

February 11, 2002

ATCB 6731 Whittier Ave Suite C110 McLean, Va. 22101

Gentlemen:

The enclosed documents constitute a formal submittal and application for a Grant of Equipment Authorization pursuant to Subpart E of Part 15 of FCC Rules (CFR 47) regarding intentional radiators. Data within this report demonstrates that the equipment tested complies with the FCC limits for intentional radiators.

Elliott Laboratories, as duly authorized agent prepared this submittal. A copy of the letter of our appointment as agent is enclosed.

If there are any questions or if further information is needed, please contact Elliott Laboratories for assistance.

Sincerely,

Juan Martinez

Senior EMC Engineer

JM/

Enclosures: Agent Authorization Letter

guan man-

Emissions Test Report with Exhibits

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart E (UNII Devices) and Industry Canada RSS 210 Issue 4 (LELEAN Devices) on the Intel Corporation Model: WM3A5000 Mini PCI Card

FCC ID: J3OWM3A5000

GRANTEE: Intel Corporation

> 2300 Corporate Center Drive Thousand Oaks, CA. 91320

TEST SITE: Elliott Laboratories, Inc.

> 684 W. Maude Avenue Sunnyvale, CA 94086

REPORT DATE: February 11, 2002

FINAL TEST DATE: January 4 and January 5, 2002

AUTHORIZED SIGNATORY:

Juan Martinez

Senior EMC Engineer

This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

DECLARATIONS OF COMPLIANCE

Equipment Name and Model:

WM3A5000 Mini PCI Card

Manufacturer:

Intel Corporation 2300 Corporate Center Drive Thousand Oaks, CA. 91320

Tested to applicable standards:

RSS-210, Issue 4, December 2000 (Low Power License-Exempt Radiocommunication Devices)

FCC Part 15 Subpart E (UNII Devices)

Measurement Facility Description Filed With Department of Industry:

Departmental Acknowledgement Number: IC2845 **SV1** Dated July 30, 2001 Departmental Acknowledgement Number: IC2845 **SV4** Dated July 19, 2001

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of ANSI C63.4 as detailed in section 5.3 of RSS-210, Issue 4); and that the equipment performed in accordance with the data submitted in this report.

Signature

Name Title Company

Address

Juan Martinez

Senior EMC Engineer Elliott Laboratories Inc. 684 W. Maude Ave

Sunnyvale, CA 94086

USA

Date: February 11, 2002

Maintenance of compliance with the above standards is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R46225 Page 2 of 18 Pages

TABLE OF CONTENTS

COVER PAGE	1
DECLARATIONS OF COMPLIANCE	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
SUMMARY OF RESULTS	5
MEASUREMENT UNCERTAINTIES	6
EQUIPMENT UNDER TEST (EUT) DETAILS	7
GENERAL ENCLOSURE MODIFICATIONS SUPPORT EQUIPMENT EUT INTERFACE PORTS EUT OPERATION DURING TESTING ANTENNA REQUIREMENTS	
TEST SITE	
GENERAL INFORMATION	9
MEASUREMENT INSTRUMENTATION	10
RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER. LINE IMPEDANCE STABILIZATION NETWORK (LISN) POWER METER FILTERS/ATTENUATORS ANTENNAS ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION	
TEST PROCEDURES	12
EUT AND CABLE PLACEMENTCONDUCTED EMISSIONSRADIATED EMISSIONSCONDUCTED EMISSIONS FROM ANTENNA PORT	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	14
FCC 15.407 (A) OUTPUT POWER LIMITS	
EXHIBIT 2: Test Data Log Sheets	

SCOPE

An electromagnetic emissions test has been performed on the Intel Corporation model WM3A5000 Mini PCI Card pursuant to Subpart E of Part 15 of FCC Rules for Unlicensed National Information Infrastructure (UNII) devices and RSS-210 Issue 4 for licence-exempt local area network (LELAN) devices. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Intel Corporation model WM3A5000 Mini PCI Card and therefore apply only to the tested sample. The sample was selected and prepared by Jim Baer of Intel Corporation

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart E of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

File: R46225 Page 4 of 18 Pages

COMPLIES

COMPLIES

SUMMARY OF RESULTS

15.407(b) (5)

15.407(b) (2)

/ 15.209

6.2.2 q1 (ii)

6.2.2 q1 (ii)

FCC Part 15 Section	RSS 210 Section	Description	Comments	Result
Operation in tl	he 5.15 – 5.25 G	Hz Band (Normal Mode)		
15.407 (d)		As the device operates in the $5.15 - 5.25$ GHz band the antenna must be integral to the device.	Antenna Gain = 2 dBi The antenna is integral	COMPLIES
15.407(e)		Indoor operation only	Refer to user's manual in Exhibit 6	COMPLIES
15.407(a) (1)	6.2.2 q1 (i)	Bandwidth	26-dB (27.42 MHz), 20-dB (17.58 MHz)	N/A
15.407(a) (1)	6.2.2 q1 (i)	Output Power	16.2 dBm	COMPLIES
15.407(a) (1))	6.2.2 q1 (i)	Power Spectral Density	1.03 dBm/MHz	COMPLIES
15.407(b) (5) / 15.209	6.2.2 q1 (ii)	Spurious Emissions below 1GHz	-6dB @ 928MHz	COMPLIES
15.407(b) (2)	6.2.2 q1 (ii)	Spurious Emissions above 1GHz	-6.7 dB @ 15,540 MHz	COMPLIES
Operation in the 5.25 – 5.35 GHz Band (Normal Mode) Note: The device is not restricted to indoor use only, therefore the spectral density of spurious emissions in the 5.15 – 5.25 GHz band were limited to the power spectral limit of –27dBm/MHz as detailed in FCC 15.407(b)(2) and RSS 210 6.2.2 q1 (ii)				
		Maximum Antenna Gain /Integral Antenna	Antenna Gain = 2 dBi The antenna is integral	COMPLIES
15.407(a) (2)	6.2.2 q1 (ii)	Bandwidth	26-dB (33.00 – 36.75 MHz), 20-dB (19.08 – 20.00 MHz)	N/A
15.407(a) (2)	6.2.2 q1 (ii)	Output Power	19.6 dBm	COMPLIES
15.407(a) (2))	6.2.2 q1 (ii)	Power Spectral Density	2.40 dBm/MHz	COMPLIES

-6dB @ 928MHz

-0.09 dB @ 10,639 MHz

Spurious Emissions

Spurious Emissions

below 1GHz

above 1GHz

File: R46225 Page 5 of 18 Pages

General requirements for all bands				
	6.2.2 q(iv)(a)	Digital Modulation	Digital Modulation is used, refer to the "Theory of Operations" (Exhibit 9) for a detailed explanation.	COMPLIES
	6.2.2 q(iv)(b)	Peak Spectral Density	9.33 – 12.15 dBm/MHz	COMPLIES
15.407(a)(6)	_	Peak Excursion Ratio	7.25 – 7.33 dB	COMPLIES
	6.2.2 q(iv)(c)	Channel Selection	The device was tested on the following channels in normal mode: 6, 14, and 20.	N/A
15.407 (c)	6.2.2 q(iv)(d)	Automatic Discontinuation of Operation in the absence of information to transmit	Operation is discontinued in the absence of information to transmit, refer to the "Theory of Operations" in Exhibit 9 for a detailed explanation.	COMPLIES
15.407 (g)	6.2.2 q(iv)(e)	Frequency Stability	Frequency stability is +/- 20 ppm, refer to the "Theory of Operations" in Exhibit 9 for a detailed analysis.	COMPLIES
	6.2.2 q(iv)(g)	User Manual information	All relevant statements have been included in the user's manuals. Refer to Exhibit 6 for details	COMPLIES
15.407 (f)	6.2.2 q(iv)(g)	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11	COMPLIES
15.407(b) / 15.207	6.6	AC Conducted Emissions	-11.1dB @ .5299MHz	COMPLIES

MEASUREMENT UNCERTAINTIES

ISO Guide 25 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.2

File: R46225 Page 6 of 18 Pages

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Intel Corporation model WM3A5000 Mini PCI Card is a UNII radio, which is designed to be use in Laptop to provide wireless network capability.

The sample was received on December 17, 2001 and tested on December 17, 2001 and January 3, January 4 and February 1, 2002. The EUT consisted of the following component(s):

Manufacturer/Model/Description	Serial Number	Proposed FCC ID #
Intel/WM3A5000/Mini PCI card	N/A	J30WM3A5000

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the emission specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer/Model/Description	Serial Number	FCC ID Number
IBB/2647/Laptop	78-7PX8M	DoC

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected to		Cable(s)	
			Shielded or	
		Description	Unshielded	Length (m)
EUT Tx	Antenna	Hirose Connector	Shielded	.5

File: R46225 Page 7 of 18 Pages

EUT OPERATION DURING TESTING

The radio was transmitting at full power on the specified channel with a duty cycle of 99% (maximum allowed). The EUT was tested in normal mode (chanel bandwidth of approximately 30 MHz).

"Normal Mode" allows data rates of up to 54 Mb/s. The device was, therefore, tested in normal mode at the data rate that produced the highest output power for normal mode (6 Mb/s).

ANTENNA REQUIREMENTS

As the device is intended to operate in the 5.15 - 5.25 GHz band an integral antenna as detailed in 15.407 (d) and RSS-210 6.2.2 (q1)(i) is required. The antenna for the device is an integral antenna. The Antenna(s) will be located on the side of the Laptop LCD or TFT screen.

