

CALIFORNIA AMPLIFIER, INC. ADDENDUM TO REPORT FC01-068

FOR THE

MMDS/MMDS LOW TX IN-BAND TRANSCEIVER, 520031-1 AND 520031-2

FCC PART 21 AND FCC PART 15 SUBPART B SECTION 15.107

COMPLIANCE

DATE OF ISSUE: SEPTEMBER 28, 2001

PREPARED FOR:

PREPARED BY:

California Amplifier, Inc. 460 Calle San Pablo Camarillo, CA 93033

Joyce Walker CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338

P.O. No.: 24035 W.O. No.: 77604 Date of test: September 19, 2001

Report No.: FC01-068A

This report contains a total of 41 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

Page 1 of 41 Report No.: FC01-068A

TABLE OF CONTENTS

Administrative Information	.3
Summary of Results	
Modifications Required for Compliance	.4
Approvals	.4
Equipment Under Test (EUT) Description	.5
Equipment Under Test	.5
Peripheral Devices	.5
Temperature and Humidity During Testing	. 5
2.1033(c)(3) User's Manual	
2.1033(c)(4) Type of Emissions	.6
2.1033(c)(5) Frequency Range	.6
2.1033(c)(6) Operating Power	.6
2.1033(c)(7) Maximum Power Rating	.6
2.1033(c)(8) DC Voltages	
2.1033(c)(9) Tune-Up Procedure	.6
2.1033(c)(10) Schematics and Circuitry Description	.6
2.1033(c)(11) Label and Placement	.7
2.1033(c)(12) Submittal Photos	.7
2.1033(c)(13) Modulation Information	.7
2.1033(c)(14)/2.1046/21.904(d) - RF Power Output	.8
2.1033(c)(14)/2.1047(b) - Modulation Characteristics - Audio Frequency Response	.11
2.1033(c)(14)/2.1047(b) - Modulation Characteristics - Modulation Limiting Response	.11
2.1033(c)(14)/2.1049(i)/21.908(d) - Occupied Bandwidth	.12
2.1033(c)(14)/2.1051/21.908(d) - Spurious Emissions at Antenna Terminal	. 16
2.1033(c)(14)/2.1053/21.908(d) - Field Strength of Spurious Radiation	.20
2.1033(c)(14)/2.1055/21.101 - Frequency Stability	.34
15.207 – AC Conducted Emissions	.35

Page 2 of 41 Report No.: FC01-068A

CKC Laboratories, Inc. has received Certificates of Accreditation from the following agencies:

A2LA (USA); DATech (Germany); BSMI (Taiwan); Nemko (Norway); and GOST (Russia).

CKC Laboratories, Inc has received test site Registration Acceptance from the following agencies:

FCC (USA); VCCI (Japan); and Industry Canada.

CKC Laboratories, Inc. has received Letters of Acceptance through an MRA for the following agencies:

ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); Radio Communications Agency (RA); HOKLAS (Hong Kong); Bakom (Swiss); BIPT (Belgium); Denmark Telestyrelsen; RvA (Netherlands); SEE (Luxembourg) SITTEL (Bolivia); and UKAS (UK).

ADMINISTRATIVE INFORMATION

DATE OF TEST: September 19, 2001

DATE OF RECEIPT: September 19, 2001

PURPOSE OF TEST:To demonstrate the compliance of the

MMDS/MMDS Low TX In-Band Transceiver, 520031-1 and 520031-2 with the requirements for FCC Part 21 and FCC Part 15 Subpart B Section 15.107 Class B devices. This addendum is to correct minor errors in the report on pages 6, 8, 9

and 20-22.

TEST METHOD: Part 21 and ANSI C63.4 (1992)

MANUFACTURER: California Amplifier, Inc.

460 Calle San Pablo Camarillo, CA 93033

REPRESENTATIVE: Shawn Aleman

TEST LOCATION: CKC Laboratories, Inc.

5473A Clouds Rest Mariposa, CA 95338

> Page 3 of 41 Report No.: FC01-068A

SUMMARY OF RESULTS

As received, the California Amplifier, Inc. MMDS/MMDS Low TX In-Band Transceiver, 520031-1 and 520031-2 was found to be fully compliant with the following standards and specifications:

United States

- FCC Part 21
- FCC Part 15 Subpart B Section 15.107 Class B
 - > ANSI C63.4 (1992) method

The results in this report apply only to the items tested, as identified herein.

MODIFICATIONS REQUIRED FOR COMPLIANCE

No modifications were required for compliance

APPROVALS

QUALITY ASSURANCE:	TEST PERSONNEL:
Dennis Ware	Boxe Obek
Dennis Ward, Quality Manager	Randy Clark, EMC Engineer

Page 4 of 41 Report No.: FC01-068A

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The MMDS/MMDS Low TX In-Band Transceivers tested by CKC Laboratories were production units. The difference between the two models is that the 520031-1 has an antenna connector and the 520031-2 does not have an antenna connector. Both models operate using the same circuit boards.

EQUIPMENT UNDER TEST

MMDS/MMDS Low TX In-Band Transceiver

Manuf: California Amplifier, Inc.

Model: 520031-2

Serial: 002

FCC ID: J26520031-2 (pending)

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s)

Signal Generator

Manuf: HP

Model: E4437B

Serial: US39260147

FCC ID: DoC

Power Supply

Manuf: California Amplifier, Inc.

Model: 71441 Serial: N/A

FCC ID: J26520031-2 (pending)

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

Page 5 of 41 Report No.: FC01-068A

2.1033(c)(3) USER'S MANUAL

The necessary information is contained in a separate document.

2.1033(c)(4) TYPE OF EMISSIONS

The emissions designator for the MMDS/MMDS Low TX In-Band Transceiver is 5M00M1D.

2.1033(c)(5) FREQUENCY RANGE

The transmitter operates at 2500-2542 MHz and the receiver operates at 2584-2686 MHz.

2.1033(c)(6) OPERATING POWER

The minimum operating power is –47dBm at the input with a maximum of 25 dBm.

2.1033(c)(7) MAXIMUM POWER RATING

The maximum power rating as defined in the applicable rule part is +63.26 dBm.

2.1033(c)(8) DC VOLTAGES

The DC voltage applied is 550mA at 6V.

2.1033(c)(9) TUNE-UP PROCEDURE

No tuning is required for specific power levels.

2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION

The necessary information is contained in a separate document.

Page 6 of 41 Report No.: FC01-068A

2.1033(c)(11) LABEL AND PLACEMENT

The necessary information is contained in a separate document.

