full p		HICICIS	<u> </u>			
2483.7	58.2	h	74.0	-15.8	Pk	5	1.6	Note 2			
2483.7	53.2	h	54.0	-0.8	Avg	5		Note 2			
2489.0	45.1	h	54.0	-8.9	Pk	223			urious emission		
2494.0	50.1	h	54.0	-3.9	Pk	85			urious emission		
2351.7	52.2	h	54.0	-1.8	Pk	0			urious emission		
2505.0	50.1	h	54.0	-3.9	Pk	155			urious emission		
2483.7	51.7	V	54.0	-2.3	Pk	266			urious emission		
2489.0	41.7	V	54.0	-12.3	Pk	266			urious emission		
2494.0	43.4	V	54.0	-10.6	Pk	266			urious emission		
EUT on Mi						200		= op.			
4874.0	49.5	V	74.0	-24.5	Pk	116	1.1	Restricted			
4873.9	38.9	V	54.0	-15.1	Avg	116		Restricted			
7311.5	56.3	V	74.0	-17.7	Pk	200	1.2	Restricted			
7311.2	42.3	V	54.0	-11.7	Avg	200	1.2	Restricted			
9747.8	56.7	V	74.0	-17.3	Pk	42	1.4	Non-Restric	ced		
9747.8	54.4	Н	74.0	-19.6	Pk	6	1.2	Non-Restric	ced		
7310.2	52.3	Н	74.0	-21.7	Pk	325	1.4	Restricted			
7310.2	41.5	Н	54.0	-12.5	Avg	325	1.4	Restricted			
4874.0	51.3	Н	74.0	-22.7	Pk	113	1.3	Restricted			
4874.0	45.5	Н	54.0	-8.5	Avg	113	1.3	Restricted			
					t full power						
4824.0	46.9	h	74.0	-27.1	Pk	176		Note 1; Not			
4824.0	28.7	h	54.0	-25.3	Avg	176		Note 1; Not			
2433.7	57.7	h	92.0	-34.3	Pk	176			urious emission		
2455.7	47.8	h	92.0	-44.2	Pk	309			urious emission		
2433.7	52.9	V	92.0	-39.1	Pk	85			urious emission		
2455.7	43.8	V	92.0	-48.2	Pk	85			urious emission		
2367.7	45.4	V	54.0	-8.6	Pk	264			urious emission		
2367.7	48.2	h	54.0	-5.8	Pk	162	1.6	Note 3; Sp	urious emission		
						W					
Note 1:				ed beyond 2	and harmonic	within 20-dE	of the limit				
Note 2:	Restricted										
Note 3:	Non-Rest	ricted em	nissions								

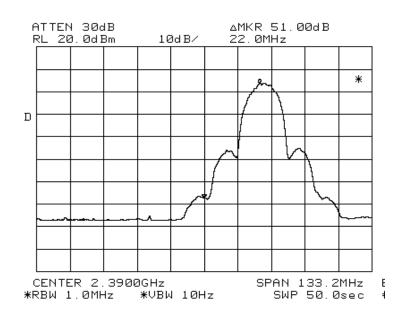
Elliott

EMC Test Data


)											
Client:	Intel Corp	oration			Job Number: J45759						
Model:	WDAP50	00, WSA	P2000, & W	'SAP5000	T-	T45966					
					Proj Eng: Mark Briggs						
Contact:	Robert Pa	axman									
Spec:	: FCC Part 15 B and E, RSS-210, EN55022							Class: B			
Fundamental Bandedge Low Channel											
2413.249	108.8	V	-	-	Pk	78	1.2	Peak readi	ng, peak limit		
2412.352	101.6	V	-	•	Avg	78	1.2	Average re	ading, average limit		
2413.389	113.5	Н	-	•	Pk	89	1.8	Peak readi	ng, peak limit		
2412.394	106.4	Н	Avg 89 1.8 Average reading, average lim				ading, average limit				

Band Edge Field Strength Calculations

Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments
MHz	$dB\mu V/m$	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.0	58.3	V	74.0	-15.7	Pk			Note 1
2390.0	48.6	V	54.0	-5.4	Avg			Note 1
2390.0	63.0	h	74.0	-11.0	Pk			Note 1
2390.0	53.4	h	54.0	-0.6	Avg			Note 1

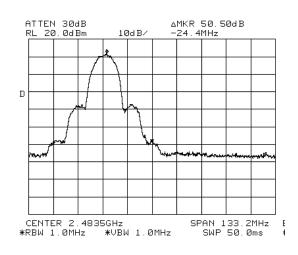

Note 1:

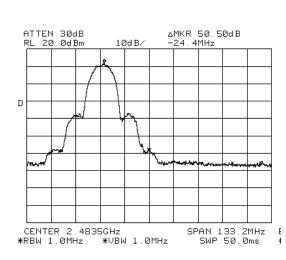
EUT operating on the Lowest available channel in the 2.402 - 2.4835 GHz band. Signal level calculated using the relative measurements (-50.67 dBc for peak and -53.00 dBc for average) applied to the highest peak and average field strength measurements of the fundamental signal level.

)			
Client:	Intel Corporation	Job Number:	J45759
Model:	WDAP5000, WSAP2000, & WSAP5000	T-Log Number:	T45966
		Proj Eng:	Mark Briggs
Contact:	Robert Paxman		
Spec:	FCC Part 15 B and E, RSS-210, EN55022	Class:	В

Elliott

EMC Test Data


Client:	Intel Corp	oration			Job Number: J45759				
Model:	WDAP500	00, WSA	P2000, & W	/SAP5000	T-	T-Log Number: T45966			
					Proj Eng: Mark Briggs				
Contact:	Robert Pa	axman							
Spec:	FCC Part	15 B and	d E, RSS-21	10, EN55022	Class: B				
Fundamental Bandedge (High Channel)									
2409.163	105.7	V	-	-	Pk	277	1.8	Peak readir	ng, peak limit
2409.273	3 98.8 V Avg 2					277	1.8	Average reading, average limit	
2411.792	2 112.3 h Pk 7				7	1.8	Peak reading, peak limit		
2411.072	106.3	h	-	-	Avg	7	1.8	Average re	ading, average limit


Band Edge Field Strength Calculations

Frequen	псу	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments
MHz	C	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2483	3.5	55.2	V	74.0	-18.8	Pk			Note 1
2483	3.5	45.5	V	54.0	-8.5	Avg			Note 1
2483	3.5	61.8	h	74.0	-12.2	Pk			Note 1
2483	3.5	53.0	h	54.0	-1.0	Avg			Note 1

Note 1:

EUT operating on the Highest available channel in the 2.402 - 2.4835 GHz band. Signal level calculated using the relative measurements (-50.50 dBc for peak and -53.34 dBc for average) applied to the highest peak and average field strength measurements of the fundamental signal level.