File: R46225 Page 8 of 18 Pages

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on January 4, January 5, 2002at the Elliott Laboratories Open Area Test Site #4 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Federal Communications Commission. In accordance with Industry Canada rules detailed in RSS 210 Issue 4 and RSS-212, construction, calibration, and equipment data for the test sites have been filed with the Federal Communications Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

File: R46225 Page 9 of 18 Pages

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R46225 Page 10 of 18 Pages

POWER METER

Either a spectrum analyzer or a power meter and thermister mount are used for all direct output power measurements from transmitters.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R46225 Page 11 of 18 Pages

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

File: R46225 Page 12 of 18 Pages

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Measurement bandwidths (video and resolution) are set in accordance with FCC procedures for the type of radio being tested.

File: R46225 Page 13 of 18 Pages

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions from the AC power port are given in units of microvolts, the limits for radiated electric field emissions are given in units of microvolts per meter at a specified test distance and the output power limits are given in terms of Watts, milliwatts or dBm. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp) the following formula is used to determine the field strength limit in terms of microvolts per meter at a distance of 3m from the equipment under test:

$$E = \frac{1000000 \sqrt{30 P}}{3}$$
 microvolts per meter

where P is the eirp (Watts)

For reference, converting the voltage and electric field strength specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. Conversion of power specification limits from linear units (in milliwatts) to decibel form (in dBm) is accomplished by taking the base ten logarithm, then multiplying by 10.

File: R46225 Page 14 of 18 Pages

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 – 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

RS-210 6.2.2(q1) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	200mW (23 dBm)	10 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 – 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

File: R46225 Page 15 of 18 Pages

SPURIOUS RADIATED EMISSIONS LIMITS

The table below shows the limits for unwanted (spurious) emissions falling in the restricted bands detailed in Part 15.205 and Industry Canada RSS-210 Table 2.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

The table below shows the limits for unwanted (spurious) emissions outside of the restricted bands above 1GHz.

Operating Frequency (MHz)	EIRP Limit (dBm)	Equivalent Field Strength At 3m (dBuV/m)
5150 - 5250	-27 dBm	68.3 dBuV/m
5250 - 5350	-27 dBm (note 1)	68.3 dBuV/m
5725 – 5825	-27 dBm (note 2)	68.3 dBuV/m
	-17 dBm (note 3)	$78.3 \; dBuV/m$

Note 1:If operation is restricted to indoor use only then emissions in the band 5.15 - 5.25 GHz must meet the power spectral density limits for the intentional signals detailed in RSS 210 and FCC Subpart E for devices operating in the 5.15 - 5.25 Ghz band.

Note 2:Applies to spurious signals separated by more than 10 MHz from the allocated band.

Note 3:Applies to spurious signals within 10 MHz of the allocated band.

AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in FCC Part 15.205 and Industry Canada RSS-210 section 6.6.

Frequency Range (MHz)	Limit (uV)	Limit (dBuV)
0.450 to 30.000	250	48

File: R46225 Page 16 of 18 Pages

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 R_r = Receiver Reading in dBuV

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

* Broadband Level - Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

File: R46225 Page 17 of 18 Pages

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 $D_m = Measurement Distance in meters$

 D_S = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

File: R46225 Page 18 of 18 Pages

EXHIBIT 1: Test Equipment Calibration Data

File: R46225 Appendix Page 1 of 2

Conducted and Radiated Emissions, 05-Jan-02

Engineer: Vishal

g						
<u>Manufacturer</u>	<u>Description</u>	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Elliott Laboratories	Biconical Antenna, 30-300 MHz	EL30.300	773	12	2/15/2001	2/15/2002
Hewlett Packard	EMC Spectrum Analyzer, Opt. 026 □9 KHz -26.5GHz	8593EM	1141	12	2/16/2001	2/16/2002
Elliott Laboratories	FCC / CISPR LISN	LISN-3, OATS	304	12	6/14/2001	6/14/2002
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	1242	12	10/9/2001	10/9/2002
Elliott Laboratories	LISN 2 x (Solar 8028 LISN + 6512 Caps)	LISN-5, Support	379	12	8/10/2001	8/10/2002
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1347	12	10/16/2001	10/16/2002
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	372	12	7/27/2001	7/27/2002
Rohde & Schwarz	Test Receiver, 9kHz-2750MHz	ESCS 30 EMI	1337	12	12/26/2001	12/26/2002

Conducted and Radiated Emissions, 29-Jan-02 12:09 AM

Engineer: Vishal

Liigiileer. Visilai						
Manufacturer	<u>Description</u>	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
EMCO	Biconical Antenna, 30-300 MHz	3110B	1320	12	5/23/2001	5/23/2002
EMCO	Log Periodic Antenna, 0.2-1 GHz	3146	1294	12	3/27/2001	3/27/2002
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	812	12	1/23/2002	1/23/2003
Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	1316	12	5/9/2001	5/9/2002
Rohde & Schwarz	Test Receiver, 20-1300 MHz	ESVP	1317	12	5/9/2001	5/9/2002
Solar Electronics	LISN	8012-50-R-24-BNC	305	12	7/30/2001	7/30/2002

Antenna Conducted Emissions, 02-Feb-02

Engineer: jmartinez

ManufacturerDescriptionModel #Assett #Cal intervalLast CalibratedCal DueHewlett PackardMicrowave EMI test system (SA40, 30Hz - 40GHz)84125C1149122/5/20012/5/2002

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T45856 Digital Test Log 9 Pages T45856 Radio Test Log 33 Pages

File: R46225 Appendix Page 2 of 2

Elliot	t	EM	C Test Data
Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	
Contact:	Jim Bear		
Emissions Spec:	FCC Part 15 B and E, RSS-210	Class:	В
Immunity Spec:	N/A	Environment:	-

For The

Intel Corporation

Model

WM3A5000 w/ Centurian Antenna

Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	
Contact:	Jim Bear		
Emissions Spec:	FCC Part 15 B and E, RSS-210	Class:	В
Immunity Spec:	N/A	Environment:	-

EUT INFORMATION

General Description

The EUT is a UNII MINI PCI card which is designed to be installed in Laptop Computers for wireless network capability. Normally, the EUT would be placed on a table top during operation. The EUT was, therefore, treated as table-top equipment during testing to simulate the end user environment. The EUT receives its power from the computer host..

Equipment Under Test

		• •		
Manufacturer	Model	Description	Serial Number	FCC ID
Intel Corporation	WM3A5000	Hirose MINI-PCI	N/A	J3OWM3A5000

Antenna

The EUT uses the following external antennas:

Manufacturer	Model	Description	Serial Number	Antenna Gain (dBi)
Centurion	N/A	Dipole	N/A	

The antenna connector used is non-standard antenna (Hirose connector) to meet the requirements of FCC Part 15.203 and RSS-210.

EUT Enclosure

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer.

Modification History

Mod. #	Test	Date	Modification
1			

Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	
Contact:	Jim Bear		
Emissions Spec:	FCC Part 15 B and E, RSS-210	Class:	В
Immunity Spec:	N/A	Environment:	-

Test Configuration #1

Local Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
HP	2225C+	Printer	3028S76892	DS16XU2225
Robotics	Pilot 1000	PDA	604819965702	MQ90001
IBM	2647	Laptop	78-7PX8M	DoC

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
None				

Interface Ports

		Cable(s)			
Port	Connected To	Description	Shielded or Unshielded	Length(m)	
Printer	Laptop	Parallel	Shielded	3	
Modem	Laptop	RS-232	Shielded	2	
Hirose MPCI	MINI PCI	Hirose Connector	Shielded	0.5	

EUT Operation During Emissions Testing (Digital)

The EUT was set to transmitt at full power. Channe frequency set to the middle (5.26 GHz). Also, the peripherals were exercised with the H-pattern software.

	€ EHIOU		C Test Data
Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	Enter on cover sheet
Contact:	Jim Bear		
Spec:	FCC Part 15 B and F RSS-210	Class:	В

Conducted Emissions - Power Ports

Test Specifics

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 1/28/02 Config. Used: 1
Test Engineer: Vishal Config Change: None

Test Location: SVOATS #1 EUT Voltage: 120V/60Hz and 230V/50Hz

General Test Configuration

For tabletop equipment, the EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment.

Ambient Conditions: Temperature: 4.4°C

Rel. Humidity: 75%

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power 230V/50Hz	EN55022 B	Pass	-15.4dB @ .2013MHz
2	CE, AC Power 120V/60Hz	EN55022 B	Pass	-11.1dB @ .5299MHz

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	Ellic							C Test Dat
	Client: Intel Corporation							J45745
Model:	WM3A50	00 w/ Cei	nturian Ante	nna			T-Log Number:	
							Proj Eng:	Enter on cover sheet
Contact:								
Spec:	FCC Part	15 B and	d E, RSS-21	0			Class:	В
D #1. A.C	· Dawar F	lart Cana	duated Fast	osiomo 0.11	- 20MII-	2201//5011-		
requency	Level	AC AC	ducted Emis EN55		Detector	Comments		
MHz	dBuV	Lead	Limit	Margin	Function	Comments		
0.201	48.0	Line	63.4	-15.4	QP			
0.421	41.1	Line	57.3	-16.2	QP			
0.186	46.0	Neutral	64.0	-18.0	QP			
0.550	36.6	Neutral	56.0	-19.4	QP			
0.284	41.1	Neutral	60.7	-19.6	QP			
0.201	33.4	Line	53.4	-20.0	AV			
0.421	25.7	Line	47.3	-21.6	AV			
0.155	43.3	Line	65.5	-22.2	QP			
0.161	42.5	Line	65.2	-22.7	QP			
0.161	41.6	Neutral	65.2	-23.6	QP			
0.550	22.4	Neutral	46.0	-23.6	AV			
0.284	24.3	Neutral	50.7	-26.4	AV			
0.161	21.7	Neutral	55.2	-33.5	AV			
0.155	21.8	Line	55.5	-33.7	AV			
0.186	18.7	Neutral	54.0	-35.3	AV			
0.161	19.1	Line	55.2	-36.1	AV			
Run #2: AC	Power F		ducted Emi EN55022B			120V/60Hz Comments		
MHz	dBuV	Lead	Limit	Margin	Function			
0.530	34.9	Line 1	46.0	-11.1	AV			
0.595	33.1	Line 1	46.0	-12.9	AV			
0.539	30.0	Neutral	46.0	-16.0	AV			
0.539	39.3	Neutral	56.0	-16.7	QP			
0.199	46.4	Neutral	63.6	-17.2	QP			
0.530	38.7	Line 1	56.0	-17.3	QP			
0.199	35.2	Neutral	53.6	-18.4	AV			
0.595	36.9	Line 1	56.0	-19.1	QP			
0.154	40.5	Neutral	65.7	-25.2	QP			
0.154	24.2	Neutral	55.7	-31.5	AV			
	22.5	Lino 1	55.7	-32.2	AV			
0.154	23.5	Line 1	55.7	-32.2	~ v			

	ZIIIOU	EIV	C rest Data
Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	Enter on cover sheet
Contact:	Jim Bear		
Spec:	FCC Part 15 B and E. RSS-210	Class:	В

Radiated Emissions

Test Specifics

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 1/28/02 Config. Used: 1
Test Engineer: Vishal Config Change: None
Test Location: SVOATS #2 EUT Voltage: 230V/50Hz

General Test Configuration

The EUT was located on the turntable for radiated emissions testing.