2.1033(c)(12) SUBMITTAL PHOTOS

The necessary information is contained in a separate document.

2.1033(c)(13) MODULATION INFORMATION

Not applicable to this device.

Page 7 of 41 Report No.: FC01-068A

2.1033(c)(14)/2.1046/21.904(d) - RF POWER OUTPUT

The average channel power is calculated as follows;

The power is measured using a power meter and a peak detector in dBm/Hz. The channel power is then calculated as follows:

dBm/channel = dBm/Hz + 10*LOG(channel bandwidth in Hz)

In this case, the channel bandwidth is 1.6MHz, therefore $10*LOG(1.6x10^6) = 62.04dB$ for all channels.

The limit stated in 21.904 for non-omni-directional antennas is calculated as follows: EIRP = $33 \text{ dBW} + 10 \log(X/6) \text{ dBW} + 10 \log(360/\text{beamwidth}) \text{ dBW}$, where X is the channel width in MHz and $10 \log(360/\text{beamwidth}) <= 6 \text{ dB}$.

The channel bandwidth is 1.6MHz, and the beamwidth of the antenna is 18°, so

10LOG(1.6MHz/6MHz) = -5.74 $10LOG(360/18^{\circ}) = 13.01$ (which is greater than 6dB therefore the maximum of 6dB is used)

EIRP = 33dBW -5.74dB + 6dB =33.26dBW =63.26dBm

=170.26dBuV

Page 8 of 41 Report No.: FC01-068A

Power Output Calculations

Radiated Measurements

Tradiated Medealoniente								
Channel	Transmit	Channel	Channel					
	Antenna	Frequency	Power					
	Polarity	(MHz)	(Watts)					
Low	Н	2501.70	89.6					
Middle	Н	2520.77	62.0					
High	Н	2540.12	59.2					
Low	V	2501.88	56.5					
Middle	V	2520.85	45.9					
High	V	5240.71	48.1					

Antenna Conducted Measurements

Channel	Channel	RF Output	RF Output
	Frequency	Power	Power
	(MHz)	(dBm)	(Watts)
Low	2501.45	20.9	0.123
Middle	2520.76	20.8	0.120
High	2540.26	21.2	0.133

Maximum Allowable Output Power is: 33.26dBW (63.2dBm) = 2089 Watts

Power Calculations: Power=(E*D)^2/30 G

Channel Power =dBm/Hz + 10*LOG(channel BW is Hz)

Equipment used:

Equipment	Manufacturer	Model #	Serial #	Asset #	Cal Date	Cal Due
2.4GHz High Pass	K&L	91H31-3000	00001	01440	10/03/00	10/3/01
Filter	Microwave, INC	!				
2.4GHz Low Pass	K&L	10L121-	1	01439	10/03/00	10/3/01
Filter	Microwave,	2200/T2400-				
	INC.	0/0				
Antenna, Horn	EMCO	3115	4085	00656	02/28/01	2/28/02
Attenuator	Pasternack	PE7014-40			03/29/01	3/29/02
Cable #8 (6')	Andrew	FSJ1-50A	N/A	N/A	4/16/01	4/16/02
QP Adapter	HP	85650A	2811A01267	00478	11/03/00	11/3/01
S/A Display	HP	8566B	2403A08241	00489	11/3/00	11/3/01
Spectrum Analyzer	HP	8566B	2209A01404	00490	11/3/00	11/3/01
Spectrum Analyzer	HP	8564E	3623A00539	01406	12/12/00	12/12/01

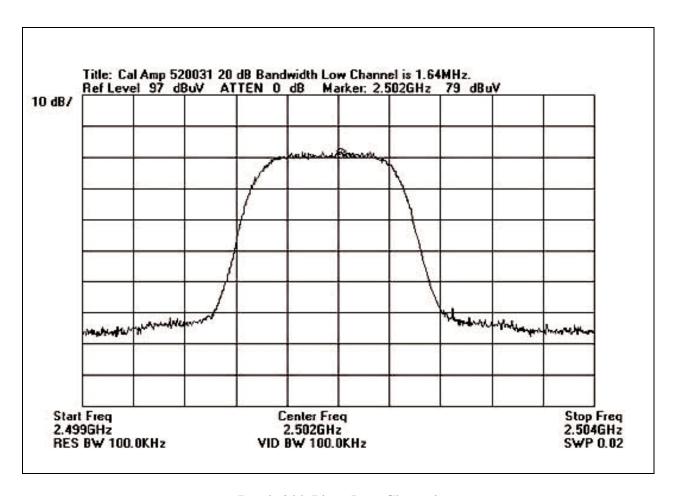
Page 9 of 41 Report No.: FC01-068A

Photograph Showing Direct Connect Test Setup

Page 10 of 41 Report No.: FC01-068A

$\underline{\textbf{2.1033(c)(14)/2.1047(a) - MODULATION CHARACTERISTICS - AUDIO FREQUENCY}}_{\textbf{RESPONSE}}$

Not applicable to this unit.


$\frac{2.1033(c)(14)/2.1047(b)\ MODULATION\ CHARACTERISTICS-Modulation\ Limiting}{Response}$

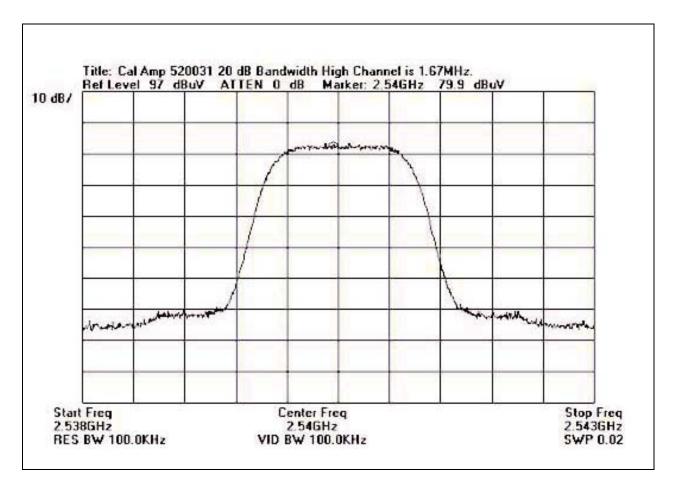
Not applicable to this unit.

