FCC PART 15, SUBPART C TEST METHOD: ANSI C63.4-1992

for

802.11B WIRELESS ETHERNET ADAPTER

Model: SWE1100

Prepared for

XIRCOM, INC. 2300 CORPORATE CENTER DRIVE THOUSAND OAKS, CALIFORNIA 91320

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

DATE: APRIL 24, 2001

	REPORT APPENDICES			TOTAL				
	BODY	A	В	С	D	E	F	
PAGES	23	2	2	14	50	2	2	95

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

TABLE OF CONTENTS

Section	/ Title	PAGE
GENER	AL REPORT SUMMARY	4
1.	PURPOSE	6
2.	ADMINISTRATIVE DATA	7
2.1	Location of Testing	7
2.2	Traceability Statement	7
2.3	Cognizant Personnel	7
2.4	Date Test Sample was Received	7 7
2.5 2.6	Disposition of the Test Sample Abbreviations and Acronyms	7
3.	APPLICABLE DOCUMENTS	8
	Description of Test Configuration	9
4.1 4.1.1	Description of Test Configuration - EMI Cable Construction and Termination	9 10
	LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT	11
5.1 5.2	EUT and Accessory List	11 12
3.2	EMI Test Equipment	12
6.	TEST SITE DESCRIPTION	13
6.1	Test Facility Description	13
6.2	EUT Mounting, Bonding and Grounding	13
	CHARACTERISTICS OF THE TRANSMITTER	14
7.1	Transmitter Power	14
7.2 7.3	Channel Number and Frequencies Chipping Rate	14 14
7.3 7.4	Spreading Gain	14
7.5	Antenna Gain	14
7.6	Description of Transmitter	15
7.7	Processing Gain	16
8.	Test Procedures	17
8.1	RF Emissions	17
8.1.1	Conducted Emissions Test	17
8.1.2	Radiated Emissions (Spurious and Harmonics) Test	18
8.2 8.3	6 dB Bandwidth for Direct Sequence Systems Peak Output Power	20 20
8.4	Spectral Density Output	20
8.5	RF Antenna Conducted Test	21
8.6	RF Band Edges	21
8.7	Processing Gain	22
0	CONCLUSIONS	23

LIST OF APPENDICES

APPENDIX	TITLE		
A	Modifications to the EUT		
В	Additional Models Covered Under This Report		
С	Diagrams, Charts and Photos		
	Test Setup Diagrams		
	Radiated and Conducted Emissions Photos		
	Antenna and Effective Gain Factors		
D	Data Sheets		
Е	Laboratory Recognitions		
F	Description of Transmitter		

LIST OF FIGURES

FIGURE	TITLE
1	Conducted Emissions Test Setup
2	Plot Map And Layout of Test Site

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced in any form unless done so in full with the written permission of Compatible Electronics.

This report must not be used to claim product endorsement by NVLAP or any other agency of the U.S. Government.

Device Tested: 802.11b Wireless Ethernet Adapter

Model: SWE1100

S/N: N/A

Modifications: The EUT was not modified in order to meet the specifications.

Product Description: The EUT is the 30 mW version of the FCC-ID: J3OSWE1100 that has been previous

approved. This version will only use the Rangestar antenna.

Manufacturer: Xircom, Inc.

2300 Corporate Center Drive Thousand Oaks, California 91320

Test Dates: May 16 and 18, 2001

File # For Canada IC2154-D

Test Specifications: EMI requirements

FCC Title 47, Part 15 Subpart B; and Subpart C, sections 15.205, 15.207,

15.209, and 15.247

Test Procedure: ANSI C63.4: 1992

Test Deviations: The test procedure was not deviated from during the testing.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 450 kHz – 30 MHz	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.207
2	Spurious Radiated RF Emissions, 10 kHz – 25000 MHz	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247(c)
3	Fundamental and Emissions produced by the intentional radiator in non-restricted bands, 10 kHz – 25 GHz	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247(c)
4	Emissions produced by the intentional radiator in restricted bands, 10 kHz – 25 GHz	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.205 and 15.209(a)
5	6 dB Bandwidth	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (a)(2)
6	Maximum Peak Output Power	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (b)(1)
7	RF Antenna Conducted	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (c)
8	Peak Power Spectral Density Conducted from the Intentional Radiator to the Antenna	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (d)
9	Processing Gain	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (e)

1. PURPOSE

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the 802.11b Wireless Ethernet Adapter Model: SWE1100. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4: 1992. The tests were performed in order to determine whether the electromagnetic emissions from the 802.11b Wireless Ethernet Adapter, referred to as EUT hereafter, are within the specification limits defined by FCC Title 47, Part 15, Subpart C, sections 15.207, 15.209, and 15.247.

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The EMI tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Xircom, Inc.

James K. Baer Manager Global Compliance Engineer

Robert W. Paxman Compliance Engineer

Compatible Electronics Inc.

Kyle Fujimoto Test Engineer Scott McCutchan Lab Manager

2.4 Date Test Sample was Received

The test sample was received on May 16, 2001

2.5 Disposition of the Test Sample

The test sample was returned to Xircom, Inc. on May 18, 2001.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF Radio Frequency

EMI Electromagnetic Interference EUT Equipment Under Test

P/N Part Number S/N Serial Number HP Hewlett Packard

ITE Information Technology Equipment

CML Corrected Meter Limit

LISN Line Impedance Stabilization Network

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
FCC Title 47, Part 15 Subpart C.	FCC Rules - Radio frequency devices (including digital devices) – Intentional Radiators.
ANSI C63.4 1992	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz.
FCC Title 47, Part 15 Subpart B	FCC Rules - Radio frequency devices (including digital devices) – Unintentional Radiators.

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration - EMI

Specifics of the EUT and Peripherals Tested

The 802.11b Wireless Ethernet Adapter Model: SWE1100 (EUT) was installed inside a Handspring Visor and connected to a battery charger via its battery charger port. The low (channel 1), medium (channel 6), and high (channel 11) channels were tested. The EUT was tested in three different orthogonal axis. The EUT runs off battery power. The EUT was transmitting and receiving on a continuous basis. The radiated data was taken in this mode of operation. All initial investigations were performed with the EMI receiver in manual mode scanning the frequency range continuously. The cables were bundled and routed as shown in the photographs in Appendix C. The data sheets are located in Appendix D.

The antenna connection is a unique MMCX style micro-miniature connector. This connector is on the RF module portion of the EUT.

Note: Only one antenna was tested. The EUT will be used with the Rangestar antenna. The complete emissions data is located in Appendix D.

The conducted emissions were performed when the battery charger was charging the batteries to the EUT, which was the worst cast mode for conducted emissions.

4.1.1 Cable Construction and Termination

<u>Cable 1</u> This is a 6 foot unshielded cable connecting the handspring visor to the battery charger. It has an 8 pin handspring connector at the handspring visor end and is hard wired into the battery charger.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC ID
802.11B WIRELESS ETHERNET ADAPTER (EUT)	XIRCOM, INC.	SWE1100	N/A	J3OSWE1100B
HANDSPRING VISOR	HANDSPRING	PLATINUM	N/A	N/A
BATTERY CHARGER	AULT, INC.	PW15AGA0600B02	N/A	N/A
BATTERY (INTERNAL TO THE EUT)	FOXLINK	FT-202S	N/A	N/A

5.2 EMI Test Equipment

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. DUE DATE
Spectrum Analyzer	Hewlett Packard	8566B	3701A22262	June 24, 2000	June 24, 2001
Preamplifier	Com Power	PA-102	1017	Jan. 5, 2001	Jan. 5, 2002
Quasi-Peak Adapter	Hewlett Packard	85650A	2811A01363	June 24, 2000	June 24, 2001
Biconical Antenna	Com Power	AB-100	1548	Oct. 16, 2000	Oct. 16, 2001
Log Periodic Antenna	Com Power	AL-100	16039	Oct. 16, 2000	Oct. 16, 2001
Antenna Mast	Com Power	AM-100	N/A	N/A	N/A
Turntable	Com Power	TT-100	N/A	N/A	N/A
Computer	Hewlett Packard	D5251A 888	US74458128	N/A	N/A
Printer	Hewlett Packard	C5886A	SG7CM1P090	N/A	N/A
Monitor	Hewlett Packard	D5258A	DK74889705	N/A	N/A
Loop Antenna	Com-Power	AL-130	25309	Feb. 5, 1999	Feb. 5, 2000
Horn Antenna	Antenna Research	DRG-118/A	1053	Jan. 15, 2001	Jan. 15, 2002
Horn Antenna	Antenna Research	MWH-1826/B	1004	Jan. 21, 1997	N.C.R.
Microwave Preamplifier	Com-Power	PA-122	25195	Jan. 9, 2001	Jan. 9, 2002
Amplifier	Hewlett Packard	11975A	2403A00202	Feb. 5, 2001	Feb. 5, 2002
Harmonic Mixer	Hewlett Packard	11970K	3003A05460	Feb. 17, 2001	Feb. 17, 2002
Power Meter	Hewlett Packard	436A	2236A15362	May 13, 2000	May 13, 2001
Power Sensor	Hewlett Packard	8482H	GG00000006	May 13, 2000	May 13, 2001

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 8.1.2 of this report for EMI test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

7. CHARACTERISTICS OF THE TRANSMITTER

7.1 Transmitter Power

Transmit power is herein defined as the power delivered to a 50 Ohm load at the proprietary antenna connector on the EUT.

Power	Channel Number	Accuracy
14.60 dBm	1	+1/-1 dB
14.60 dBm	6	+1/-1 dB
14.70 dBm	11	+1/-1 dB

7.2 Channel Number and Frequencies

Channel Number	Channel center Frequency (MHz)	
1	2412	
$\frac{2}{3}$	2417 2422	
4 5	2427 2432	
6	2437	
7 8	2442 2447	
9	2452	
10 11	2457 2462	

7.3 Chipping Rate

11 chips / bits by IEEE 802.11 Standard

7.4 Spreading Gain

The theoretical spreading gain, is 10.4 dB.