On the OATS, the measurement antenna was located 10 meters from the EUT for the measurement range 30 - 1000 MHz and 3m from the EUT for the frequency range 1 - 10 GHz.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions: Temperature: 4.4°C

Rel. Humidity: 75%

Summary of Results

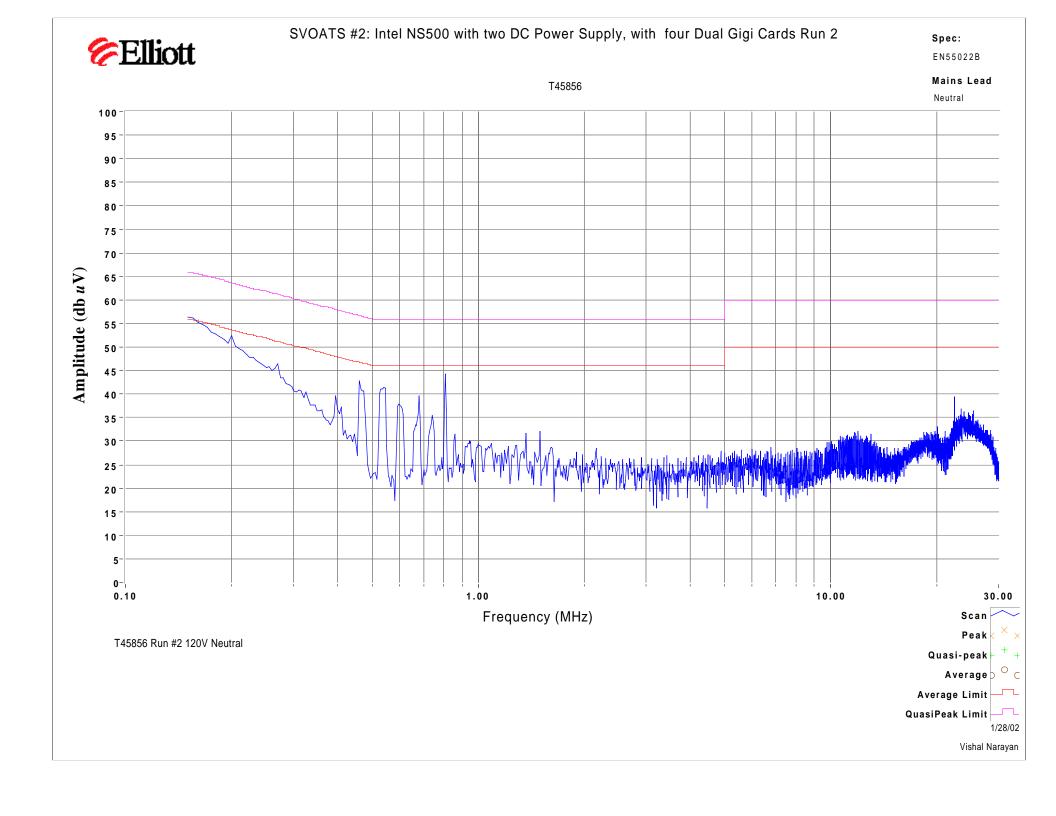
,				
Run #	Test Performed	Limit	Result	Margin
1	RE, Preliminary Scan 30 - 1000 MHz	EN55022 B	Pass	-6dB @ 928MHz
2	RE, 30 - 1000MHz - Maximized Emissions	EN55022 B	Pass	-6dB @ 928MHz

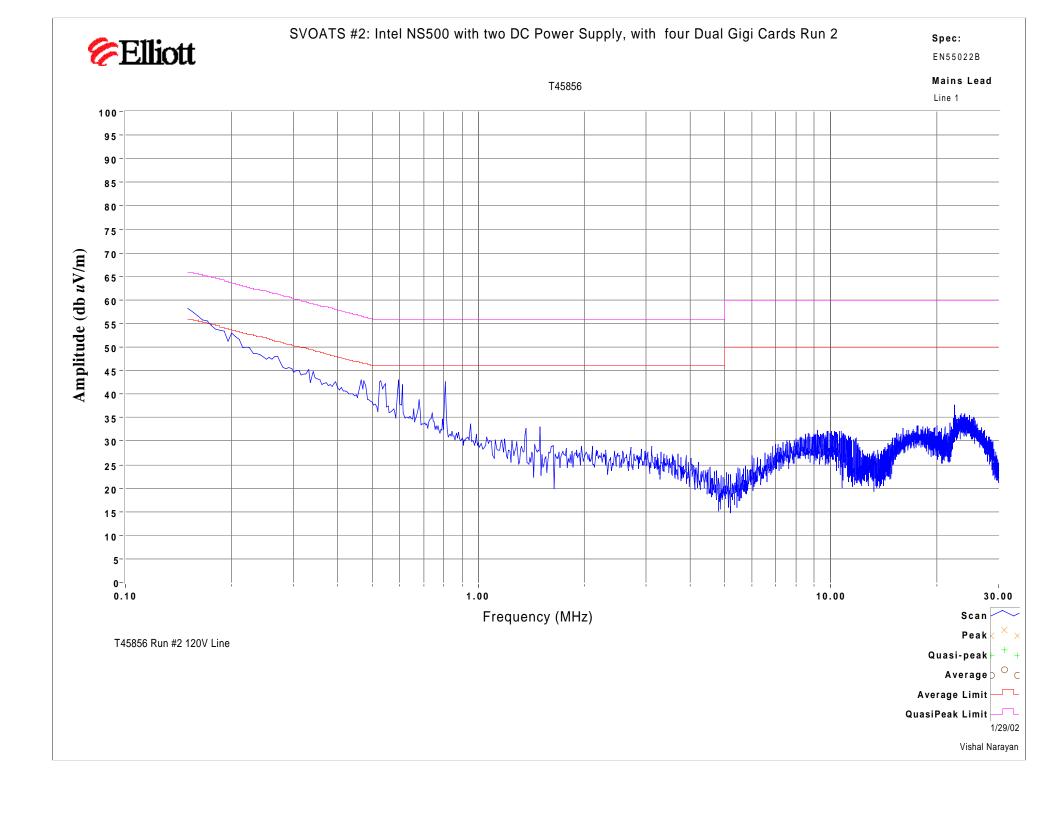
Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.


Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	Enter on cover sheet
Contact:	Jim Bear		
Spec:	FCC Part 15 B and E, RSS-210	Class:	В


Run #1: Preliminary Radiated Emissions, 30-1000 MHz

Frequency	Level	Pol	EN22	055 B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
928.000	31.0	V	37.0	-6.0	QP	200	1.0	
734.000	29.3	Н	37.0	-7.7	QP	60	1.3	
70.800	22.0	V	30.0	-8.0	QP	240	1.0	
734.000	29.0	V	37.0	-8.0	QP	300	1.3	
399.500	26.0	V	37.0	-11.0	QP	0	1.0	
67.500	18.0	V	30.0	-12.0	QP	360	1.0	

Run #2: Maximized Readings From Run #1

Frequency	Level	Pol	EN22	055 B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
928.000	31.0	V	37.0	-6.0	QP	200	1.0	
734.000	29.3	Н	37.0	-7.7	QP	60	1.3	
70.800	22.0	V	30.0	-8.0	QP	240	1.0	
734.000	29.0	V	37.0	-8.0	QP	300	1.3	
399.500	26.0	V	37.0	-11.0	QP	0	1.0	
67.500	18.0	V	30.0	-12.0	QP	360	1.0	

Elliot	t	EM	C Test Data
Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	
Contact:	Jim Bear		
Emissions Spec:	FCC Part 15 B and E, RSS-210	Class:	В
Immunity Spec:	N/A	Environment:	-

For The

Intel Corporation

Model

WM3A5000 w/ Centurian Antenna

Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	
Contact:	Jim Bear		
Emissions Spec:	FCC Part 15 B and E, RSS-210	Class:	В
Immunity Spec:	N/A	Environment:	-

EUT INFORMATION

General Description

The EUT is a UNII MINI PCI card which is designed to be installed in Laptop Computers for wireless network capability. Normally, the EUT would be placed on a table top during operation. The EUT was, therefore, treated as table-top equipment during testing to simulate the end user environment. The EUT receives its power from the computer host..