Page 11 of 41 Report No.: FC01-068A


2.1033(c)(14)/2.1049(i)/21.908(d)- OCCUPIED BANDWIDTH

Bandwidth Plot - Low Channel

Page 12 of 41 Report No.: FC01-068A



Bandwidth Plot - Middle Channel

Page 13 of 41 Report No.: FC01-068A

Bandwidth Plot - High Channel

Page 14 of 41 Report No.: FC01-068A

Equipment used:

Equipment	Manufacturer	Model #	Serial #	Asset #	Cal Date	Cal Due
2.4GHz High Pass	K&L	91H31-3000	00001	01440	10/03/00	10/3/01
Filter	Microwave, INC					
2.4GHz Low Pass	K&L	10L121-	1	01439	10/03/00	10/3/01
Filter	Microwave,	2200/T2400-				
	INC.	0/0				
Antenna, Horn	EMCO	3115	4085	00656	02/28/01	2/28/02
Attenuator	Pasternack	PE7014-40			03/29/01	3/29/02
Cable #8 (6')	Andrew	FSJ1-50A	N/A	N/A	4/16/01	4/16/02
QP Adapter	HP	85650A	2811A01267	00478	11/03/00	11/3/01
S/A Display	HP	8566B	2403A08241	00489	11/3/00	11/3/01
Spectrum Analyzer	HP	8566B	2209A01404	00490	11/3/00	11/3/01
Spectrum Analyzer	HP	8564E	3623A00539	01406	12/12/00	12/12/01

Photograph Showing Direct Connect Test Setup

Page 15 of 41 Report No.: FC01-068A

2.1033(c)(14)/2.1051/21.908(d) - SPURIOUS EMISSIONS AT ANTENNA TERMINAL

Test Location: CKC Laboratories, Inc. • 5473A Clouds Rest • Mariposa, CA 95338 • 800-500-4362

Customer: California Amplifier

Specification: 21.106 / 2.1053

Work Order #:77604Date:09/19/2001Test Type:Maximized EmissionsTime:11:08:26Equipment:MMDS TransceiverSequence#:2

Manufacturer: California Amplifier Tested By: Randal Clark

Model: 520031-1 S/N: 001

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
MMDS Transceiver*	California Amplifier	520031-1	001

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4437B	US39260147
Power Supply	Cal Amp	71441	N/A

Test Conditions / Notes:

EUT is a MMDS transceiver with QPSK modulation of 1.2MSps with a bandwidth of 1.6MHz. EUT is set to transmit on the low channel. Antenna conducted measurements. Spurious emissions limit calculated at 60dB down from the carrier. Frequency Range Tested: 30MHz - 26GHz.

Meas	urement Data:	R	eading lis	sted by m	argin.		Te	st Distance	e: None		
			Cable	Filte	Filte						
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	2277.960M	39.0	+0.6	+19.7	+0.0		+0.0	59.3	68.0	-8.7	None
2	15945.880M	42.5	+2.4	+0.0	+9.7		+0.0	54.6	68.0	-13.4	None
3	4555.976M	52.3	+1.6	+0.0	+0.5		+0.0	54.4	68.0	-13.6	None
4	11389.980M	49.7	+1.7	+0.0	+1.3		+0.0	52.7	68.0	-15.3	None
5	13667.970M	37.9	+1.3	+0.0	+11.6		+0.0	50.8	68.0	-17.2	None
6	9325.136M	32.2	+1.4	+0.0	+2.7		+0.0	36.3	68.0	-31.7	None
7	9111.993M	32.3	+1.2	+0.0	+2.1		+0.0	35.6	68.0	-32.4	None
8	11656.400M	30.5	+1.9	+0.0	+1.6		+0.0	34.0	68.0	-34.0	None
9	4662.580M	30.6	+1.6	+0.0	+0.6		+0.0	32.8	68.0	-35.2	None
10	6833.951M	30.3	+2.5	+0.0	-0.3		+0.0	32.5	68.0	-35.5	None

Page 16 of 41 Report No.: FC01-068A

Customer: California Amplifier

Specification: 21.106 / 2.1053

Work Order #: 77604 Date: 09/19/2001
Test Type: Maximized Emissions Time: 11:37:30
Equipment: MMDS Transceiver Sequence#: 3

Manufacturer: California Amplifier Tested By: Randal Clark

Model: 520031-1 S/N: 001

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
MMDS Transceiver*	California Amplifier	520031-1	001

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4437B	US39260147
Power Supply	Cal Amp	71441	N/A

Test Conditions / Notes:

EUT is a MMDS transceiver with QPSK modulation of 1.2MSps with a bandwidth of 1.6MHz. EUT is set to transmit on the middle channel. Antenna conducted measurements. Spurious emissions limit calculated at 60dB down from the carrier. Frequency Range Tested: 30MHz - 26GHz.

Meas	urement Data:	R	eading lis	sted by m	argin.		Te	st Distance	e: None		
			Cable	Filte	Filte						
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	1 2277.900M	39.0	+0.6	+19.7	+0.0		+0.0	59.3	68.0	-8.7	None
2	2 15945.830	33.1	+2.4	+0.0	+9.7		+0.0	45.2	68.0	-22.8	None
	M										
3	3 11389.980 M	38.4	+1.7	+0.0	+1.3		+0.0	41.4	68.0	-26.6	None
4	4 4556.130M	39.2	+1.6	+0.0	+0.5		+0.0	41.3	68.0	-26.7	None
4	5 4662.630M	24.8	+1.6	+0.0	+0.6		+0.0	27.0	68.0	-41.0	None

Page 17 of 41 Report No.: FC01-068A

Customer: California Amplifier Specification: 21.106 / 2.1053

Work Order #: 77604 Date: 09/19/2001
Test Type: Maximized Emissions Time: 11:57:45
Equipment: MMDS Transceiver Sequence#: 4

Manufacturer: California Amplifier Tested By: Randal Clark

Model: 520031-1 S/N: 001

Equipment Under Test (* = EUT):

	,			
Function	Manufacturer	Model #	S/N	
MMDS Transceiver*	California Amplifier	520031-1	001	

Support Devices:

Function	Manufacturer	Model #	S/N	
Signal Generator	HP	E4437B	US39260147	
Power Supply	Cal Amp	71441	N/A	

Test Conditions / Notes:

EUT is a MMDS transceiver with QPSK modulation of 1.2MSps with a bandwidth of 1.6MHz. EUT is set to transmit on the high channel. Antenna conducted measurements. Spurious emissions limit calculated at 60dB down from the carrier. Frequency Range Tested: 30MHz - 26GHz.