7.5 Antenna Gain

0 dBi for the Rangestar antenna

7.6 Description of Transmitter

Please see Appendix F for the description of the transmitter.

7.7 Processing Gain

NOTE: This information is from the OEM Aironet 4800B Radio, FCC-ID: LDK102039 test report (Test Report Number: 20000282C). This testing was performed BY Aironet RF System Engineering. **Xircom, Inc. has received permission from the manufacturer of the OEM Aironet 4800B Radio, <u>Cisco Systems, Inc.</u>, to have this information below included in the test report.**

The same exact design of the Aironet 4800B Radio is incorporated in the product being certified.

Jamming Margin Method

The processing gain was measured using the CW jamming margin method. The test consists of stepping a signal generator in 50 kHz increments across the passband of the system. At each point, the generator level required to produce the recommended Bit Error Rate (BER) was recorded. This level is the jammer level. The output power of the transmitting unit is measured at the same point. The Jammer to Signal (J/S) ratio is then calculated. The worst 20% of the J/S data points were discarded. The lowest remaining J/S ratio was used to calculating the Process Gain.

Appendix D will have how the Signal to Noise ratio was derived along with the data.

8. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

8.1 RF Emissions

8.1.1 Conducted Emissions Test

The spectrum analyzer was used as a measuring meter. The data was collected with the spectrum analyzer in the peak detect mode with the "Max Hold" feature activated. The quasi-peak was used only where indicated in the data sheets. A 10 dB attenuation pad was used for the protection of the spectrum analyzer input stage, and the offset was adjusted accordingly to read the actual data measured. The LISN output was measured using the spectrum analyzer. The output of the second LISN was terminated by a 50 ohm termination. The effective measurement bandwidth used for this test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4: 1992. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The conducted emissions from the EUT were maximized for operating mode as well as cable placement. The final data was collected under program control by the Compatible Electronics conducted emissions software in several overlapping sweeps by running the spectrum analyzer at a minimum scan rate of 10 seconds per octave. The final qualification data is located in Appendix D.

8.1.2 Radiated Emissions (Spurious and Harmonics) Test

The spectrum analyzer was used as a measuring meter along with the quasi-peak adapter. Amplifiers were used to increase the sensitivity of the instrument. The Com Power Preamplifier Model: PA-102 was used for frequencies from 30 MHz to 1 GHz, and the Com-Power Microwave Preamplifier Model: PA-122 was used for frequencies above 1 GHz. The spectrum analyzer was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps. The quasi-peak adapter was used only for those readings which are marked accordingly on the data sheets. The frequencies above 1 GHz were averaged manually by narrowing the video filter down to 1 Hz and putting the sweep time on AUTO on the spectrum analyzer to keep the amplitude reading calibrated. The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
10 kHz to 150 kHz	200 Hz	Active Loop Antenna
150 kHz to 30 MHz	9 kHz	Active Loop Antenna
30 MHz to 300 MHz	120 kHz	Biconical Antenna
300 MHz to 1 GHz	120 kHz	Log Periodic Antenna
1 GHz to 25 GHz	1 MHz	Horn Antenna

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4: 1992. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results.

Radiated Emissions (Spurious and Harmonics) Test (con't)

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 3 meter test distance to obtain final test data.

For the 22 GHz – 25 GHz span, the Hewlett Packard 11970K Harmonic Mixer and the Hewlett Packard 11975A Amplifier were used to allow the spectrum analyzer to scan up to 25 GHz.

8.2 6 dB Bandwidth for Direct Sequence Systems

The 6 dB Bandwidth was taken using the spectrum analyzer. The bandwidth was measured using a direct connection from the RF out on the RF board. The resolution bandwidth was 100 kHz, and the video bandwidth 300 kHz.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.209 (a)(2). The bandwidth is at least 500 kHz. Please see the data sheets located in Appendix D.

8.3 Peak Output Power

The peak output power was taken using the Hewlett Packard 436A Power Meter and the Hewlett Packard 8482H Power Sensor. The low (channel 1), middle (channel 6), and high (channel 11) were taken.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.209 (b)(1). The maximum peak output power is less than 1 watt.

8.4 Spectral Density Output

The spectral density output was using the spectrum analyzer. The spectral density output power was measured using a direct connection from the RF out on the RF board into the input of the analyzer. The resolution bandwidth was 3 kHz, and the video bandwidth 10 kHz. The highest 4.5 MHz of the signal was used as the frequency span with the sweep rate being 1 second for every 3 kHz of span.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.209 (d). The spectral density output does not exceed 8 dBm in any 3 kHz band.

8.5 RF Antenna Conducted Test

The RF antenna conducted test was taken using the spectrum analyzer. The RF antenna conducted test was measured using a direct connection from the RF out on the RF board into the input of the analyzer. The resolution bandwidth was 100 kHz, and the video bandwidth 300 kHz. The spans were wide enough to include all the harmonics and emissions that were produced by the intentional radiator.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.209 (c). The RF power that is produced by the intentional radiator is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of desired power.

8.6 RF Band Edges

The RF band edges were taken at the edges of the ISM spectrum (2390 MHz when the EUT was on channel 1 and 2483.5 MHz when the EUT was on channel 11) using the spectrum analyzer. It was also verified that the transmitted signals did not appear in the restricted bands below 2390 MHz and above 2843.5 MHz. A spectral plot of the band edges are included to prove no emissions were found at these frequencies.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (c). The RF power at the band edges at 2390 MHz and 2483.5 MHz meet the limits of section 15.209.

8.7 Processing Gain

Please see section 7.7 of this test report.

9. CONCLUSIONS

The 802.11b Wireless Ethernet Adapter Model: SWE1100 meets all of the specification limits defined in FCC Title 47, Part 15, Subpart C, sections 15.205, 15.207, 15.209, and 15.247.

FCC ID: J3OSWE1100B Report Number: B10518D1 Page A1

APPENDIX A

MODIFICATIONS TO THE EUT

FCC ID: J3OSWE1100B Report Number: B10518D1 Page A2

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC Subpart C specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

Modifications:

No Modifications were made to the EUT during the testing.

FCC ID: J3OSWE1100B Report Number: B10518D1

APPENDIX B

ADDITIONAL MODELS COVERED UNDER THIS REPORT

FCC ID: J3OSWE1100B Report Number: B10518D1 Page B2

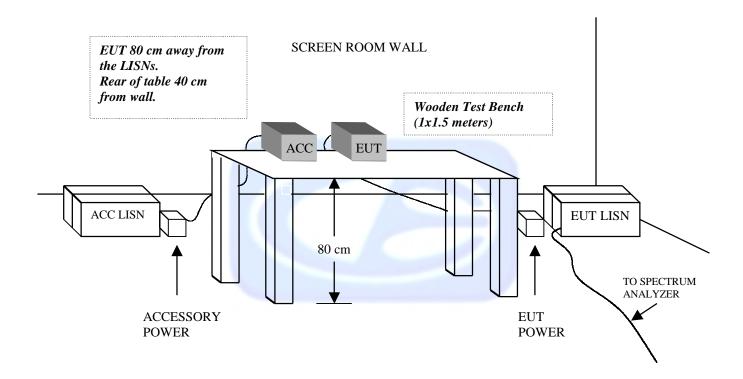
ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST 802.11b Wireless Ethernet Adapter

Model: SWE1100

S/N: N/A

There were no additional models covered under this report.


FCC ID: J3OSWE1100B Report Number: B10518D1 Page C1

APPENDIX C

DIAGRAMS, CHARTS AND PHOTOS

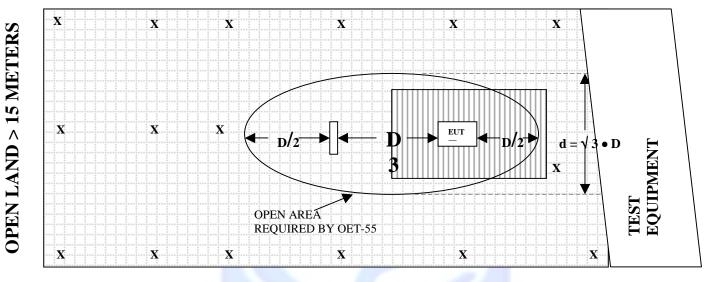

FIGURE 1: CONDUCTED EMISSIONS TEST SETUP

FIGURE 2: PLOT MAP AND LAYOUT OF RADIATED SITE

OPEN LAND > 15 METERS

OPEN LAND > 15 METERS

T = GROUND RODS = GROUND SCREEN

T = TEST DISTANCE (meters) = WOOD COVER

FRONT VIEW

XIRCOM, INC. 802.11B WIRELESS ETHERNET ADAPTER Model: SWE1100 FCC SUBPART C - RADIATED EMISSIONS – 5-16-01

REAR VIEW

XIRCOM, INC. 802.11B WIRELESS ETHERNET ADAPTER Model: SWE1100 FCC SUBPART C - RADIATED EMISSIONS – 5-16-01

FRONT VIEW

XIRCOM, INC. 802.11B WIRELESS ETHERNET ADAPTER Model: SWE1100 FCC SUBPART C – CONDUCTED EMISSIONS – 5-16-01

REAR VIEW

XIRCOM, INC. 802.11B WIRELESS ETHERNET ADAPTER Model: SWE1100 FCC SUBPART C – CONDUCTED EMISSIONS – 5-16-01

FCC ID: J3OSWE1100B Report Number: B10518D1 Page C8

COM-POWER AB-100

BICONICAL ANTENNA

S/N: 01548

CALIBRATION DATE: OCTOBER 16, 2000

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	14.01	120	10.33
35	13.63	125	11.61
40	13.26	140	12.70
45	11.62	150	12.95
50	11.03	160	13.58
60	8.52	175	14.82
70	8.94	180	14.84
80	8.17	200	14.80
90	8.08	250	16.42
100	8.64	300	20.26

FCC ID: J3OSWE1100B Report Number: B10518D1 Page C9

COM-POWER AL-100

LOG PERIODIC ANTENNA

S/N: 16101

CALIBRATION DATE: OCTOBER 16, 2000

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
300	12.96	700	19.24
400	16.92	800	21.37
500	16.73	900	22.13
600	16.32	1000	22.19