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Intel Corporation	WM3A5000	Hirose MINI-PCI	N/A	J3OWM3A5000

Antenna

The EUT uses the following external antennas:

Manufacturer	Model	Description	Serial Number	Antenna Gain (dBi)
Centurion	N/A	Dipole	N/A	2

The antenna connector used is non-standard antenna (Hirose connector) to meet the requirements of FCC Part 15.203 and RSS-210.

EUT Enclosure

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer.

Modification History

Mod. #	Test	Date	Modification
1			

Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number: T45856	
		Proj Eng:	
Contact:	Jim Bear		
Emissions Spec:	FCC Part 15 B and E, RSS-210	Class:	В
Immunity Spec:	N/A	Environment:	-

Test Configuration #2

Local Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
IBM	2647	Laptop	78-7PX8M	DoC

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
None				

Interface Ports

		Cable(s)		
Port	Connected To	Description	Shielded or Unshielded	Length(m)
Hirose MPCI	MINI PCI	Hirose Connector	Shielded	0.5

EUT Operation During Emissions Testing (Radio)

The radio was transmitting at full power on the specified channel with a duty cycle of 99% (maximum allowed). The EUT was tested in normal mode (channel bandwidth of approximately 30 MHz).

"Normal Mode" allows data rates of up to 54 Mb/s. The device was, therefore, tested in normal mode at the data rate that produced the highest output power for normal mode (6 Mb/s).

Elliott		EMC Test Data	
Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	Enter on cover sheet
Contact:	Jim Bear		
Spec:	FCC Part 15 B and E, RSS-210	Class:	В

FCC Part 15 Subpart E Tests:Normal Mode

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test:	1/4/2001	Config. Used: 2
Test Engineer:	Jmartinez	Config Change: None
Test Location:	SVOATS# 4	Host Unit Voltage 120V/60Hz

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: Temperature: 24°C

Rel. Humidity: 80%

Elliott EMC Test Data				
Client:	Intel Corporation	Job Number:	J45745	
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856	
		Proj Eng:	Enter on cover sheet	
Contact:	Jim Bear			
Snec.	FCC Part 15 B and F RSS-210	Class.	B	

Summary of Results

Run #	Test Performed	Limit	Result	Comments
1	Output Power (5.15 - 5.25GHz band)	15.407(a) (1)	Pass	16.2 dBm
1	Output Power (5.25 - 5.35GHz band)	15.407(a) (2)	Pass	19.6 dBm
2	Power Spectral Density (5.15 - 5.25GHz)	15.407(a) (1)	Pass	1.03 dBm/MHz
2	Power Spectral Density (5.25-5.35GHz)	15.407(a) (2)	Pass	2.40 dBm/MHz
3	26dB Bandwidth	15.407	Pass	27-36.75 MHz
3	20 dB Bandwidth	RSS 210	Pass	17.58 - 20.00 MHz
4	Peak Excursion Envelope	15.407(a) (6)	Pass	7.25 - 7.33 dB
5	Antenna Conducted - Out of Band Spurious	15.407(b)	Pass	> -27 dBm

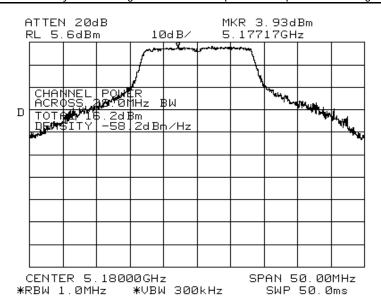
Modifications Made During Testing:

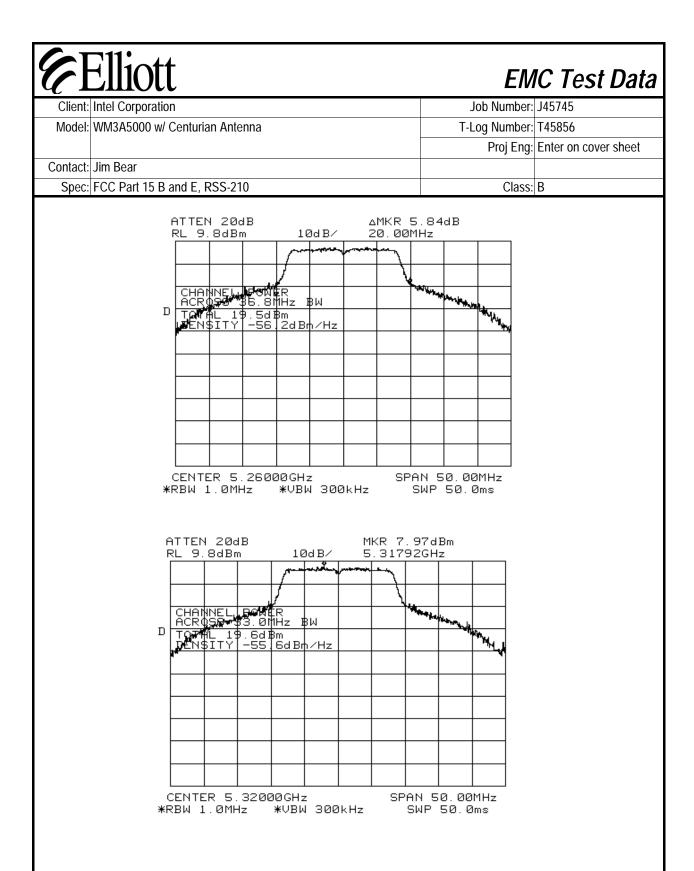
No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	Enter on cover sheet
Contact:	Jim Bear		
Spec:	FCC Part 15 B and E, RSS-210	Class:	В

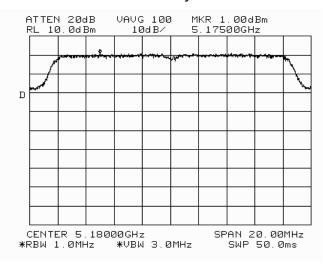

Run #1: Output Power

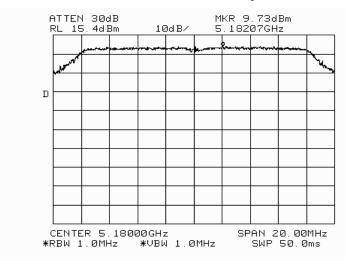

Antenna Gain: 2 dBi

Power (dBm)	Frequency (MHz)	VBW (kHz)	26-dB EBW	Measured Power (dBm)	FCC Limit (dBm) (note 3)
13	5180	145	27.42	16.2	17.0
16	5260	195	36.75	19.5	24.0
16	5320	175	33.00	19.6	24.0

Note 1: Measured using spectrum analyzer's power measurement function (RBW = 1MHz, VBW = (Note 2)) which summed the power over the occupied bandwidth (26dB bandwidth).

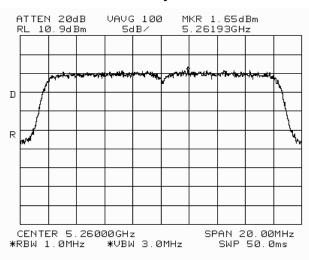
Note 2: VBW was determine by the following formulas: EBW/2*pi*30 or 1/2*pi*T, whichever gives the largest VBW.

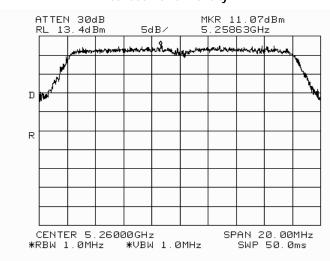

Client	Client: Intel Corporation			Jo	ob Number:	J45745		
Mode	del: WM3A5000 w/ Centurian Antenna			T-Lo	og Number:			
						Proj Eng:	Enter on cov	ver sheet
	t: Jim Bear						_	
•		15 B and E, RSS-21	10			Class:	В	
uii #2. i	•	•	dBi					
			•					
	Channel	Frequency (MHz)	Power Spectral Density (dBm/MHz)	FCC Limit (d	Bm) note 2		ver Spectral ry (dBm)	
	low	5180	1.03	4.			.33	Note 1
	mid	5260	1.65	11.			1.07	Note 1
	high	5320	2.40	11	.0	12	2.15	Note 1
ote 1:	the peak of not excee band) so r	e with RSS 210, the excursion measurem d the maximum perror restriction is place	re made using RBW = 7 e peak PSD was also ments (run #4). The peamitted average PSD of 6 ed on the output power in the 5.15 to 5.25 GHz	easured using ak PSD (meau 10dBm (5.15 or average P	g RBW= VB' Isred with R to 5.25 GHz SD with resp	W=1MHz, v BW=VBW= band) or 1 pect to RSS	ideo averagi 1MHz) of 12. 1dBm (5.25- 210.	ng off dur 15 dBm (
	the peak of not excee band) so r	e with RSS 210, the excursion measurem d the maximum perror restriction is place	e peak PSD was also ments (run #4). The peamitted average PSD of ed on the output power	easured using ak PSD (meau 10dBm (5.15 or average P	g RBW= VB' Isred with R to 5.25 GHz SD with resp	W=1MHz, v BW=VBW= band) or 1 pect to RSS	ideo averagi 1MHz) of 12. 1dBm (5.25- 210.	ng off dur 15 dBm (
	the peak of not excee band) so r	e with RSS 210, the excursion measurem d the maximum perror restriction is place	e peak PSD was also ments (run #4). The peamitted average PSD of ed on the output power	easured using ak PSD (meau 10dBm (5.15 or average P	g RBW= VB' Isred with R to 5.25 GHz SD with resp	W=1MHz, v BW=VBW= band) or 1 pect to RSS	ideo averagi 1MHz) of 12. 1dBm (5.25- 210.	ng off dur 15 dBm (
	the peak of not excee band) so r	e with RSS 210, the excursion measurem d the maximum perror restriction is place	e peak PSD was also ments (run #4). The peamitted average PSD of ed on the output power	easured using ak PSD (meau 10dBm (5.15 or average P	g RBW= VB' Isred with R to 5.25 GHz SD with resp	W=1MHz, v BW=VBW= band) or 1 pect to RSS	ideo averagi 1MHz) of 12. 1dBm (5.25- 210.	ng off dur 15 dBm (
	the peak of not excee band) so r	e with RSS 210, the excursion measurem d the maximum perror restriction is place	e peak PSD was also ments (run #4). The peamitted average PSD of ed on the output power	easured using ak PSD (meau 10dBm (5.15 or average P	g RBW= VB' Isred with R to 5.25 GHz SD with resp	W=1MHz, v BW=VBW= band) or 1 pect to RSS	ideo averagi 1MHz) of 12. 1dBm (5.25- 210.	ng off dur 15 dBm (
	the peak of not excee band) so r	e with RSS 210, the excursion measurem d the maximum perror restriction is place	e peak PSD was also ments (run #4). The peamitted average PSD of ed on the output power	easured using ak PSD (meau 10dBm (5.15 or average P	g RBW= VB' Isred with R to 5.25 GHz SD with resp	W=1MHz, v BW=VBW= band) or 1 pect to RSS	ideo averagi 1MHz) of 12. 1dBm (5.25- 210.	ng off dur 15 dBm (