Meas	urement Data:	R	eading lis	sted by m	argin.	Test Distance: None					
			Cable	Filte	Filte						
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	2277.900M	39.5	+0.6	+19.7	+0.0		+0.0	59.8	68.0	-8.2	None
2	15945.850M	43.0	+2.4	+0.0	+9.7		+0.0	55.1	68.0	-12.9	None
3	4556.050M	52.2	+1.6	+0.0	+0.5		+0.0	54.3	68.0	-13.7	None
4	13987.600M	33.7	+1.1	+0.0	+16.2		+0.0	51.0	68.0	-17.0	None
5	11389.900M	47.4	+1.7	+0.0	+1.3		+0.0	50.4	68.0	-17.6	None
6	13667.850M	36.9	+1.3	+0.0	+11.6		+0.0	49.8	68.0	-18.2	None
7	9111.900M	32.2	+1.2	+0.0	+2.1		+0.0	35.5	68.0	-32.5	None
8	9325.050M	31.3	+1.4	+0.0	+2.7		+0.0	35.4	68.0	-32.6	None
9	6993.850M	30.9	+2.4	+0.0	+1.6		+0.0	34.9	68.0	-33.1	None
10	4662.550M	32.7	+1.6	+0.0	+0.6		+0.0	34.9	68.0	-33.1	None
11	11656.450M	29.4	+1.9	+0.0	+1.6		+0.0	32.9	68.0	-35.1	None
12	5080.700M	29.2	+1.4	+0.0	+1.4		+0.0	32.0	68.0	-36.0	None
13	6833.950M	29.0	+2.5	+0.0	-0.3		+0.0	31.2	68.0	-36.8	None

Page 18 of 41 Report No.: FC01-068A

VIDEO BANDWIDTH AND RESOLUTION BANDWIDTH SETTINGS:

BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
30 MHz	1000 MHz	120 kHz
1000 MHz	26 GHz	1 MHz

Equipment	Manufacturer	Model #	Serial #	Asset #	Cal Date	Cal Due
2.4GHz High Pass	K&L Microwave,	91H31-3000	00001	01440	10/03/00	10/3/01
Filter	INC					
2.4GHz Low Pass Filter	K&L Microwave,	10L121-2200/T2400-	1	01439	10/03/00	10/3/01
	INC.	0/0				
Antenna, Horn	EMCO	3115	4085	00656	02/28/01	2/28/02
Attenuator	Pasternack	PE7014-40			03/29/01	3/29/02
Cable #8 (6')	Andrew	FSJ1-50A	N/A	N/A	4/16/01	4/16/02
QP Adapter	HP	85650A	2811A01267	00478	11/03/00	11/3/01
S/A Display	HP	8566B	2403A08241	00489	11/3/00	11/3/01
Spectrum Analyzer	HP	8566B	2209A01404	00490	11/3/00	11/3/01
Spectrum Analyzer	HP	8564E	3623A00539	01406	12/12/00	12/12/01

Photograph Showing Direct Connect Test Setup

Page 19 of 41 Report No.: FC01-068A

2.1033(c)(14)/2.1053/21.908(d) - FIELD STRENGTH OF SPURIOUS RADIATION

Calculation of Emissions Mask for OATS Measurements:

Emissions Mask calculated using the relative measurement technique IAW 21.908(e) using the peak detector function of a spectrum analyzer. The resolution bandwidth of the peak "flat top" reading of the digital signal is 100kHz. Radiated spurious emissions are also measured at 100kHz. Therefore attenuation (dBc) at each spectral point of concern (A +10*LOG(RBW1/RBW2) where A is 25, 40 and 60dBc) is calculated as follows;

10*LOG(RBW1/RBW2) = 10*LOG(100kHz/100kHz) = 0

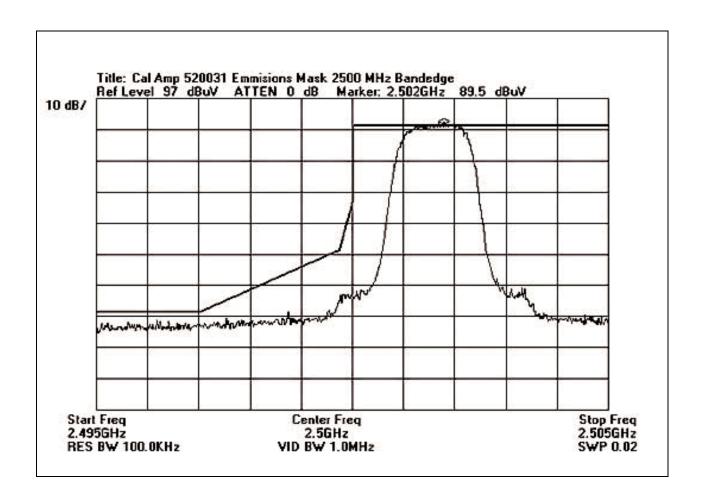
Thus the attenuation (dBc) is 25, 40 and 60.

The median peak flattop level of fundamental is 28.3dBm (135.3dBuV)

The attenuation is as follows:

25dBc or 3.3dBm (110.3dBuV) at the channel edge

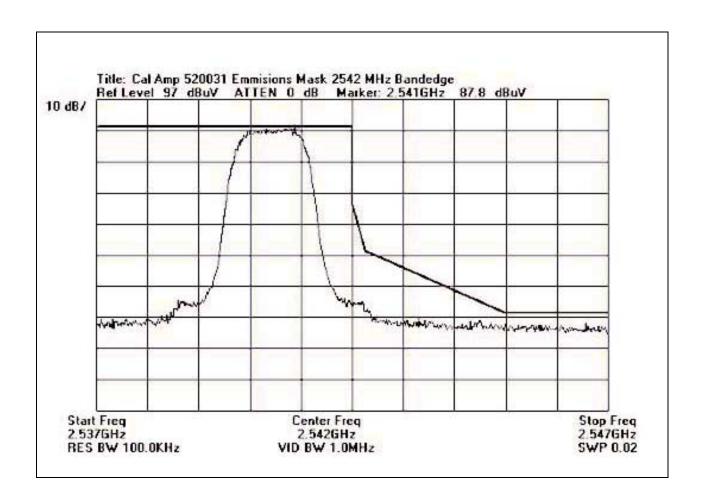
From that point on a linear slope to 40dBc or -11.7dBm (95.3dBuV) at 250kHz removed from the channel edge.


From that point on a linear slope to 60dBc or -31.7 (75.3dBuV) at 3MHz removed from the channel edge.

60dBc or -31.7dBm (75.3dBuV) at all other frequencies.