COM-POWER PA-102

PREAMPLIFIER

S/N: 1017

CALIBRATION DATE: JANUARY 5, 2001

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	39.0	300	38.9
40	39.2	350	38.9
50	39.2	400	38.6
60	39.2	450	38.5
70	38.8	500	38.7
80	38.6	550	38.4
90	38.5	600	38.8
100	38.7	650	38.5
125	39.2	700	38.6
150	38.8	750	38.1
175	38.8	800	37.9
200	39.0	850	38.0
225	38.8	900	37.8
250	38.8	950	36.9
275	39.0	1000	38.2

COM-POWER PA-122

MICROWAVE PREAMPLIFIER

S/N: 25195

CALIBRATION DATE: JANUARY 9, 2001

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	33.1	9.5	30.7
1.1	33.0	10.0	31.6
1.2	33.2	11.0	30.6
1.3	33.0	12.0	28.5
1.4	32.4	13.0	31.5
1.5	32.3	14.0	33.2
1.6	32.1	15.0	31.5
1.7	32.0	16.0	30.2
1.8	31.8	17.0	31.6
1.9	32.2	18.0	31.7
2.0	32.6		
2.5	31.9		
3.0	31.7		
3.5	31.7		
4.0	32.3		
4.5	31.5		
5.0	32.3		
5.5	34.2		
6.0	30.9		
6.5	32.0		
7.0	32.1		
7.5	33.0		
8.0	31.9		
8.5	31.9		\sim
9.0	31.3		- CONTAGO

ANTENNA RESEARCH DRG-118/A

HORN ANTENNA

S/N: 1053

CALIBRATION DATE: JANUARY 15, 2001

-			
FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	25.4	9.5	39.6
1.5	26.7	10.0	39.7
2.0	29.6	10.5	40.8
2.5	30.7	11.0	40.4
3.0	31.2	11.5	42.2
3.5	32.3	12.0	43.0
4.0	33.2	12.5	42.6
4.5	33.2	13.0	41.3
5.0	34.8	13.5	40.3
5.5	35.4	14.0	40.9
6.0	36.6	14.5	44.0
6.5	36.6	15.0	43.3
7.0	38.7	15.5	42.7
7.5	38.6	16.0	42.6
8.0	37.9	16.5	42.8
8.5	37.9	17.0	43.5
9.0	39.9	17.5	44.6
		18.0	42.2

ANTENNA RESEARCH

11317 Frederick Avenue, Beltsville, MD 20705, USA TEL: (301)937-8888 FAX: (301)937-2796

E-FIELD ANTENNA FACTOR CALIBRATION

E (dB V/m) = V_0 (dB V) + AFE (dB 1/m)

Model Number: MWH-1826/B

Frequency (GHz)	AFE (dB 1/m)	Gain (dBi)
18.000	23.1	32.2
18.850	23.2	32.5
19.700	23.6	32.5
20.550	23.5	33.0
21.400	23.7	33.1
22 .250	24.0	33.2
23.100	24.0	33.5
23.950	24.1	33.7
24.800	24.1	34.0
25.650	24.3	34.1
26.500	24.4	34.3

Serial Number: 1004

Com-Power Corporation (949) 587-9800

Antenna Calibration

Antenna Type: Model: Serial Number: Calibration Date:	Loop Antenna AL-130 25309 05/25/00	
Frequency	Magnetic	Electric
MHz	(dB/m)	dB/m
0.009	-41.0	10.5
0.01	-41.0	10.5
0.02	-41.9	9.6
0.05	-41.9	9.6
0.075	-41.8	9.7
0.1	-42.2	9.3
0.15	-42.2	9.3
0.25	-40.7	10.8
0.5	-42.1	9.4
0.75	-40.9	10.6
1	-41.3	10.2
2	-40.8	10.7
3	-41.1	10.4
4	-41.2	10.3
5	-40.7	10.8
10	-40.6	10.9
15	-42.0	9.5
20	-42.0	9.5
25	-42.9	8.6
30	-42.3	9.2
Trans. Antenna Height Receiving Antenna Height	10 mm (10 mm)	2 meter 2 meter

APPENDIX D

DATA SHEETS

RADIATED EMISSIONS FOR THE RANGESTAR ANTENNA DATA SHEETS

RADIATED EMISSIONS (FCC SECTION 15.205 AND 15.247)

COMPANY	XIRCOM, INC.	DATE	5/16/01
EUT	802.11b WIRELESS ETHERNET ADAPTER (30 mW VERSION)	DUTY CYCLE	N/A
MODEL	SWE1100	PEAK TO AVG	N/A
ANTENNA	RANGESTAR	TEST DIST.	3 METERS
TEST ENGINEER	KYLE FUJIMOTO	LAB	D

Frequency	Peak Reading	Average or Qua		Antenna Polar.	Antenna Height	EUT Azimuth	EUT Axis	EUT Tx	Antenna Factor	Cable Loss	Amplifier Gain	*Corrected Reading	Delta **	Spec Limit	
MHz	(dBuV)	Peak ((V or H)	(meters)	(degrees)	(X,Y,Z)	Channel	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)	Comments
2412.0000	72.5	69.1	A	Н	1.5	90	X	LOW	30.7	3.5	0.0	103.3			
2412.0000	74.7	71.5	A	Н	1.5	0	Y	LOW	30.7	3.5	0.0	105.7			
2412.0000	69.5	66.5	A	Н	1.5	90	Z	LOW	30.7	3.5	0.0	100.7			
2412.0000	71.2	68.4	A	V	1.5	0	X	LOW	30.7	3.5	0.0	102.6			
2412.0000	72.3	69.2	A	V	1.5	0	Y	LOW	30.7	3.5	0.0	103.4			
2412.0000	72.3	69.1	A	V	1.5	90	Z	LOW	30.7	3.5	0.0	103.3			
2438.0000	69.4	66.2	Α	Н	1.5	90	X	MED.	30.7	3.5	0.0	100.4			
2438.0000	71.8	68.8	A	Н	1.0	0	Y	MED.	30.7	3.5	0.0	103.0			
2438.0000	67.3	64.2	A	Н	1.0	90	Z	MED.	30.7	3.5	0.0	98.4			
2438.0000	70.4	67.6	A	V	1.0	0	X	MED.	30.7	3.5	0.0	101.8			
2438.0000	69.8	66.7	A	V	1.5	0	Y	MED.	30.7	3.5	0.0	100.9			
2438.0000	73.5	70.5	A	V	1.5	90	Z	MED.	30.7	3.5	0.0	104.7			
2462.0000	69.2	66.2	A	Н	2.0	0	X	HIGH	30.7	3.5	0.0	100.4			
2462.0000	72.9	69.9	A	Н	2.0	0	Y	HIGH	30.7	3.5	0.0	104.1			
2462.0000	67.3	64.6	A	Н	1.5	90	Z	HIGH	30.7	3.5	0.0	98.8			
2462.0000	66.8	64.2	A	V	1.5	90	X	HIGH	30.7	3.5	0.0	98.4			
2462.0000	70.0	66.7	A	V	1.5	90	Y	HIGH	30.7	3.5	0.0	100.9			
2462.0000	69.1	66.4	Α	V	1.5	90	Z	HIGH	30.7	3.5	0.0	100.6			

^{*} CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

PAGE 1

^{**} DELTA = SPEC LIMIT - CORRECTED READING

RADIATED EMISSIONS (FCC SECTION 15.205 AND 15.247)

COMPANY	XIRCOM, INC.	DATE	5/16/01
EUT	802.11b WIRELESS ETHERNET ADAPTER (30 mW VERSION)	DUTY CYCLE	N/A
MODEL	SWE1100	PEAK TO AVG	N/A
ANTENNA	RANGESTAR	TEST DIST.	3 METERS
TEST ENGINEER	KYLE FUJIMOTO	LAB	D

Frequency	Peak	Average (A)	Antenna		EUT	EUT	EUT	Antenna	Cable	Amplifier		Delta	Spec	
MHz	Reading (dBuV)	or Quasi- Peak (OP)	Polar. (V or H)	Height (meters)	Azimuth (degrees)	Axis (X,Y,Z)	Tx Channel	Factor (dB)	Loss (dB)	Gain (dB)	Reading (dBuV/m)	** (dB)	Limit (dBuV/m)	Comments
4824.0000	40.0	A	Н	2.0	0	X	LOW	34.8	5.8	32.3	48.3	-5.7	54.0	
4824.0000	42.3	A	Н	1.0	0	Y	LOW	34.8	5.8	32.3	50.6	-3.4	54.0	
4824.0000	39.5	A	Н	1.0	90	Z	LOW	34.8	5.8	32.3	47.8	-6.2	54.0	
4824.0000	40.1	A	V	1.5	90	X	LOW	34.8	5.8	32.3	48.4	-5.6	54.0	
4824.0000	39.2	A	V	1.0	0	Y	LOW	34.8	5.8	32.3	47.5	-6.5	54.0	
4824.0000	41.9	A	V	3.0	90	Z	LOW	34.8	5.8	32.3	50.2	-3.8	54.0	
4876.0000	39.9	A	Н	3.0	0	X	MED.	34.8	5.8	32.3	48.2	-5.8	54.0	
4876.0000	40.2	A	Н	1.5	90	Y	MED.	34.8	5.8	32.3	48.5	-5.5	54.0	
4876.0000	38.9	A	Н	1.5	0	Z	MED.	34.8	5.8	32.3	47.2	-6.8	54.0	
4876.0000	40.4	A	V	1.0	90	X	MED.	34.8	5.8	32.3	48.7	-5.3	54.0	
4876.0000	40.4	A	V	1.5	90	Y	MED.	34.8	5.8	32.3	48.7	-5.3	54.0	
4876.0000	40.9	A	V	1.5	90	Z	MED.	34.8	5.8	32.3	49.2	-4.8	54.0	
4924.0000	39.8	A	Н	1.5	0	X	HIGH	34.8	5.8	32.3	48.1	-5.9	54.0	
4924.0000	41.9	A	Н	1.0	0	Y	HIGH	34.8	5.8	32.3	50.2	-3.8	54.0	
4924.0000	39.4	A	Н	1.0	90	Z	HIGH	34.8	5.8	32.3	47.7	-6.3	54.0	
4924.0000	40.8	A	V	1.0	0	X	HIGH	34.8	5.8	32.3	49.1	-4.9	54.0	
4924.0000	37.8	A	V	1.5	0	Y	HIGH	34.8	5.8	32.3	46.1	-7.9	54.0	
4924.0000	42.3	A	V	1.5	90	Z	HIGH	34.8	5.8	32.3	50.6	-3.4	54.0	