•			
Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	Enter on cover sheet
Contact:	Jim Bear		
Spec:	FCC Part 15 B and E, RSS-210	Class:	В

Plots Showing Power Spectral Density (RBW = 1MHz, VBW = 3 MHz, video averaging ON)

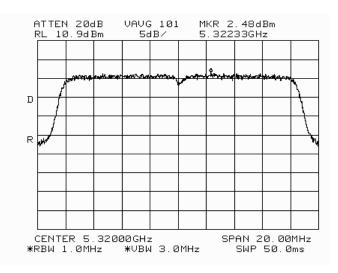
FCC Power Density

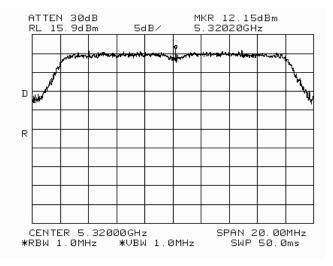

Canada Power Density



Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	Enter on cover sheet
Contact:	Jim Bear		
Spec:	FCC Part 15 B and E. RSS-210	Class:	В

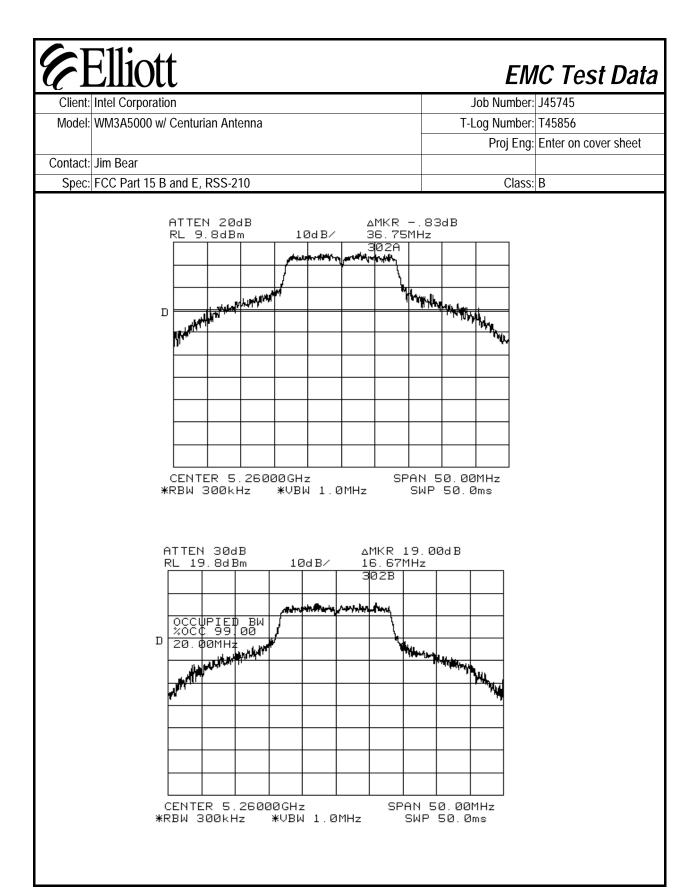
FCC Power Density

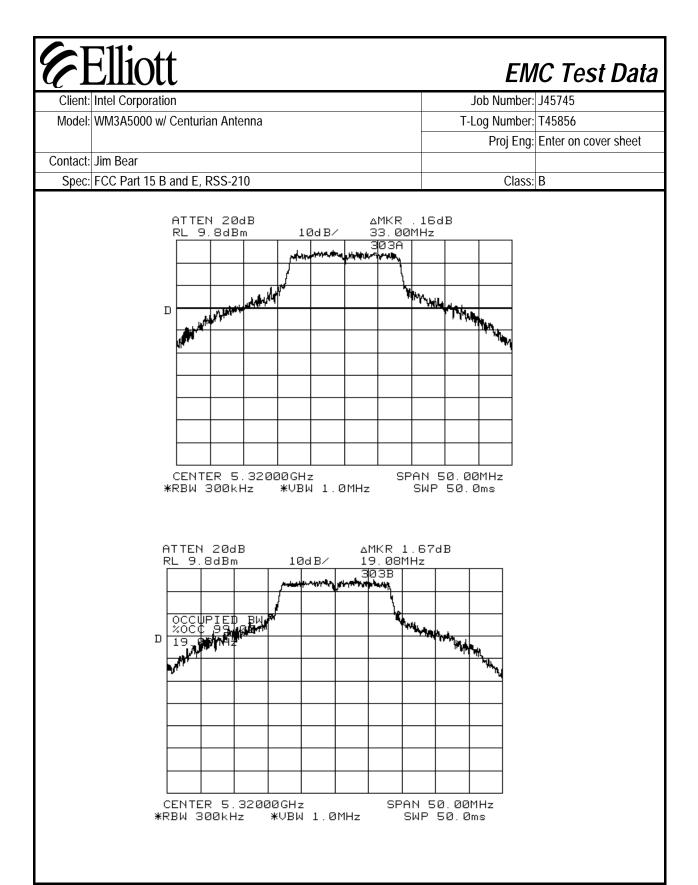

Canada Power Density



Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	Enter on cover sheet
Contact:	Jim Bear		
Spec:	FCC Part 15 B and E. RSS-210	Class:	В

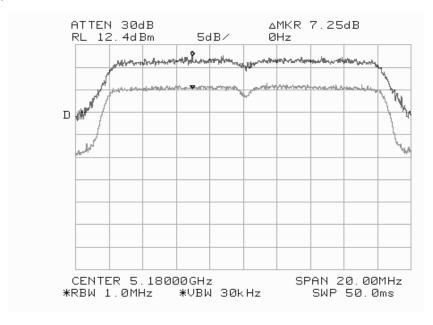
FCC Power Density




Canada Power Density

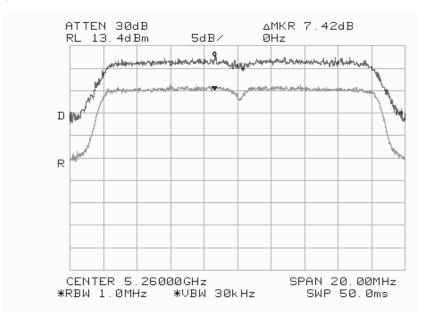
	Elli(Job Number:	J45745
Model:	WM3A500	00 w/ Centurian Ant	enna		T-Log Number:	T45856
						Enter on cover sheet
Contact:	Jim Bear					
•		15 B and E, RSS-2	10		Class:	В
n #3: S	ignal Band	dwidth	T		Ī	1
	Channel	Frequency (MHz)	Resolution Bandwidth	n 26 dB Signal Bandwidtl n (MHz)	n 20 dB Signal Bandwidth (MHz)	Graph reference
	low	5180	300 kHz	27.42	17.58	302A and 302B
	mid	5260	300 kHz	36.75	20.00	303A and 303B
	high	5320	300 kHz	33.00	19.08	301A and 301B
	D Warning Andrew	Harry Control of the	C AMMAN C AMAN C	The state of the s		
	L L CENTER *RBW 30			ATTEN 20dB RL 10.0dBm OCCUPIED BW %OCC 99 00	MKR -24.6 5.19417GH 301B	

CENTER 5.18000GHz *RBW 300kHz *VBW 1.0MHz SPAN 50.00MHz SWP 50.0ms

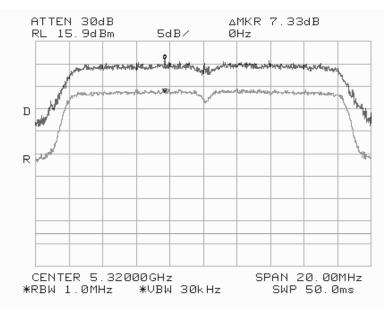

Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	Enter on cover sheet
Contact:	Jim Bear		
Spec:	FCC Part 15 B and E, RSS-210	Class:	В

Run #4: Peak Excursion Measurement

Plots Showing Peak Excursion


Trace A: RBW = VBW = 1MHz Trace B: RBW = 1 MHz, VBW = 30kHz

Low Channel; Peak Excursion = 7.25 dB


Elliott EMC Test D			IC Test Data
Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	Enter on cover sheet
Contact:	Jim Bear		
Spec:	FCC Part 15 B and E, RSS-210	Class:	В

Middle Channel; Peak Excursion = 7.42 dB

C I	Elliott EMC Test Da		
Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	Enter on cover sheet
Contact:	Jim Bear		
Spec:	FCC Part 15 B and E, RSS-210	Class:	В