Note: The following plots are uncorrected for antenna factors, amplifiers or cable factors. The above mask was adjusted to the uncorrected reading so it could be shown graphically. The highest output power was recorded from the lowest channel at 89.5 dBuV (uncorrected).

Page 20 of 41 Report No.: FC01-068A



Bandedge - 2500 MHz

Note: Limit line shown has been adjusted for the factors associated with the test equipment.

Page 21 of 41 Report No.: FC01-068A

Bandedge - 2542 MHz

Note: Limit line shown has been adjusted for the factors associated with the test equipment.

Page 22 of 41 Report No.: FC01-068A

Customer: California Amplifier Specification: FCC 21.904(b)

Work Order #: 77604 Date: 09/20/2001
Test Type: Maximized Emissions Time: 08:10:47
Equipment: MMDS Transceiver Sequence#: 5

Manufacturer: California Amplifier Tested By: Randal Clark

Model: 520031-2 S/N: 002

Equipment Under Test (* = EUT):

(
Function	Manufacturer	Model #	S/N
MMDS Transceiver*	California Amplifier	520031-2	002

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4437B	US39260147
Power Supply	Cal Amp	71441	N/A

Test Conditions / Notes:

EUT is a MMDS transceiver with QPSK modulation of 1.2MSps with a bandwidth of 1.6MHz. EUT is set to transmit on the indicated channel. Antenna polarity is horizontal. Frequency Range Tested: 2500-2542MHz.

Measu	rement Data:	R	eading li	sted by m	argin.		Тє	est Distanc	e: 3 Meters	i	
				Horn		Cable					
#	Freq	Rdng	Cable	Norma	dBm t		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	2501.695M	-69.0		+28.8		+5.3	+10.0	146.9	170.2	-23.3	Horiz
			+2.8	+62.0	+107.0				dBm per H	Z	
									converted t	to	
									dBuV/1.6N	ИHz	
2	2520.765M	-70.6		+28.8		+5.3	+10.0	145.3	170.2	-24.9	Horiz
			+2.8	+62.0	+107.0				dBm per H		
									converted t		
									dBuV/1.6N	ИHz	
3	2540.115M	-70.9		+28.8		+5.3	+10.0	145.1	170.2	-25.1	Horiz
			+2.9	+62.0	+107.0				dBm per H		
									converted t		
									dBuV/1.6N		
4	2501.440M	89.8		+28.8		+5.3	+10.0	136.7	170.2	-33.5	Horiz
			+2.8	+0.0	+0.0				Flat top		
									measureme		
5	2520.865M	89.2		+28.8		+5.3	+10.0	136.1	170.2	-34.1	Horiz
			+2.8	+0.0	+0.0				Flat top		
									measureme	ent.	
6	2540.250M	88.3		+28.8		+5.3	+10.0	135.3	170.2	-34.9	Horiz
			+2.9	+0.0	+0.0				Flat top		
									measureme	ent.	

Page 23 of 41 Report No.: FC01-068A

7 2502.005M	-92.6		+28.8		+5.3	+10.0	123.3	170.2	-46.9	Vert
		+2.8	+62.0 +	107.0				dBm per H	Z	
								converted to	0	
								dBuV/1.6M	ſНz	
8 2520.655M	-94.5		+28.8		+5.3	+10.0	121.4	170.2	-48.8	Vert
		+2.8	+62.0 +	107.0				dBm per H	Z	
								converted to	0	
								dBuV/1.6M	ſНz	
9 2540.425M	-97.4		+28.8		+5.3	+10.0	118.6	170.2	-51.6	Vert
		+2.9	+62.0 +	107.0				dBm per H	Z	
								converted to	0	
								dBuV/1.6M	ſНz	

Page 24 of 41 Report No.: FC01-068A

Customer: California Amplifier Specification: 21.908 / 2.1053

Work Order #: 77604 Date: 09/20/2001
Test Type: Maximized Emissions Time: 08:33:52
Equipment: MMDS Transceiver Sequence#: 6

Equipment: MMDS Transceiver Sequence#: 6
Manufacturer: California Amplifier Tested By: Randal Clark

Model: 520031-2 S/N: 002

Equipment Under Test (* = EUT):

Equipment Chaci Test	(= EC1).			
Function	Manufacturer	Model #	S/N	
MMDS Transceiver*	California Amplifier	520031-2	002	

Support Devices:

Function	Manufacturer	Model #	S/N	
Signal Generator	HP	E4437B	US39260147	
Power Supply	Cal Amp	71441	N/A	

Test Conditions / Notes:

EUT is a MMDS transceiver with QPSK modulation of 1.2MSps with a bandwidth of 1.6MHz. EUT is set to transmit on the low channel. Antenna polarity is horizontal. Frequency Range Tested: 30 MHz - 26GHz. Harmonics of the fundamental are below the noise floor shown.

Measu	rement Data:	R	eading lis	sted by m	argin.		Тє	est Distanc	e: 3 Meters	i	
			Amp	Horn	Cable	Cable					
#	Freq	Rdng	Cable	Filte	Filte		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	2277.987M	39.6	-34.7	+27.8	+0.3	+5.0	+10.0	70.2	75.3	-5.1	Vert
			+2.5	+0.0	+19.7						
2	4556.010M	46.8	-32.3	+32.3	+0.9	+7.0	+10.0	68.1	75.3	-7.2	Horiz
			+2.9	+0.5	+0.0						
3	7504.520M	30.9	-33.2	+35.3	+0.9	+8.9	+10.0	62.3	75.3	-13.0	Horiz
	Ambient		+4.1	+5.4	+0.0				3rd Harmo	nic	
									(Noise Flo	or)	
4	6833.970M	36.2	-33.3	+34.9	+1.9	+8.4	+10.0	61.0	75.3	-14.3	Horiz
			+3.2	-0.3	+0.0						
5	10006.060	29.4	-34.5	+36.8	+0.8	+8.3	+10.0	59.0	75.3	-16.3	Horiz
	M										
	Ambient		+4.6	+3.6	+0.0				4th Harmo	nic	
									(Noise Flo	or)	
6	4555.986M	36.5	-32.3	+32.3	+0.9	+7.0	+10.0	57.8	75.3	-17.5	Vert
			+2.9	+0.5	+0.0						
7	5003.120M	25.8	-33.0	+33.2	+1.0	+7.3	+10.0	48.9	75.3	-26.4	Horiz
	Ambient		+3.7	+0.9	+0.0				2nd Harmo	onic	
									(Noise Flo	or)	

Page 25 of 41 Report No.: FC01-068A

Customer: California Amplifier Specification: 21.908 / 2.1053

Work Order #: 77604 Date: 09/20/2001
Test Type: Maximized Emissions Time: 08:32:30
Equipment: MMDS Transceiver Sequence#: 7

Manufacturer: California Amplifier Sequence#: 7

Manufacturer: Tested By: Randal Clark

Model: 520031-2

S/N: 32003

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
MMDS Transceiver*	California Amplifier	520031-2	002	

Support Devices:

Function	Manufacturer	Model #	S/N	
Signal Generator	HP	E4437B	US39260147	
Power Supply	Cal Amp	71441	N/A	

Test Conditions / Notes:

EUT is a MMDS transceiver with QPSK modulation of 1.2MSps with a bandwidth of 1.6MHz. EUT is set to transmit on the middle channel. Antenna polarity is horizontal. Frequency Range Tested: 30 MHz - 26GHz. Harmonics of the fundamental are below the noise floor shown.