 $^{*\} CORRECTED\ READING = METER\ READING + ANTENNA\ FACTOR + CABLE\ LOSS\ -\ AMPLIFIER\ GAIN$

** DELTA = SPEC LIMIT - CORRECTED READING

No Harmonics Nor Emissions Found After the 2nd Harmonic

PAGE 2

Page: 1 of 1

Test location: Compatible Electronics

Customer : XIRCOM, INC. Date : 5/16/2001

Manufacturer : XIRCOM, INC. Time : 11.40 EUT name : 802.11b WIRELESS ETHERNET ADAPTER Model: SWE1100

Specification: Fcc_B Test distance: 3.0 mtrs Lab: D
Distance correction factor(20*log(test/spec)) : 0.00

Test Mode : 30 mW Version with RangeStar Antenna

Vertical Polarization 30 MHz to 1000 MHz

Temperature 71 Degrees F., Relative Humidity 55%

Tested By: Kyle Fujimoto

Pol	Freq	Rdng	Cable	Ant	Amp	Cor'd	limit	Delta
			loss	factor	gain	rdg = R	= L	R-L
	MHz	dBuV	dВ	dВ	dВ	dBuV	dBuV/m	dВ
1V	50.00	61.60	1.10	11.03	39.20	34.53	40.00	-5.47
2V	92.69	62.50	1.43	8.23	38.55	33.60	43.50	-9.90
3V	148.06	52.50	1.98	12.90	38.83	28.55	43.50	-14.95
4V	315.31	40.20	2.86	13.56	38.90	17.73	46.00	-28.27
5V	336.11	39.10	2.94	14.39	38.90	17.53	46.00	-28.47
бV	396.10	47.40	3.28	16.76	38.62	28.81	46.00	-17.19
7V	440.08	47.20	3.22	16.84	38.52	28.74	46.00	-17.26
8V	489.79	47.40	3.44	16.75	38.66	28.93	46.00	-17.07
9V	520.99	36.30	3.67	16.64	38.57	18.04	46.00	-27.96
10V	638.65	45.10	4.11	17.45	38.57	28.09	46.00	-17.91

Page: 1 of 1

Test location: Compatible Electronics

Customer : XIRCOM, INC. Date : 5/16/2001

Manufacturer : XIRCOM, INC. Time : 13.13 EUT name : 802.11b WIRELESS ETHERNET ADAPTER Model: SWE1100

Specification: Fcc_B Test distance: 3.0 mtrs Lab: D
Distance correction factor(20*log(test/spec)) : 0.00

Test Mode : 30 mW Version with RangeStar Antenna

Horizontal Polarization 30 MHz to 1000 MHz

Temperature 71 Degrees F., Relative Humidity 55%

Tested By: Kyle Fujimoto

Pol	Freq MHz	Rdng dBuV	Cable loss dB	Ant factor dB	Amp gain dB	Cor'd rdg = R dBuV	limit = L dBuV/m	Delta R-L dB
1H 2H 3H 4H 5H	53.71 56.89 142.53 161.73 194.95	56.40 60.50 37.10 46.40 51.40	1.14 1.17 1.91 2.00 2.16	10.10 9.30 12.76 13.72 14.81	39.20 39.20 38.92 38.80 38.96	28.44 31.77 12.85 23.32 29.41	40.00 40.00 43.50 43.50 43.50	-11.56 -8.23 -30.65 -20.18 -14.09
6H 7H 8H 9H 10H	308.06 322.72 396.10 489.68 616.08	50.80 58.50 55.00 46.30 44.10	2.83 2.89 3.28 3.44 3.93	13.28 13.86 16.76 16.75 16.79	38.90 38.90 38.62 38.66 38.70	28.01 36.35 36.41 27.83 26.11	46.00 46.00 46.00 46.00	-17.99 -9.65 -9.59 -18.17 -19.89

Page: 1 of 1

Test location: Compatible Electronics

Customer : XIRCOM, INC. Date : 5/16/2001

Manufacturer : XIRCOM, INC. Time : 14.21 EUT name : 802.11b WIRELESS ETHERNET ADAPTER Model: SWE1100

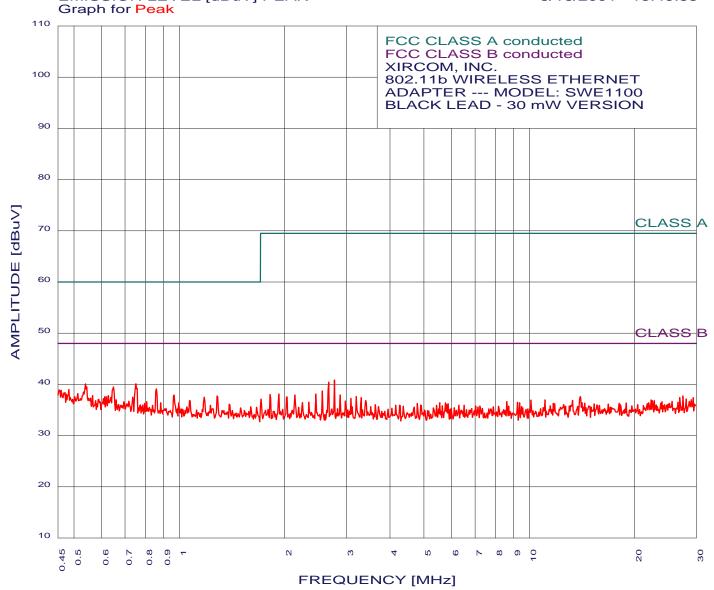
Specification: Fcc_B Test distance: 3.0 mtrs Lab: D
Distance correction factor(20*log(test/spec)) : 0.00

Test Mode : 30 mW Version with RangeStar Antenna

Vertical and Horizontal Polarization 10 kHz to 30 MHz

Temperature 71 Degrees F., Relative Humidity 55%

Tested By: Kyle Fujimoto


No Emissions Found in either Polarization for the EUT from 10 kHz to 30 MHz

AC CONDUCTED EMISSIONS DATA SHEETS

XIRCOM, INC.

30

0.736

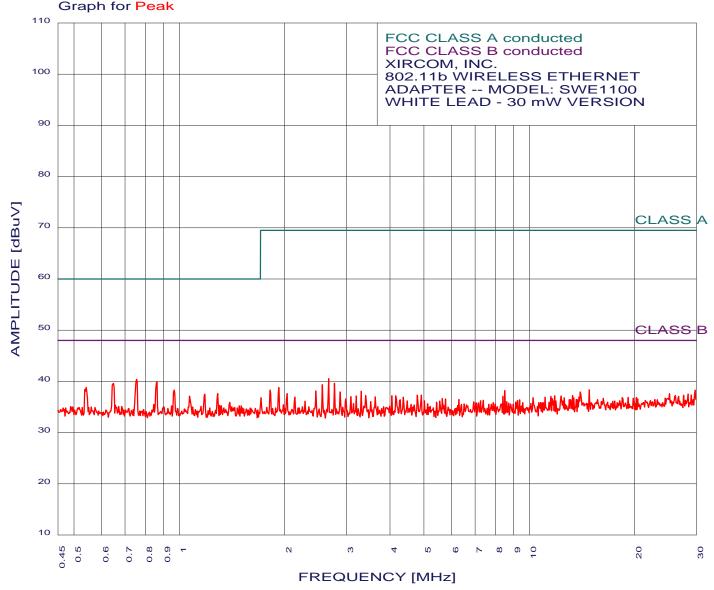
37.49

802.11b WIRELESS ETHERNET ADAPTER

MODEL: SWE1100

FCC CLASS B - BLACK LEAD - 30 mW VERSION TEST ENGINEER : KYLE FUJIMOTO

30 highest peaks above -50.00 dB of CLASS B limit line


Peak criteria: 1.00 dB, Curve: Peak									
Peak	# Frea(MH	z)Amp(dBi	uV) Limit(dB)	Delta(dB)					
1	2.775	40.82	48.00	-7.18					
2	2.672	40.42	48.00	-7.58					
3	0.751	40.09	48.00	-7.91					
4	0.539	40.09	48.00	-7.91					
5	0.649	39.49	48.00	-8.51					
6	0.860	39.10	48.00	-8.90					
7	0.484	38.99	48.00	-9.01					
8	0.454	38.89	48.00	-9.11					
9	0.460	38.79	48.00	-9.21					
10	2.562	38.72	48.00	-9.28					
11	0.472	38.39	48.00	-9.61					
12	0.513	38.19	48.00	-9.81					
13	2.457	38.11	48.00	-9.89					
14	1.926	38.11	48.00	-9.89					
15	0.476	38.09	48.00	-9.91					
16	1.816	38.01	48.00	-9.99					
17	2.881	37.92	48.00	-10.08					
18	2.139	37.91	48.00	-10.09					
19	0.967	37.90	48.00	-10.10					
20	0.627	37.79	48.00	-10.21					
21	0.565	37.79	48.00	-10.21					
22	27.472	37.73	48.00	-10.27					
23	1.282	37.70	48.00	-10.30					
24	3.201	37.62	48.00	-10.38					
25	13.973	37.61	48.00	-10.39					
26	0.620	37.59	48.00	-10.41					
27	0.612	37.59	48.00	-10.41					
28	2.033	37.51	48.00	-10.49					
29	1.178	37.50	48.00	-10.50					
\sim	0.700		40 00	10 51					

48.00

-10.51

XIRCOM, INC.