High Channel; Peak Excursion = 7.33 dB

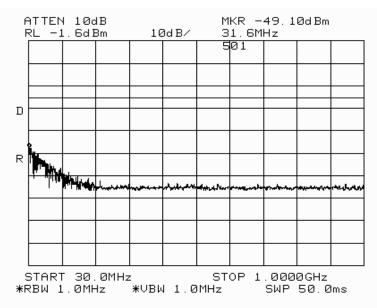
11 •
1110tt
lliott
шош

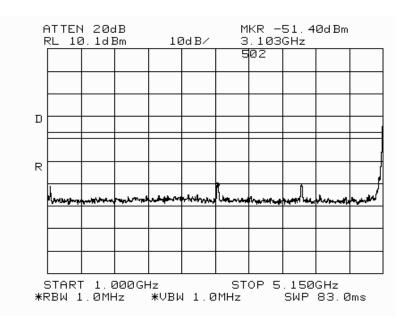
Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	Enter on cover sheet
Contact:	Jim Bear		
Spec:	FCC Part 15 B and E, RSS-210	Class:	В

Run #5: Out Of Band Spurious Emissions - Antenna Conducted

The antenna gain of the radios integral antenna is 2 dBi. The EIRP limit is -27dBm/MHz for all out of band signals that do not fall in restricted bands. A limit of -25 dBm was, therefore, used for signals not in restricted bands and close to the intentional band with the assumption that the antenna gain was equal to -2 within 100 MHz of the upper and lower band edges. For signals removed from the band edge by more than 100MHz, radiated measurements were made (refer to run #6) if the signal amplitude exceeded -37dBm.

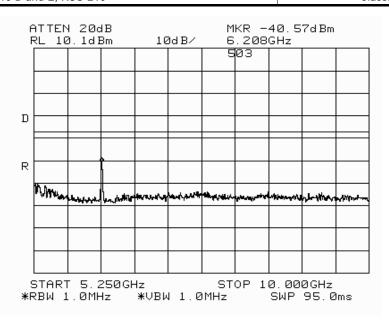
Channel	Frequency (MHz)	Frequency Range	Highest Spurious Signal	Graph reference #
		30 - 1000 MHz	Note 4	501
		1 to 5.15 GHz	3103 (Note 2), 4140 (Note 1)	502
low	5180	5.25 to 10 GHz	6208 (Note 3)	503
	10 GHz to 20 GHz		10350 (Note 3), 15530 (Note 1)	504
		20 GHz to 40 GHz	None	505
		30 - 1000 MHz	Note 4	506
	5260	1 to 5.25 GHz	3160 (Note 2), 4209 (Note 1)	507
mid		5.35 to 10 GHz	6311 (Note2)	508
		10 GHz to 20 GHz	10520 (Note 1), 15780 (Note 3)	509
		20 GHz to 40 GHz	None	510
		30 - 1000 MHz	Note 4	511
	5320	1 to 5.30 GHz	3193 (Note 2), 4254 (Note 1)	512
high		5.34 to 10 GHz	6381 (Note 2)	513
		10 GHz to 20 GHz	10630 (Note 1), 15950 (Note 1)	514
		20 GHz to 40 GHz	None	515

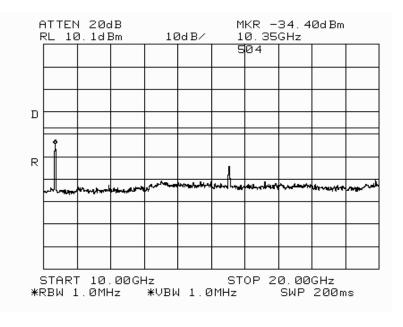

Note 1:	Signal is in a restricted band. Refer to run #6 for field strength measurements.					
Note 2.	Signal is not in restricted band. Limit is -27dBm eirp. As the signal strength is significantly lower than -27dBm no					
Note 2: field strength measurements required.						
Note 2.	Signal is not in restricted band. Limit is -27dBm eirp. Although the signal strength is significantly lower than -					
Note 3:	27dBm field strength measurements were made (refer to run #6)					
Note 4:	All spurious signals in this frequency band measured during digital device radiated emissions test.					

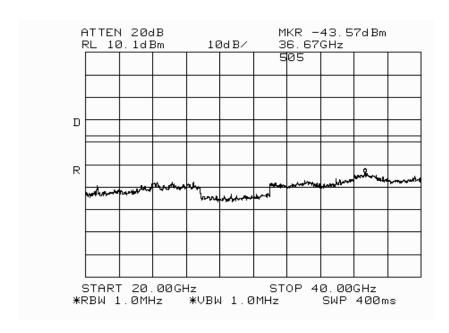


Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	Enter on cover sheet
Contact:	Jim Bear		
Spec:	FCC Part 15 B and E, RSS-210	Class:	В

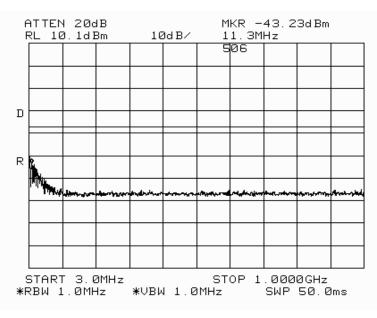
Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz)


EUT operating at 5.18 GHz:

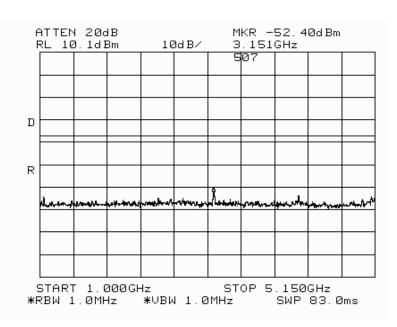


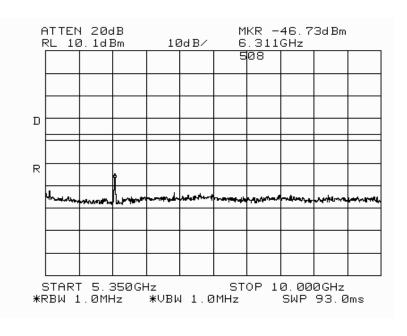


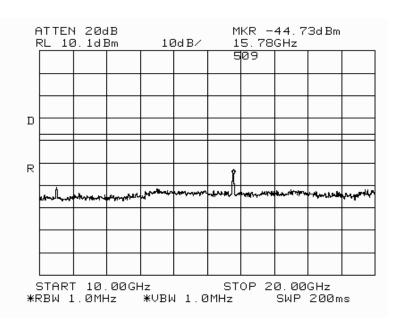
Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	Enter on cover sheet
Contact:	Jim Bear		
Spec:	FCC Part 15 B and E. RSS-210	Class:	В

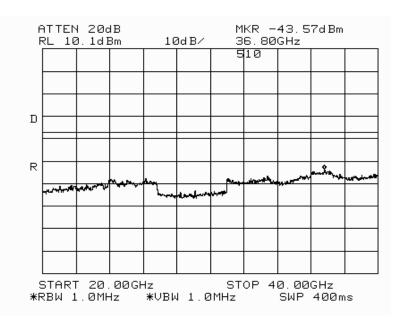


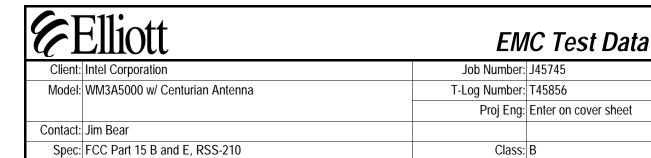
E !	IC Test Data		
Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	Enter on cover sheet
Contact:	Jim Bear		
Spec:	FCC Part 15 B and E, RSS-210	Class:	В

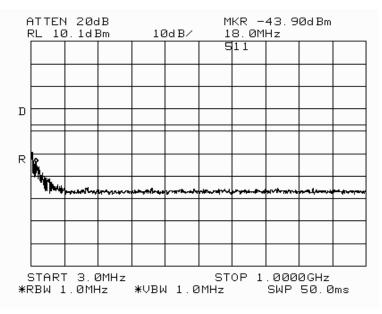


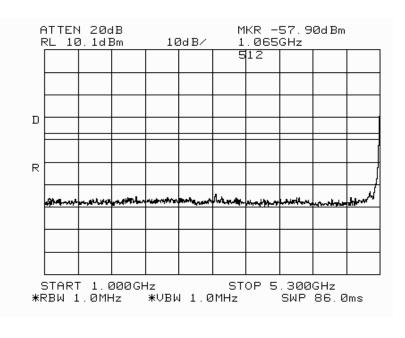

EUT operating at 5.26GHz:

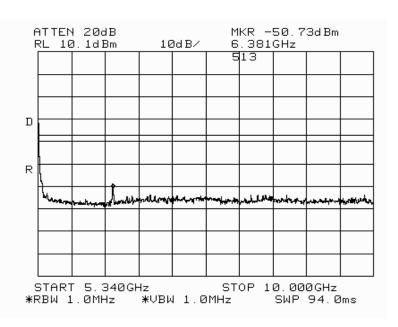

)			
Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	Enter on cover sheet
Contact:	Jim Bear		
Spec:	FCC Part 15 B and E, RSS-210	Class:	В