Meas	urement Data:	R	eading lis	sted by m	argin.		Те	est Distanc	e: 3 Meters	3	
			Amp	Horn	Cable	Cable					
#	Freq	Rdng	Cable	Filte	Filte		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	2277.988M	39.5	-34.7	+27.8	+0.3	+5.0	+10.0	70.1	75.3	-5.2	Horiz
			+2.5	+0.0	+19.7						
2	2 4555.970M	47.1	-32.3	+32.3	+0.9	+7.0	+10.0	68.4	75.3	-6.9	Horiz
			+2.9	+0.5	+0.0						
3	6834.000M	37.4	-33.3	+34.9	+1.9	+8.4	+10.0	62.2	75.3	-13.1	Horiz
			+3.2	-0.3	+0.0						
4	10084.070	30.8	-34.2	+37.0	+0.9	+8.8	+10.0	61.2	75.3	-14.1	Horiz
	M										
	Ambient		+4.6	+3.3	+0.0				4th Harmo	nic	
									(Noise Flo	or)	
5	7563.000M	27.6	-33.3	+35.3	+1.0	+8.7	+10.0	58.6	75.3	-16.7	Horiz
	Ambient		+4.1	+5.2	+0.0				3rd Harmo	nic	
									(Noise Flo	or)	
6	4555.992M	36.3	-32.3	+32.3	+0.9	+7.0	+10.0	57.6	75.3	-17.7	Vert
			+2.9	+0.5	+0.0						
7	5042.000M	25.9	-33.1	+33.4	+1.0	+7.3	+10.0	49.4	75.3	-25.9	Horiz
	Ambient		+3.7	+1.2	+0.0				2nd Harmo	onic	
									(Noise Flo	or)	

Page 26 of 41 Report No.: FC01-068A

Customer: California Amplifier Specification: 21.908 / 2.1053

Work Order #: 77604 Date: 09/20/2001
Test Type: Maximized Emissions Time: 08:31:20
Equipment: MMDS Transceiver Sequence#: 8

Manufacturer: California Amplifier Tested By: Randal Clark

Model: 520031-2 S/N: 002

Equipment Under Test (* = EUT):

() ·			
Function	Manufacturer	Model #	S/N	
MMDS Transceiver*	California Amplifier	520031-2	002	

Support Devices:

Function	Manufacturer	Model #	S/N	
Signal Generator	HP	E4437B	US39260147	
Power Supply	Cal Amp	71441	N/A	

Test Conditions / Notes:

EUT is a MMDS transceiver with QPSK modulation of 1.2MSps with a bandwidth of 1.6MHz. EUT is set to transmit on the high channel. Antenna polarity is horizontal. Frequency Range Tested: 30 MHz - 26GHz. Harmonics of the fundamental are below the noise floor shown.

urement Data:	R	eading lis	sted by m	argin.	Test Distance: 3 Meters					
		Amp	Horn	Cable	Cable					
Freq	Rdng	Cable	Filte	Filte		Dist	Corr	Spec	Margin	Polar
MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
2277.998M	39.7	-34.7	+27.8	+0.3	+5.0	+10.0	70.3	75.3	-5.0	Horiz
		+2.5	+0.0	+19.7						
4555.968M	46.3	-32.3	+32.3	+0.9	+7.0	+10.0	67.6	75.3	-7.7	Horiz
		+2.9	+0.5	+0.0						
10160.720	30.3	-34.0	+37.1	+0.9	+9.2	+10.0	61.3	75.3	-14.0	Horiz
M										
Ambient		+4.7	+3.1	+0.0				4th Harmo	nic	
								(Noise Flo	or)	
7620.480M	27.5	-33.3	+35.2	+1.1	+8.5	+10.0	58.0	75.3	-17.3	Horiz
Ambient		+4.0	+5.0	+0.0				3rd Harmo	nic	
								(Noise Flo	or)	
4555.952M	35.8	-32.3	+32.3	+0.9	+7.0	+10.0	57.1	75.3	-18.2	Vert
		+2.9	+0.5	+0.0						
5080.320M	24.8	-33.1	+33.6	+0.9	+7.3	+10.0	48.5	75.3	-26.8	Horiz
Ambient		+3.6	+1.4	+0.0				2nd Harmo	onic	
								(Noise Flo	or)	
	Freq MHz 2277.998M 4555.968M 10160.720 M Ambient 7620.480M Ambient 4555.952M	Freq Mdng dBμV 2277.998M 39.7 4555.968M 46.3 10160.720 30.3 M Ambient 7620.480M 27.5 Ambient 4555.952M 35.8 5080.320M 24.8	Freq MHz Rdng dBμV dB Cable dB 2277.998M 39.7 -34.7 +2.5 4555.968M 46.3 -32.3 +2.9 10160.720 30.3 -34.0 M +4.7 Ambient +4.7 7620.480M 27.5 -33.3 +4.0 m +4.0 4555.952M 35.8 -32.3 +2.9 m +2.9 5080.320M 24.8 -33.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Freq MHz Rdng dBμV Amp Cable dB dB Horn Gable Filte Filte GBH Cable dB dB 2277.998M 39.7 -34.7 +27.8 +0.3 4555.968M 46.3 -32.3 +32.3 +0.9 +2.9 +0.5 +0.0 M Ambient +4.7 +3.1 +0.9 7620.480M 27.5 -33.3 +35.2 +1.1 Ambient +4.0 +5.0 +0.0 4555.952M 35.8 -32.3 +32.3 +0.9 5080.320M 24.8 -33.1 +33.6 +0.9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Freq MHz Rdng dBμV Cable dB dB Filte dB dB Cable dB Corr Spec Spec dBμV/m Spec dBμV/m	Freq MHz Rdng dBμV Cable dB dB Filte dB dB Cable dB Cable dB Cable dB Dist dB Corr dBμV/m dBμV/m dBμV/m dB Margin dB μV/m dB 2277.998M 39.7 -34.7 +27.8 +0.3 +5.0 +10.0 70.3 75.3 -5.0 4555.968M 46.3 -32.3 +32.3 +0.9 +7.0 +10.0 67.6 75.3 -7.7 10160.720 30.3 -34.0 +37.1 +0.9 +9.2 +10.0 61.3 75.3 -14.0 M Ambient +4.7 +3.1 +0.9 +9.2 +10.0 61.3 75.3 -14.0 Ambient +4.7 +3.1 +0.9 +9.2 +10.0 58.0 75.3 -17.3 Ambient +4.7 +3.1 +0.0 +8.5 +10.0 58.0 75.3 -17.3 4555.952M 35.8 -32.3 +32.3 +0.9 +7.0 +10.0 57.1 75.3 -18.2 5080.320M 24.8 </td