30

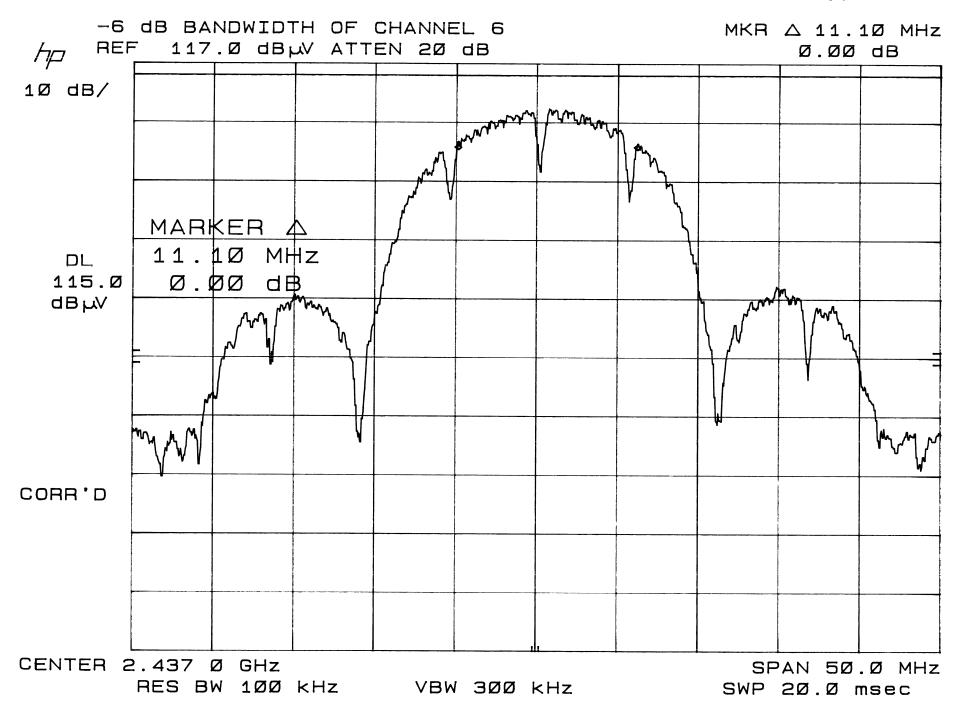
802.11b WIRELESS ETHERNET ADAPTER

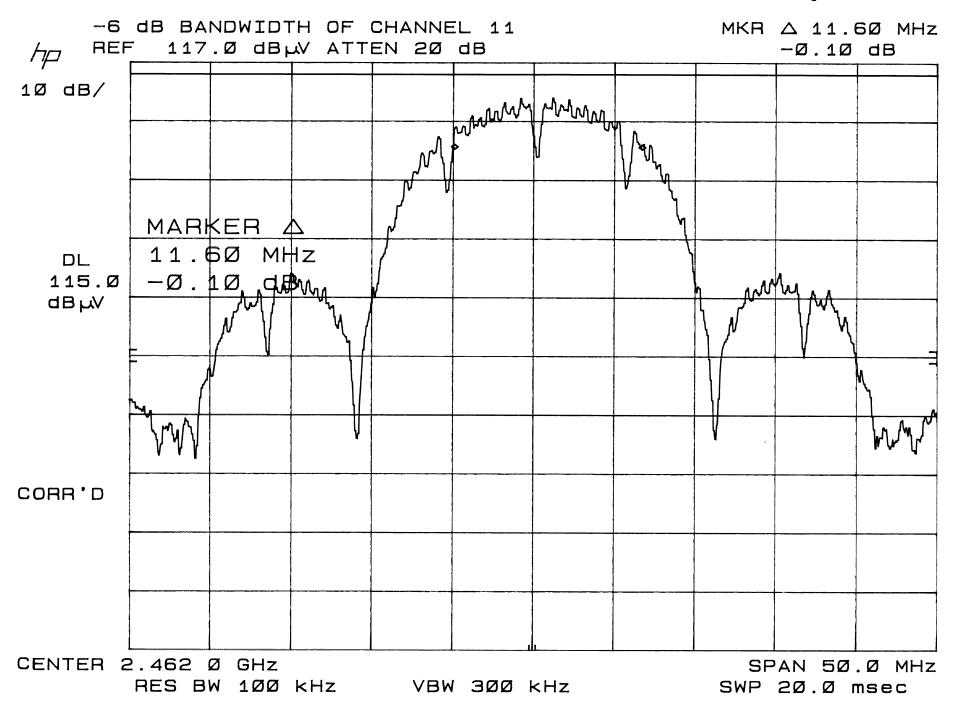
MODEL: SWE1100

FCC CLASS B - WHITE LEAD - 30 mW VERSION TEST ENGINEER : KYLE FUJIMOTO

30 highest peaks above -50.00 dB of CLASS B limit line

Peak criteria: 1.00 dB, Curve: Peak									
Peak# Freq(MHz)Amp(dBuV)Limit(dB) Delta(dB)									
1	2.672	40.52	48.00	-7.48					
2	0.755	40.39	48.00	-7.61					
3	0.863	39.90	48.00	-8.10					
4	2.775	39.62	48.00	-8.38					
5	0.649	39.59	48.00	-8.41					
6	2.562	39.32	48.00	-8.68					
7	1.926	38.81	48.00	-9.19					
8	0.542	38.79	48.00	-9.21					
9	14.828	38.32	48.00	-9.68					
10	1.816	38.31	48.00	-9.69					
11	0.967	38.30	48.00	-9.70					
12	29.758	38.27	48.00	-9.73					
13	8.510	38.19	48.00	-9.81					
14	2.457	38.11	48.00	-9.89					
15	3.310	38.04	48.00	-9.96					
16	2.881	37.92	48.00	-10.08					
17	13.973	37.92	48.00	-10.08					
18	2.033	37.61	48.00	-10.39					
19	1.287	37.60	48.00	-10.40					
20	25.157	37.57	48.00	-10.43					
21	28.429	37.51	48.00	-10.49					
22	1.183	37.50	48.00	-10.50					
23	29.033	37.33	48.00	-10.67					
24	4.914	37.31	48.00	-10.69					
25	4.789	37.30	48.00	-10.70					
26	27.583	37.27	48.00	-10.73					
27	13.293	37.24	48.00	-10.76					
28	3.408	37.24	48.00	-10.76					
29	26.139	37.21	48.00	-10.79					