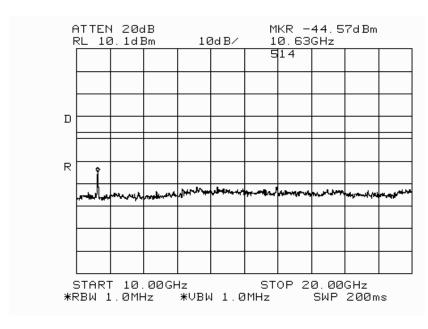


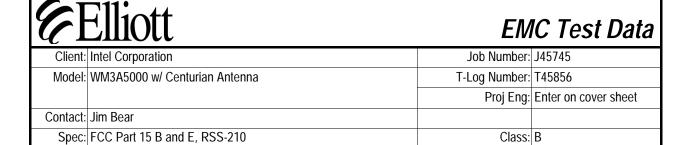


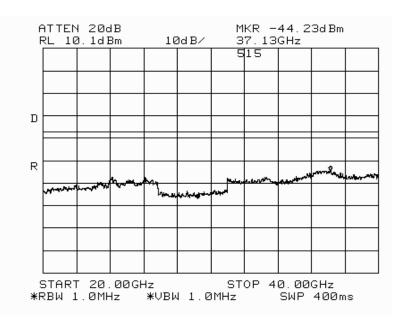

Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	Enter on cover sheet
Contact:	Jim Bear		
Spec:	FCC Part 15 B and E, RSS-210	Class:	В




EUT operating at 5.32GHz:

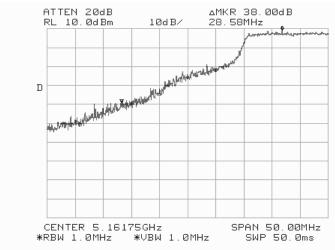


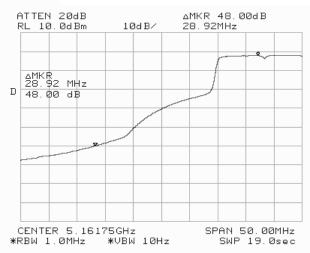




Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	Enter on cover sheet
Contact:	Jim Bear		
Spec:	FCC Part 15 B and E, RSS-210	Class:	В

Band Edge Measurements:


Spec: FCC Part 15 B and E, RSS-210

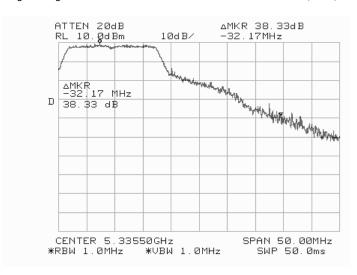

For signals in the restricted bands immediately above and below the 5.15 to 5.35 GHz allocated band a measurement was made of the amplitude of the spurious emissions with respect to the intentional signals. The relative amplitude, in dBc, was then applied to the average and peak field strength of the intentional signal made on the OATS to calculate the field strength of the unintentional signals.

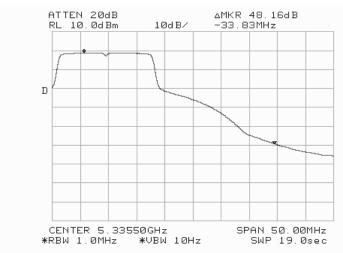
Plots Showing Out-Of-Band Emissions (Peak RBW=VBW=1MHz; Average RBW = 1MHz, VBW = 10Hz)

5.15 GHz band edge, EUT operating on the lowest channel

The highest signal within 50 MHz of the 5.15 GHz band was -38.00 dBc (Peak) / -48.00 dBc (Average)

Class: B


Elliott


EMC Test Data

V			
Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	Enter on cover sheet
Contact:	Jim Bear		
Spec:	FCC Part 15 B and E, RSS-210	Class:	В

5.35 GHz band edge EUT operating on highest channel:

The highest signal in the 5.35 to 5.46 GHz band was -38.33 dBc (Peak) / -48.16 dBc (Average)

	EMC Test Data
Client: Intel Corporation	Job Number: J45745
Model: WM3A5000 w/ Centurian Antenna	T-Log Number: T45856
	Proj Eng: Enter on cover sheet
Contact: Jim Bear	
Spec: FCC Part 15 B and E, RSS-210	Class: B

FCC Part 15 Subpart E Tests

Test Specifics

EIliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 1/5/2002 Config. Used: 2
Test Engineer: jmartinez/vishal Config Change: None

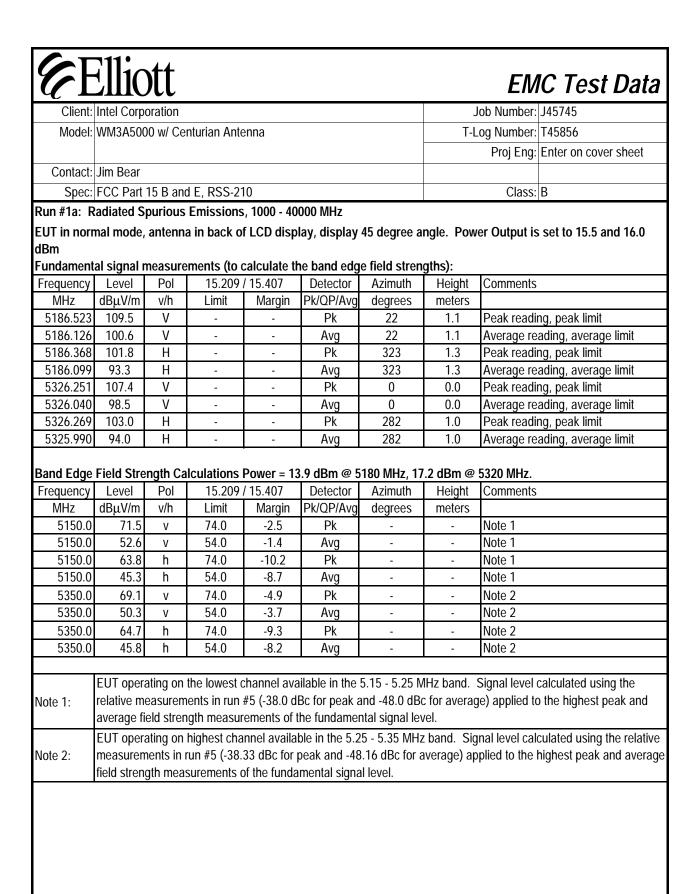
Test Location: SVOATS# 1 & 4 EUT Voltage: 120Vac, 60Hz

General Test Configuration

The EUT was located on the turntable for radiated emissions testing. Remote support equipment was located approximately 10 meters from the test area with all I/O connections routed overhead.

On the OATS, the measurement antenna was located 3 meters from the EUT for the measurement range 1 - 40 GHz.

Ambient Conditions: Temperature: 24°C


Rel. Humidity: 80%

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	RE, 1000 - 40000 MHz -	15.407(b)(6)	Doce	Refer to individual runs
Į	Spurious Emissions	15.407(b)(0)	Pass	Refer to individual runs

Modifications Made During Testing:

No modifications were made.

EE CE	Ellic	ott						EM	IC Test Data
Client:	Intel Corp	oration					_	lob Number:	J45745
Model:	WM3A500	00 w/ Ce	nturian Ante	enna			T-L	og Number:	T45856
								Proj Eng:	Enter on cover sheet
Contact:	Jim Bear								
Spec:	FCC Part	15 B and	d E, RSS-2	10				Class:	В
Run #1b: R	Radiated S	purious	Emissions	, 1000 - 40	000 MHz				
EUT On Hig	ghest Cha	nnel Ava	ailable (5.32	2 GHz)					
Pout=17.5d	Bm, Anten	na locate	ed behind th	ne LCD disp	olay, display a	at 45 degree	angle		
Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
6384.00		V	68.3	-8.7	Note 3	40	1.5	Note 1, 4	
4256.00	41.2	V	74.0	-32.8	Pk	360	1.1	Note 1, 2	
4256.00		V	54.0	-24.2	Avg	360	1.1	Note 1, 2	
10639.43	63.1	V	74.0	-10.9	Pk	206	1.0	Note 1, 2	
10639.33	50.6	V	54.0	-3.4	Avg	206	1.0	Note 1, 2	
15960.19	58.4	V	74.0	-15.6	Pk	67	1.0	Note 1, 2	
15959.13	46.5	V	54.0	-7.5	Avg	67	1.0	Note 1, 2	
10640.48	65.5	Н	74.0	-8.5	Pk	88	1.0	Note 1, 2	
10639.15	53.1	Н	54.0	-0.9	Avg	88	1.0	Note 1, 2	
15959.85	60.4	Н	74.0	-13.6	Pk	326	1.0	Note 1, 2	
15959.83	47.3	Н	54.0	-6.7	Avg	326	1.0	Note 1, 2	