Page 27 of 41 Report No.: FC01-068A

Customer: California Amplifier Specification: FCC 21.904(b)

Work Order #: 77604 Date: 09/20/2001
Test Type: Maximized Emissions Time: 09:12:02
Equipment: MMDS Transceiver Sequence#: 9

Manufacturer: California Amplifier Tested By: Randal Clark

Model: 520031-2 S/N: 002

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
MMDS Transceiver*	California Amplifier	520031-2	002	

Support Devices:

Function	Manufacturer	Model #	S/N	
Signal Generator	HP	E4437B	US39260147	
Power Supply	Cal Amp	71441	N/A	

Test Conditions / Notes:

EUT is a MMDS transceiver with QPSK modulation of 1.2MSps with a bandwidth of 1.6MHz. EUT is set to transmit on the indicated channel. Antenna polarity is vertical. Frequency Range Tested: 2500-2542MHz.

Measi	ırement Data:	R	eading li	sted by m	argin.	Test Distance: 3 Meters					
				Horn		Cable					
#	Freq	Rdng	Cable	Norma	dBm t		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	2501.875M	-71.0		+28.8		+5.3	+10.0	144.9	170.2	-25.3	Vert
			+2.8	+62.0	+107.0				dBm per H	Z	
									converted t	to	
									dBuV/1.6N	ИHz	
2	2540.705M	-71.8		+28.8		+5.3	+10.0	144.2	170.2	-26.0	Vert
			+2.9	+62.0	+107.0				dBm per H	Z	
									converted t	to	
									dBuV/1.6N	ЛHz	
3	2520.845M	-71.9		+28.8		+5.3	+10.0	144.0	170.2	-26.2	Vert
			+2.8	+62.0	+107.0				dBm per H	Z	
									converted t		
									dBuV/1.6N	ИHz	
4	2501.820M	87.1		+28.8		+5.3	+10.0	134.0	170.2	-36.2	Vert
			+2.8	+0.0	+0.0				Flat top		
									measureme	ent.	
5	2520.620M	85.3		+28.8		+5.3	+10.0	132.2	170.2	-38.0	Vert
			+2.8	+0.0	+0.0				Flat top		
									measureme	ent.	
6	2540.540M	85.0		+28.8		+5.3	+10.0	132.0	170.2	-38.2	Vert
			+2.9	+0.0	+0.0				Flat top		
									measureme	ent.	

Page 28 of 41 Report No.: FC01-068A

Customer: California Amplifier Specification: 21.908 / 2.1053

Work Order #: 77604 Date: 09/20/2001
Test Type: Maximized Emissions Time: 09:47:28
Equipment: MMDS Transceiver Sequence#: 10

Manufacturer: California Amplifier Tested By: Randal Clark

Model: 520031-2 S/N: 002

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
MMDS Transceiver*	California Amplifier	520031-2	002	

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4437B	US39260147
Power Supply	Cal Amp	71441	N/A

Test Conditions / Notes:

EUT is a MMDS transceiver with QPSK modulation of 1.2MSps with a bandwidth of 1.6MHz. EUT is set to transmit on the low channel. Antenna polarity is vertical. Frequency Range Tested: 30 MHz - 26GHz. Harmonics of the fundamental are below the noise floor shown.

Meas	urement Data:	R	eading lis	sted by m	argin.		Те	est Distanc	e: 3 Meters	3	
			Amp	Horn	Cable	Cable					
#	Freq	Rdng	Cable	Filte	Filte		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	4555.976M	49.1	-32.3	+32.3	+0.9	+7.0	+10.0	70.4	75.3	-4.9	Vert
			+2.9	+0.5	+0.0						
2	2 2277.990M	37.4	-34.7	+27.8	+0.3	+5.0	+10.0	68.0	75.3	-7.3	Vert
			+2.5	+0.0	+19.7						
3	6833.977M	34.2	-33.3	+34.9	+1.9	+8.4	+10.0	59.0	75.3	-16.3	Vert
			+3.2	-0.3	+0.0						
4	4555.983M	35.7	-32.3	+32.3	+0.9	+7.0	+10.0	57.0	75.3	-18.3	Horiz
			+2.9	+0.5	+0.0						
5	10006.160	22.3	-34.5	+36.8	+0.8	+8.3	+10.0	51.9	75.3	-23.4	Vert
	M										
			+4.6	+3.6	+0.0				4th Harmo	nic	
									(Noise Flo	or)	
6	7504.620M	17.6	-33.2	+35.3	+0.9	+8.9	+10.0	49.0	75.3	-26.3	Vert
			+4.1	+5.4	+0.0				3rd Harmo	nic	
									(Noise Flo	or)	
7	5003.080M	21.6	-33.0	+33.2	+1.0	+7.3	+10.0	44.7	75.3	-30.6	Vert
			+3.7	+0.9	+0.0				2nd Harmo	onic	
									(Noise Flo	or)	

Page 29 of 41 Report No.: FC01-068A

Customer: California Amplifier Specification: 21.908 / 2.1053

Work Order #: 77604 Date: 09/20/2001
Test Type: Maximized Emissions Time: 09:48:37
Equipment: MMDS Transceiver Sequence#: 11

Manufacturer: California Amplifier Tested By: Randal Clark

Model: 520031-2 S/N: 002

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
MMDS Transceiver*	California Amplifier	520031-2	002	

Support Devices:

Function	Manufacturer	Model #	S/N	
Signal Generator	HP	E4437B	US39260147	
Power Supply	Cal Amp	71441	N/A	

Test Conditions / Notes:

EUT is a MMDS transceiver with QPSK modulation of 1.2MSps with a bandwidth of 1.6MHz. EUT is set to transmit on the middle channel. Antenna polarity is vertical. Frequency Range Tested: 30 MHz - 26GHz. Harmonics of the fundamental are below the noise floor shown.