-10.83

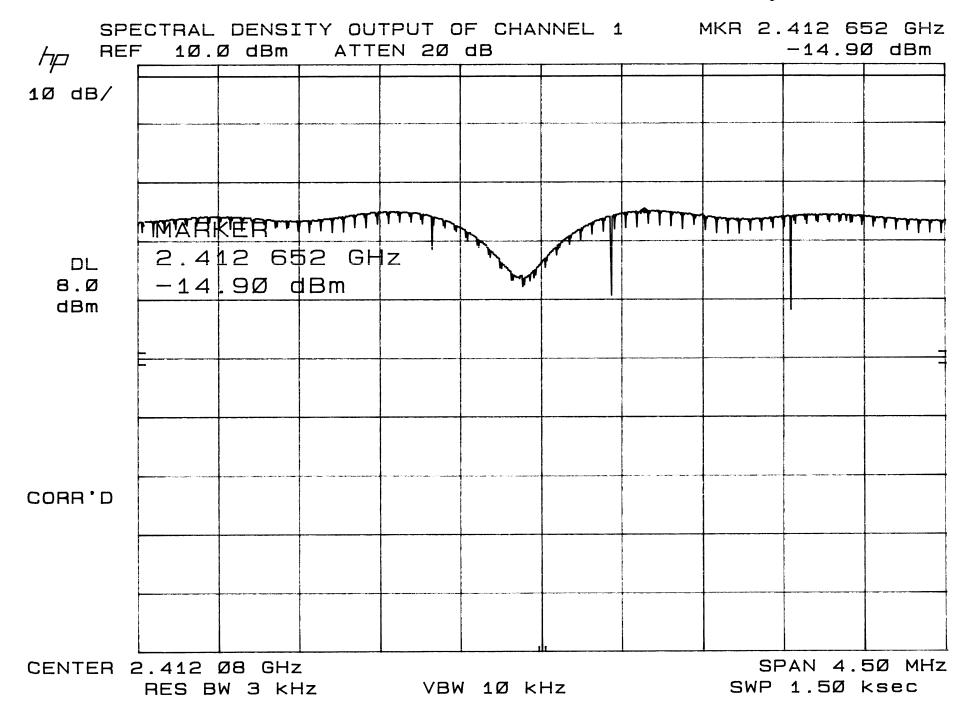

4.154 37.17 48.00

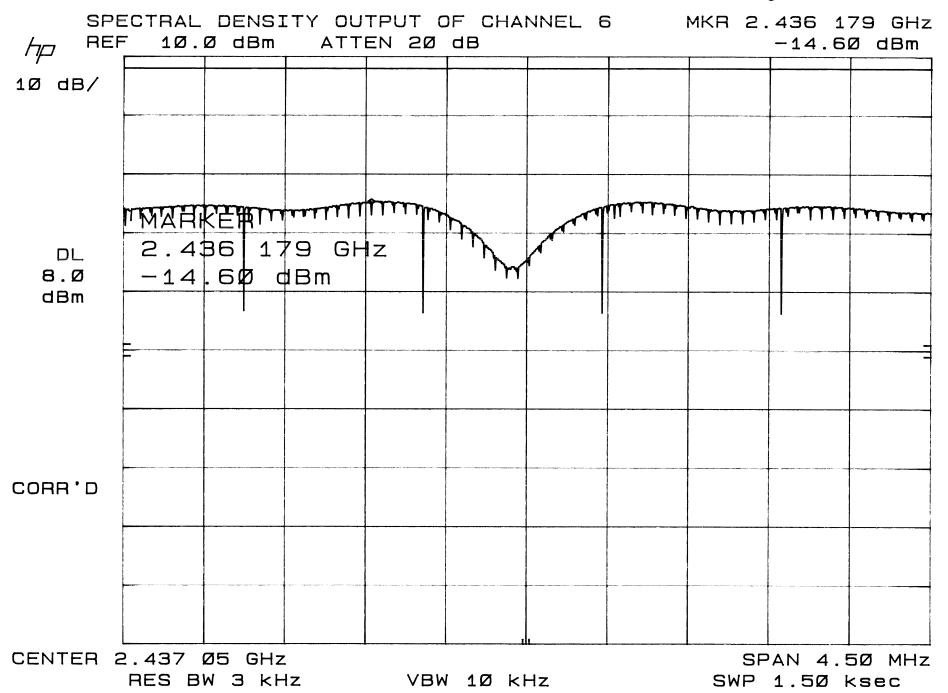
6 dB BANDWIDTH DATA SHEETS

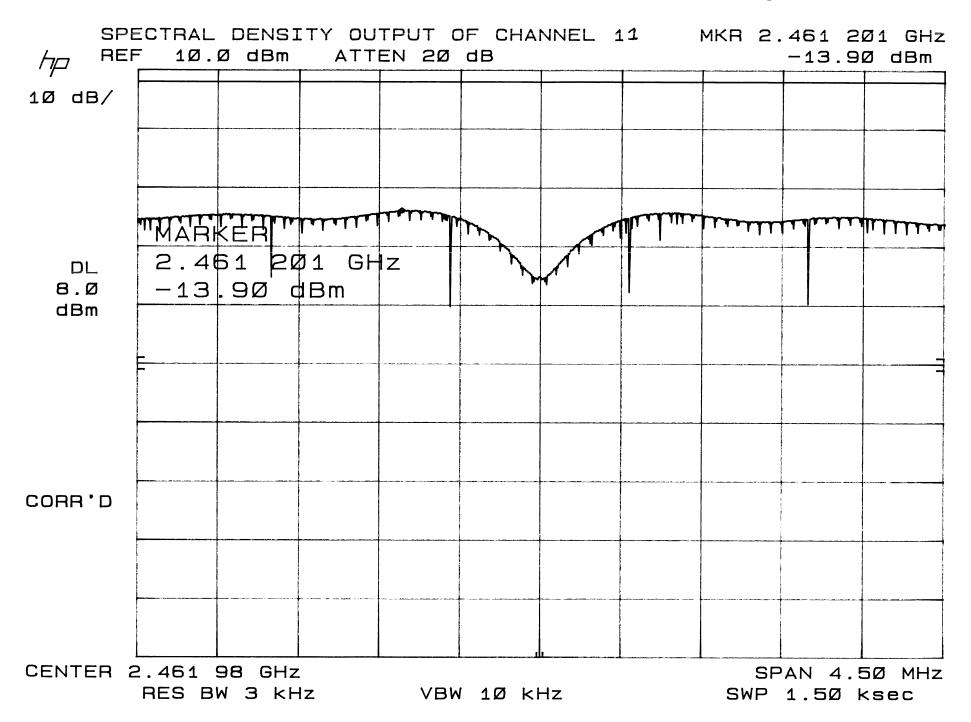
PEAK OUTPUT POWER DATA SHEETS

PEAK OUTPUT POWER

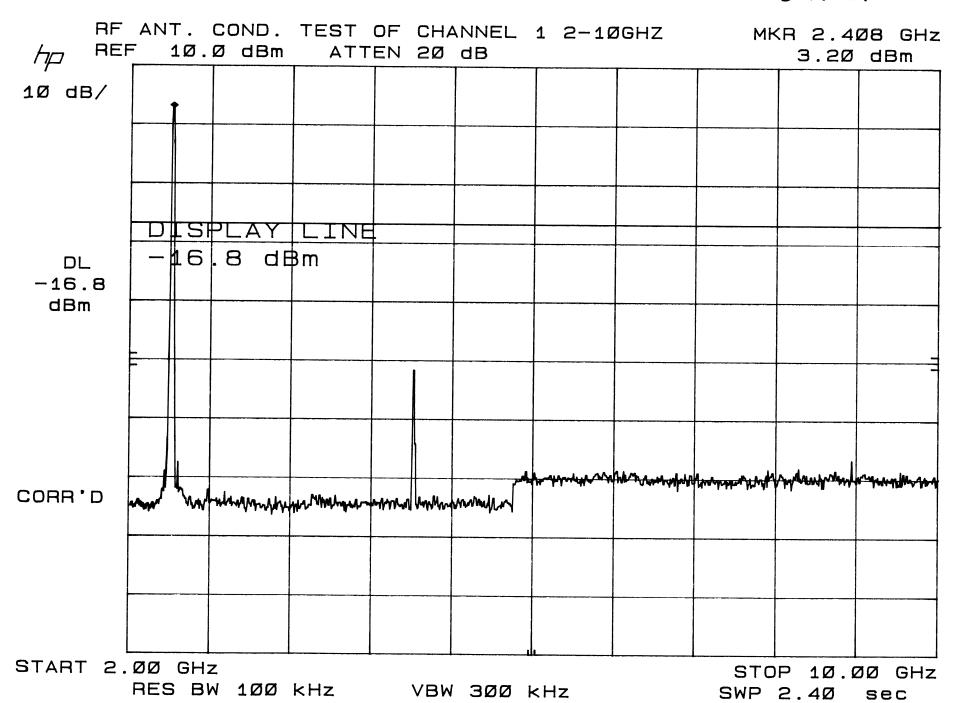
XIRCOM, INC.


802.11b WIRELESS ETHERNET ADAPTER


MODEL: SWE1100 (30 mW VERSION)