UIICIII.	Elliott Intel Corporation							Job Number: J45745	
	-	WM3A5000 w/ Centurian Antenna					T-Log Number:		T45856
								Enter on cover sheet	
Contact:	Jim Bear							r roj Erig.	Enter on cover sheet
	FCC Part 15 B and E, RSS-210							Class:	R
Spec. EUT On Mic				10				Class.	D
Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
6312.00		٧	68.3	-10.2	Note 3	181	2.0	Note 1, 4	
6312.00	55.5	h	68.3	-12.8	Note 3	272	1.2	Note 1, 4	
4208.00	42.2	V	74.0	-31.8	Pk	286	1.3	Note 1, 2	
4208.00	36.5	٧	54.0	-17.5	Avg	286	1.3	Note 1, 2	
4208.00	41.3	h	74.0	-32.7	Pk	70	1.6	Note 1, 2	
4208.00	34.1	h	54.0	-19.9	Avg	70	1.6	Note 1, 2	
10520.00	54.3	V	68.3	-14.0	Note 3	142	1.4	Note 1, 4	
10520.00	50.2	Н	68.3	-18.1	Note 3	235	1.0	Note 1, 4	
15779.09	63.5	V	74.0	-10.5	Pk	209	1.0	Note 1, 2	
15779.22	50.3	V	54.0	-3.8	Avg	209	1.0	Note 1, 2	
15779.63	61.5	Н	74.0	-12.5	Pk	135	1.0	Note 1, 2	
			77.0		I K		1.0		
15778.94		Н	54.0	-5.4	Avg	135	1.0	Note 1, 2	
15778.94					+ +				
					+ +				
15778.94					+ +				
15778.94 Note 1:	48.6	Н		-5.4	+ +				
15778.94 Note 1:	48.6	Н	54.0 ilable (5.18	-5.4	+ +				
15778.94 Note 1:	48.6 west Chan	H nel Ava	54.0 ilable (5.18	-5.4 GHz)	Avg	135	1.0	Note 1, 2	
Note 1:	48.6 west Chan Level dBμV/m	H nel Ava	54.0 ilable (5.18	-5.4 GHz) / 15.407	Avg	135 Azimuth	1.0	Note 1, 2	
Note 1: EUT On Low Frequency MHz	48.6 west Chan Level dBμV/m 57.0	H nel Ava Pol v/h	54.0 ilable (5.18 15.209 Limit	-5.4 GHz) / 15.407 Margin	Avg Detector Pk/QP/Avg	Azimuth degrees	1.0 Height meters	Note 1, 2 Comments	
Note 1: EUT On Low Frequency MHz 6216.00	48.6 west Chan Level dBμV/m 57.0	H nel Ava Pol v/h v	54.0 ilable (5.18 15.209 Limit 68.3	-5.4 GHz) / 15.407 Margin -11.3	Detector Pk/QP/Avg Note 3	Azimuth degrees 163	Height meters 1.8	Note 1, 2 Comments Note 1, 4	
Note 1: EUT On Low Frequency MHz 6216.00 6216.00	West Chan Level dBμV/m 57.0 54.4 40.1	H nel Ava Pol v/h v h	54.0 ilable (5.18 15.209 Limit 68.3 68.3	-5.4 GHz) / 15.407 Margin -11.3 -13.9	Detector Pk/QP/Avg Note 3 Note 3	Azimuth degrees 163 121	Height meters 1.8 1.7	Comments Note 1, 4 Note 1, 4	
Note 1: EUT On Low Frequency MHz 6216.00 6216.00 4144.00	West Chan Level dBμV/m 57.0 54.4 40.1 29.0	Pol v/h v h v	54.0 ilable (5.18 15.209 Limit 68.3 68.3 74.0	-5.4 GHz) / 15.407 Margin -11.3 -13.9 -33.9	Detector Pk/QP/Avg Note 3 Note 3 Pk	Azimuth degrees 163 121 198 198 121	1.0 Height meters 1.8 1.7 2.0 2.0 1.7	Note 1, 2 Note 1, 4 Note 1, 4 Note 1, 2 Note 1, 2 Note 1, 2	
Note 1: EUT On Low Frequency MHz 6216.00 6216.00 4144.00 4144.00	West Chan Level dBμV/m 57.0 54.4 40.1 29.0 38.4	Pol v/h v h v	54.0 ilable (5.18 15.209 Limit 68.3 68.3 74.0 54.0	-5.4 GHz) / 15.407 Margin -11.3 -13.9 -33.9 -25.1	Detector Pk/QP/Avg Note 3 Note 3 Pk Avg	Azimuth degrees 163 121 198 198	1.0 Height meters 1.8 1.7 2.0 2.0	Note 1, 2 Comments Note 1, 4 Note 1, 4 Note 1, 2 Note 1, 2	
Note 1: EUT On Lov Frequency MHz 6216.00 6216.00 4144.00 4144.00 4144.00 10360.00	West Chan Level dBμV/m 57.0 54.4 40.1 29.0 38.4 28.5 56.4	Pol v/h v h h v V	54.0 ilable (5.18 15.209 Limit 68.3 68.3 74.0 54.0 74.0 54.0 68.3	-5.4 GHz) / 15.407 Margin -11.3 -13.9 -33.9 -25.1 -35.6 -25.5 -11.9	Detector Pk/QP/Avg Note 3 Note 3 Pk Avg Pk Avg Note 3	Azimuth degrees 163 121 198 198 121 121 264	1.0 Height meters 1.8 1.7 2.0 2.0 1.7 1.7	Note 1, 2 Note 1, 4 Note 1, 4 Note 1, 2 Note 1, 4	
Note 1: EUT On Low Frequency MHz 6216.00 4144.00 4144.00 4144.00 10360.00 10360.00	West Chan Level dBμV/m 57.0 54.4 40.1 29.0 38.4 28.5 56.4	Pol v/h v h h h V H	54.0 ilable (5.18 15.209 Limit 68.3 68.3 74.0 54.0 74.0 54.0	-5.4 GHz) / 15.407 Margin -11.3 -13.9 -33.9 -25.1 -35.6 -25.5	Detector Pk/QP/Avg Note 3 Note 3 Pk Avg Pk Avg Note 3 Note 3 Note 3	Azimuth degrees 163 121 198 198 121 121	1.0 Height meters 1.8 1.7 2.0 2.0 1.7	Note 1, 2 Note 1, 4 Note 1, 4 Note 1, 2 Note 1, 2 Note 1, 2 Note 1, 2	
Note 1: EUT On Lov Frequency MHz 6216.00 4144.00 4144.00 4144.00 10360.00 10360.00 15539.86	West Chan Level dBμV/m 57.0 54.4 40.1 29.0 38.4 28.5 56.4 59.0 59.5	Pol v/h v h v h h	54.0 ilable (5.18 15.209 Limit 68.3 68.3 74.0 54.0 74.0 54.0 68.3	-5.4 GHz) / 15.407 Margin -11.3 -13.9 -33.9 -25.1 -35.6 -25.5 -11.9	Detector Pk/QP/Avg Note 3 Note 3 Pk Avg Pk Avg Note 3	Azimuth degrees 163 121 198 198 121 121 264 185 165	1.0 Height meters 1.8 1.7 2.0 2.0 1.7 1.7	Note 1, 2 Note 1, 4 Note 1, 4 Note 1, 2 Note 1, 4	
Note 1: EUT On Lov Frequency MHz 6216.00 4144.00 4144.00 4144.00 10360.00 10360.00 15539.86 15540.43	Level dBμV/m 57.0 54.4 40.1 29.0 38.4 28.5 56.4 59.0 59.5 47.4	Pol V/h V h h V H V V	54.0 ilable (5.18 15.209 Limit 68.3 74.0 54.0 74.0 54.0 68.3 68.3 74.0 54.0 54.0	-5.4 GHz) / 15.407 Margin -11.3 -13.9 -33.9 -25.1 -35.6 -25.5 -11.9 -9.3 -14.5 -6.7	Detector Pk/QP/Avg Note 3 Note 3 Pk Avg Pk Avg Note 3 Note 3 Pk Avg Note 3 Note 3	135 Azimuth degrees 163 121 198 198 121 121 264 185 165 165	1.0 Height meters 1.8 1.7 2.0 2.0 1.7 1.7 1.0 1.0 1.0 1.0	Note 1, 2 Note 1, 4 Note 1, 4 Note 1, 2 Note 1, 2 Note 1, 2 Note 1, 2 Note 1, 4 Note 1, 4 Note 1, 4 Note 1, 2 Note 1, 2	
Note 1: EUT On Lov Frequency MHz 6216.00 4144.00 4144.00 4144.00 10360.00 10360.00 15539.86	West Chan Level dBμV/m 57.0 54.4 40.1 29.0 38.4 28.5 56.4 59.0 59.5	Pol v/h v h v h h	54.0 ilable (5.18 15.209 Limit 68.3 68.3 74.0 54.0 54.0 68.3 68.3 74.0	-5.4 GHz) / 15.407 Margin -11.3 -13.9 -33.9 -25.1 -35.6 -25.5 -11.9 -9.3 -14.5	Detector Pk/QP/Avg Note 3 Note 3 Pk Avg Pk Avg Note 3 Note 3 Note 3	Azimuth degrees 163 121 198 198 121 121 264 185 165	1.0 Height meters 1.8 1.7 2.0 2.0 1.7 1.7 1.0 1.0	Note 1, 2 Note 1, 4 Note 1, 4 Note 1, 2 Note 1, 2 Note 1, 2 Note 1, 2 Note 1, 4 Note 1, 4 Note 1, 4 Note 1, 2	

	Elliott	EM	IC Test Data
Client:	Intel Corporation	Job Number:	J45745
Model:	WM3A5000 w/ Centurian Antenna	T-Log Number:	T45856
		Proj Eng:	Enter on cover sheet
Contact:	Jim Bear		
Spec:	FCC Part 15 B and E, RSS-210	Class:	В
	For emissions falling in the restricted bands detailed in 15.205 the	general limits of 15,209	apply. For all other
Note 1:	emissions the limit is EIRP < -27dBm (equivalent to a field strength	•	apply. I of all office.
Note 2:	Signal is in a restricted band	,	
	Restricted Band Peak Measurements: Resolution and Video BW: 1	1 MHz, Restricted Band	Average Measurements:
Note 3:	Resolution Bw: 1MHz and Video Bw: 10 Hz. All other measurement averaging on (100 samples).	nts, RBW = 1MHz and \	/BW = 3MHz, video
Note 4:	Signal does not fall in a restricted band. This measurement was made using a resolution bandwidth of 3 kH		
Note 5:	allow measurements with RBW = 1MHz because a preamplifier cointentional signal would overload the amplifier and there is no low the intentionally trasmitted signal but pass the spuroius signal). The during the conducted antenna measurements) and so the amplitude the same as that in a 1MHz bandwidth (please refer to the plot believe average limit.	pass filter with sufficien e signal was a narrowba de (peak/average) in a 3	t shape factor to reject and signal (as verified kHz bandwidth would be