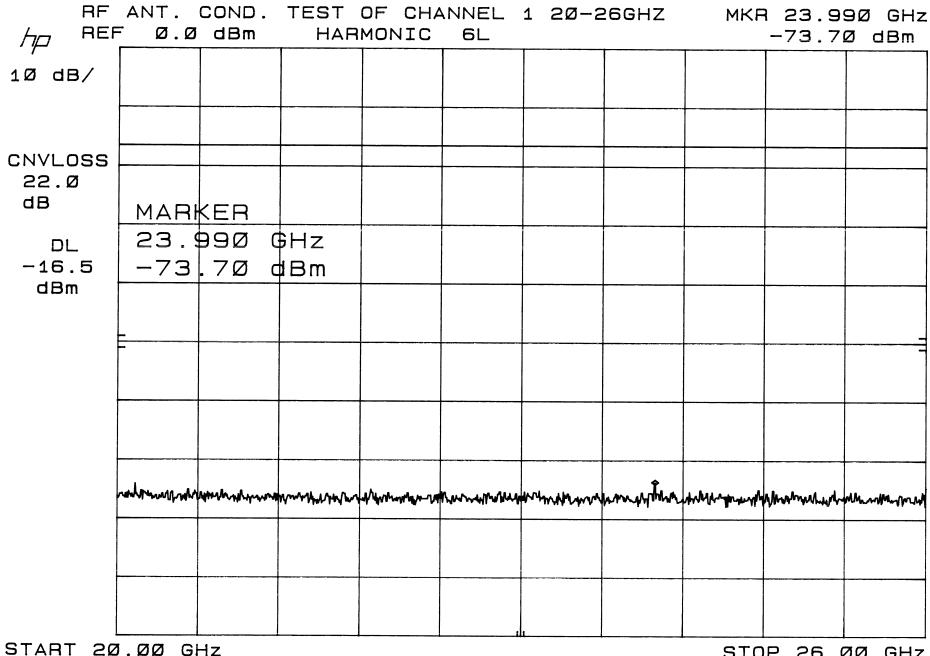

CHANNEL	PEAK POWER OUTPUT (dBm)
1	14.6
6	14.6
11	14.7

SPECTRAL DENSITY OUTPUT DATA SHEETS

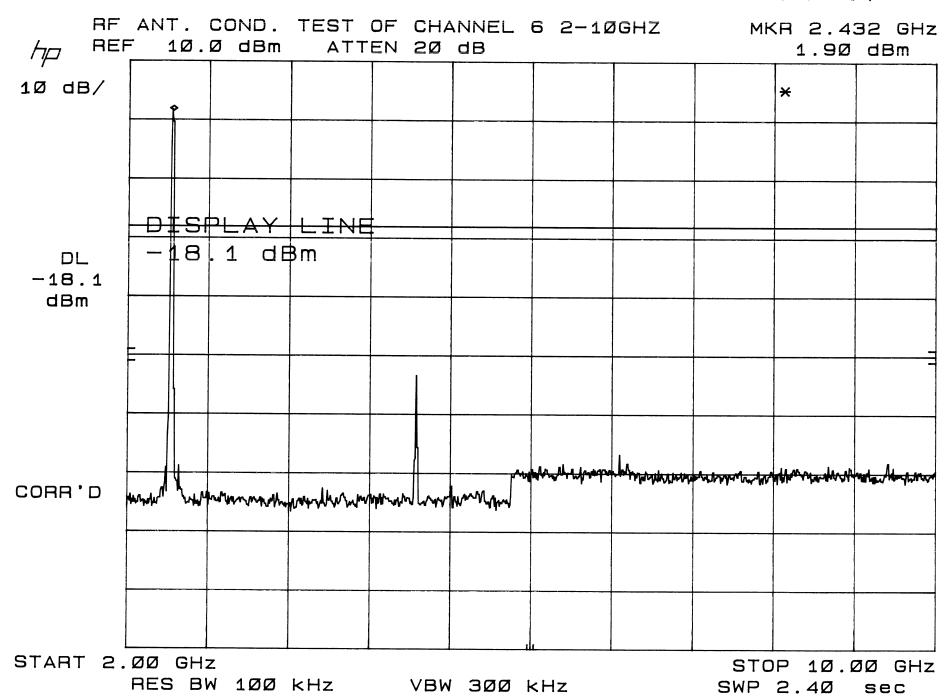


RF ANTENNA CONDUCTED DATA SHEETS

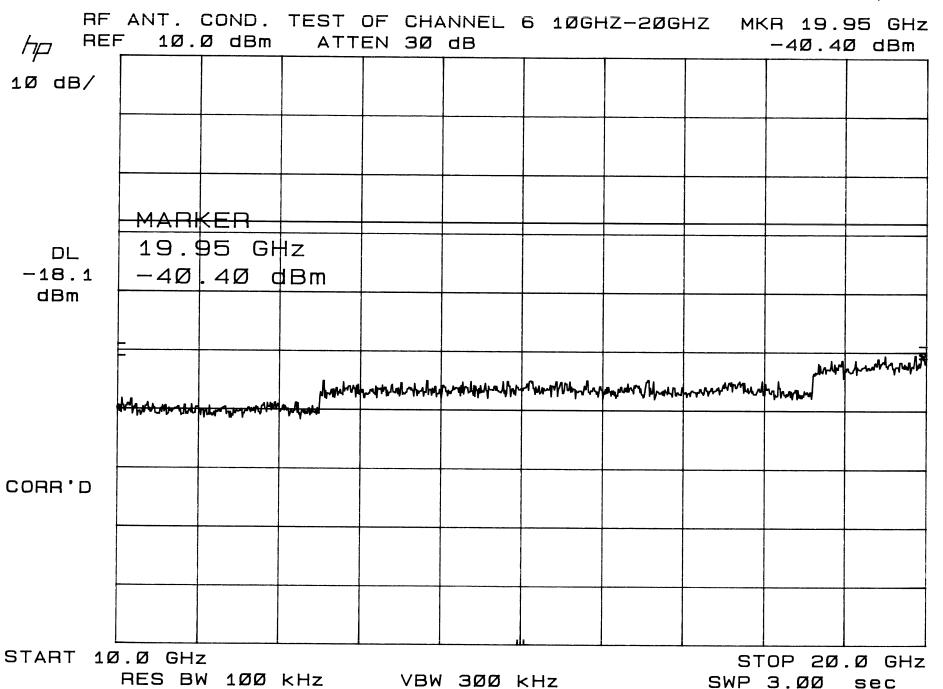
RF hp REF			TEST			1 2MHZ	-2GHZ	МК	(A 1.59 -63.00	56 GHz Z dBm
1Ø dB/										
	MARI	KER								
DL -16.5		56 GH								
dBm	-63	. ww c	dBm				-			
	<u>-</u>									=
CORR'D							_	. P		. 4 1.1
	mary from from the	ANAPAYTY.MA	Merrelament			Mhallytylradh	M/Mbr-w-lyby	44/44/644/64	Maring Maring	January
START 2		W 1ØØ	kHz	VBW	1 300 I	<hz< td=""><td></td><td></td><td>OP 2.0</td><td>ØØ GHz sec</td></hz<>			OP 2.0	ØØ GHz sec



5-16-01

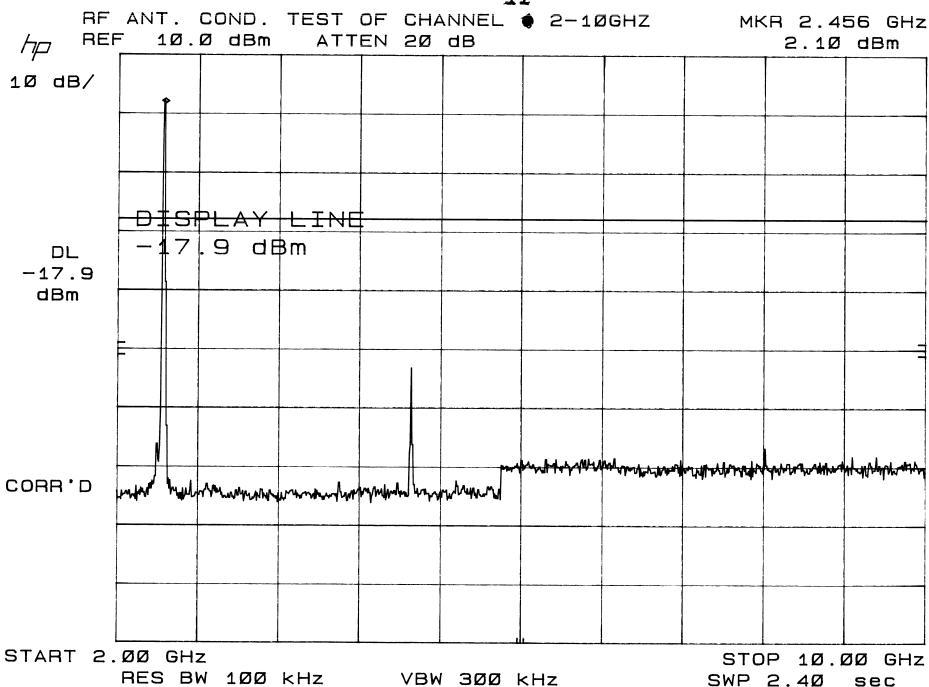

RF ANT. COND. TEST OF CHANNEL 1 10-20GHZ MKR 19.30 GHZ REF 1Ø.Ø dBm ATTEN 3Ø dB -41.3Ø dBm 1Ø dB/ MARKER 19.3Ø GHz DL -16.5-41.3Ø dBm dBm market and the same of the sam CORR'D START 10.0 GHz

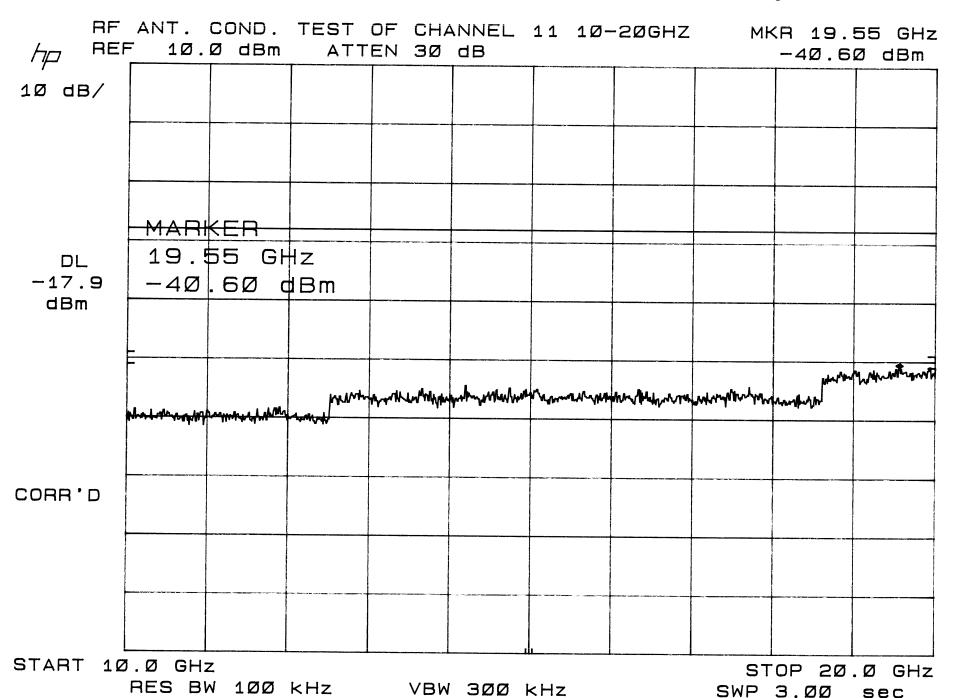
RES BW 100 kHz VBW 300 kHz


STOP 20.0 GHz SWP 3.00 sec

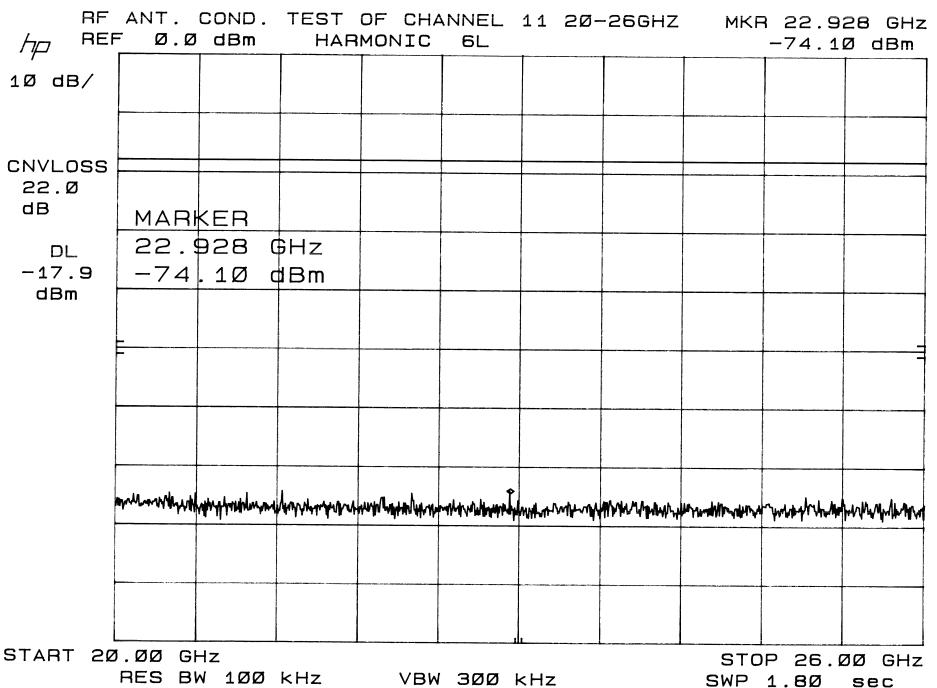
hp	RF REF				TEST ATT				6	2MHZ	-2GHZ				5 MHz dBm
, 1Ø dE	3/														
				:											
		MAR	KEF	7											
DL	-	945	MH	Ηz											
-18.	. 1	-53	. 80	7 d	Bm										
dBm	n j														
		_													
															=
		mperfession		MM	m-halland	hour	willing	man Lu	Ma	**** *	magnan/hapythda	hydrate - the de	undharvi	ware	Marina
CORR'	D										-				
									-		:				
START		MHz							Ш			ST	OP 2	2.Ø	J GHz
		RES B	3W 1	ØØ	kHz		VBW	ЗØØ	kН	z		SWP			

sec

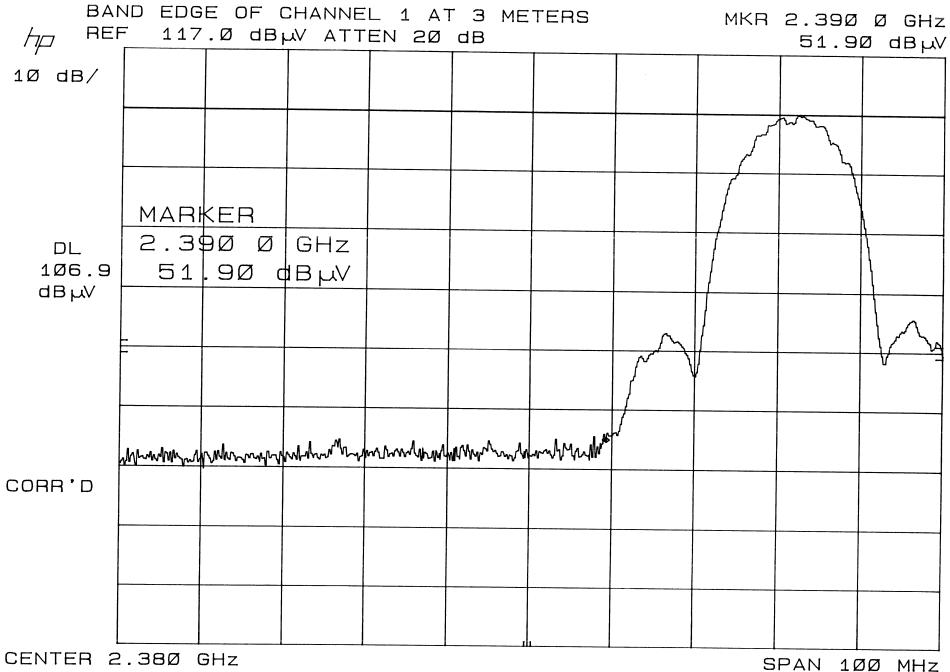

RF Ap REI		COND.		OF CHA	ANNEL 6L	6 20-2	26GHZ	MKF	74.19	78 GHz Ø dBm
1Ø dB/										
CNVLOSS 22.Ø										
dB	MAR	KER								
DL	2Ø.		Hz							
-18.1 dBm	-74	. 1Ø c	1Bm							
	<u> </u>									
	horan haradah			manhaha		was began befores	where water	Mary 44/14444	manage by the second of the second	Manhananaha
							,			
STADT OF	7 (7 (7 C	L			L	<u> </u>				


START 20.00 GHz RES BW 100 kHz VBW 300 kHz

STOP 26.00 GHz SWP 1.8Ø sec

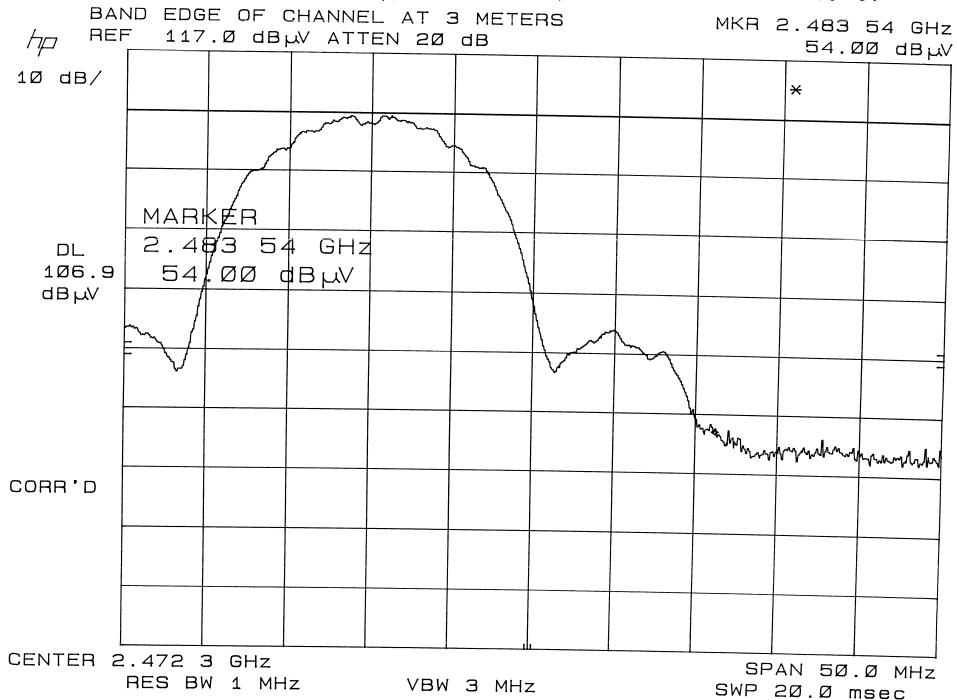

RF hp Ref		COND.	TEST ATT			11 2MH	HZ-2GH	Z MK	(R 1.49	
1Ø dB/										
	MAR	 								
DL -17.9		57 GH	lz 18m							
dBm								XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
	de appropriet de la company	7414.v44444.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A	wheretype	h-2/996/Lahapaya	white was	workforethod		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	valenyamenenyeleke	hayan handarah
CORR'D										
							46			
START 2		3W 1ØØ	KHz	VBW	300	KHZ			OP 2.0	

11


sec

FCC ID: J3OSWE1100B Report Number: B10518D1

RF BAND EDGES DATA SHEETS



VBW 1 MHz

RES BW 1 MHz

SPAN 100 MHz SWP 20.0 msec

RADIATED EMISSIONS (FCC SECTION 15.205 AND 15.247)

COMPANY	XIRCOM, INC.	DATE	5/18/01
EUT	802.11b WIRELESS ETHERNET ADAPTER (30 mW VERSION)	DUTY CYCLE	N/A
MODEL	SWE1100	PEAK TO AVG	N/A
ANTENNA	RANGESTAR	TEST DIST.	3 METERS
TEST ENGINEER	KYLE FUJIMOTO	LAB	D

Frequency	Peak Reading (dBuV)	Averag or Qu Peak (asi-	Antenna Polar. (V or H)	Height	EUT Azimuth (degrees)		EUT Tx Channel	Antenna Factor (dB)	Cable Loss (dB)	Amplifier Gain (dB)	*Corrected Reading (dBuV/m)	**	Spec Limit (dBuV/m)	Comments
2483.5000	54.0	48.5		V	1.0	90	X	LOW	30.7	3.5	31.9	50.8	-3.2		BAND EDGE CH. 11
2390.0000	51.9	45.0	A	V	1.0	90	X	LOW	30.7	3.5	31.9	47.3	-6.7		BAND EDGE CH. 1

^{*} CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

PAGE 1

^{**} DELTA = SPEC LIMIT - CORRECTED READING

FCC ID: J3OSWE1100B Report Number: B10518D1

PROCESSING GAIN DATA SHEETS

FCC ID: J3OSWE1100B Report Number: B10518D1 Page E1

APPENDIX E

LABORATORY RECOGNITIONS

FCC ID: J3OSWE1100B Report Number: B10518D1 Page E2

LABORATORY RECOGNITIONS

Compatible Electronics has the following agency accreditations:

National Voluntary Laboratory Accreditation Program - Lab Code: 200063-0

Voluntary Control Council for Interference - Registration Numbers: R-983, C-1026, R-984 and C-1027

Bureau of Standards and Metrology Inspection - Reference Number: SL2-IN-E-1031

Compatible Electronics is recognized or on file with the following agencies:

Federal Communications Commission

Industry Canada

Radio-Frequency Technologies (Competent Body)

Technology International (Europe) Ltd.

FCC ID: J3OSWE1100B Report Number: B10518D1

APPENDIX F

DESCRIPTION OF THE TRANSMITTER

Page F1

EXHIBIT G: DESCRIPTION OF OPERATION [2.1033(B4)]

MI-4800B Module Description of Operation

Radio Circuit Description

The 4800B Spread Spectrum Transceiver operates in the 2.4 Ghz ISM band, using Direct Sequence modulation techniques.

The transmit/receive and data packetization operations are under the control of a protocol processor (MAC) internal to the transceiver assembly.

Logic Section: A digital ASIC is employed in the logic section of the radio, providing the following functions:

- 1) Generation of the spreading code, combination of the code with the incoming data stream.
- 2) Despreading and demodulation of the incoming baseband spread signal.
- 3) Determination of the transmit/receive sequence.

RF Section (refer to 4800B radio block diagram): The transmitter chain includes a shaping bandpass filter followed by a vector modulator. This signal is further filter by a saw filter at the IF frequency of 374 Mhz. This signal is then mixed up to the 2400-2483.5 Mhz band. A RF filter at the output of the mixer removes any other mixing products. A power amplifier chain brings the signal up to the final output level of 30 mwatts. Through the TX/RX switch, the signal is passed through a dielectric bandpass filter to the antenna port. The radio has diversity, so two antenna ports are provided. Transmitter frequency is determined by the 44.0 Mhz reference oscillator, with +/- 25 ppm accuracy.

The receiver utilizes the same antenna filtering and TX/RX, followed by a LNA. A mixer circuit brings the signal to the 374 Mhz IF, where a SAW filter shapes the IF spectral envelope. This filter provides the primary rejection against adjacent channel interference. An IF amplifier followed by an IF limiter brings the signal up to the level needed for the I and Q vector demodulator. A buffer amplifier and filter are used to shape the signal for the PHY digital ASIC which despreads and decodes the signal.

The 374 Mhz voltage controlled oscillator is controlled by a synthesizer/PLL system comprised of a prescaler and programmable dividers. The 2026-2450 Mhz voltage controlled oscillator is also controlled by a synthesizer/PLL system. Both local oscillators use a reference signal for the PLL which is derived from the 44.0 Mhz master reference oscillator.