Meast	ırement Data:	R	eading lis	sted by m	argin.	Test Distance: 3 Meters					
			Amp	Horn	Cable	Cable					
#	Freq	Rdng	Cable		Filte		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	4555.971M	48.8	-32.3	+32.3	+0.9	+7.0	+10.0	69.6	75.3	-5.7	Vert
			+2.9		+0.0						
2	2278.008M	37.1	-34.7	+27.8	+0.3	+5.0	+10.0	67.7	75.3	-7.6	Vert
			+2.5		+19.7						
3	6833.998M	32.3	-33.3	+34.9	+1.9	+8.4	+10.0	57.4	75.3	-17.9	Vert
			+3.2		+0.0						
4	4555.947M	34.5	-32.3	+32.3	+0.9	+7.0	+10.0	55.3	75.3	-20.0	Horiz
			+2.9		+0.0						
5	10084.000	20.2	-34.2	+37.0	+0.9	+8.8	+10.0	47.3	75.3	-28.0	Vert
	M										
			+4.6		+0.0				4th Harmo	nic	
									(Noise Flo	or)	
6	7563.000M	17.7	-33.3	+35.3	+1.0	+8.7	+10.0	43.5	75.3	-31.8	Vert
			+4.1		+0.0				3rd Harmo	nic	
									(Noise Flo	or)	
7	5042.000M	20.5	-33.1	+33.4	+1.0	+7.3	+10.0	42.8	75.3	-32.5	Vert
			+3.7		+0.0				2nd Harmo	onic	
									(Noise Flo	or)	

Page 30 of 41 Report No.: FC01-068A

Customer: California Amplifier Specification: 21.908 / 2.1053

Work Order #: 77604 Date: 09/20/2001
Test Type: Maximized Emissions Time: 09:51:12
Equipment: MMDS Transceiver Sequence#: 12

Manufacturer: California Amplifier Tested By: Randal Clark

Model: 520031-2 S/N: 002

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
MMDS Transceiver*	California Amplifier	520031-2	002	

Support Devices:

Function	Manufacturer	Model #	S/N	
Signal Generator	HP	E4437B	US39260147	
Power Supply	Cal Amp	71441	N/A	

Test Conditions / Notes:

EUT is a MMDS transceiver with QPSK modulation of 1.2MSps with a bandwidth of 1.6MHz. EUT is set to transmit on the high channel. Antenna polarity is vertical. Frequency Range Tested: 30 MHz - 26GHz. Harmonics of the fundamental are below the noise floor shown.

Measi	ırement Data:	R	eading lis	sted by m	argin.	Test Distance: 3 Meters					
			Amp	Horn	Cable	Cable					
#	Freq	Rdng	Cable	Filte	Filte		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	4555.975M	49.8	-32.3	+32.3	+0.9	+7.0	+10.0	71.1	75.3	-4.2	Vert
			+2.9	+0.5	+0.0						
2	2277.988M	37.6	-34.7	+27.8	+0.3	+5.0	+10.0	68.2	75.3	-7.1	Vert
			+2.5	+0.0	+19.7						
3	6833.965M	31.6	-33.3	+34.9	+1.9	+8.4	+10.0	56.4	75.3	-18.9	Vert
			+3.2	-0.3	+0.0						
4	4555.981M	34.4	-32.3	+32.3	+0.9	+7.0	+10.0	55.7	75.3	-19.6	Horiz
			+2.9	+0.5	+0.0						
5	10162.000	21.9	-34.0	+37.1	+0.9	+9.3	+10.0	53.0	75.3	-22.3	Vert
	M										
			+4.7	+3.1	+0.0				4th Harmo	nic	
									(Noise Flo	or)	
6	7621.500M	21.4	-33.3	+35.2	+1.1	+8.5	+10.0	51.9	75.3	-23.4	Vert
			+4.0	+5.0	+0.0				3rd Harmo	nic	
									(Noise Flo	or)	
7	5081.000M	23.0	-33.1	+33.6	+0.9	+7.3	+10.0	46.7	75.3	-28.6	Vert
			+3.6	+1.4	+0.0				2nd Harmo	onic	
									(Noise Flo	or)	

Page 31 of 41 Report No.: FC01-068A

VIDEO BANDWIDTH AND RESOLUTION BANDWIDTH SETTINGS:

BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
30 MHz	1000 MHz	120 kHz
1000 MHz	26 GHz	1 MHz

Equipment	Manufacturer	Model #	Serial #	Asset #	Cal Date	Cal Due
18-26GHz Horn	HP	84125-80008	942126-003	01413	7/9/01	7/9/02
Antenna						
2.4GHz High Pass	K&L Microwave,	91H31-3000	00001	01440	10/03/00	10/3/01
Filter	INC					
2.4GHz Low Pass	K&L Microwave,	10L121-	1	01439	10/03/00	10/3/01
Filter	INC.	2200/T2400-0/0				
3/10 meter Cable	Andrews	Hardline	N/A	N/A	02/27/01	2/27/02
Antenna, Bicon	A&H	SAS-200/542	156	00225	12/8/00	12/8/01
Antenna, Horn	EMCO	3115	4085	00656	02/28/01	2/28/02
Antenna, Log	A&H	SAS-200/510	154	01330	05/07/01	5/7/02
Cable #2 (2')	Andrew	FSJ1-50A	N/A	N/A	4/16/01	4/16/02
Cable #4 (50')	Andrew	FSJ1-50A	N/A	N/A	4/16/01	4/16/02
Cable #7 (25')	Andrew	FSJ1-50A	N/A	N/A	4/16/01	4/16/02
Preamp	HP	8447D	1937A02604	00099	03/29/01	3/29/02
Preamp	HP	8449B	3008A00301	02010	10/13/00	10/13/01
QP Adapter	HP	85650A	2811A01267	00478	11/03/00	11/3/01
S/A Display	HP	8566B	2403A08241	00489	11/3/00	11/3/01
Spectrum Analyzer	HP	8566B	2209A01404	00490	11/3/00	11/3/01
Spectrum Analyzer	HP	8564E	3623A00539	01406	12/12/00	12/12/01

Page 32 of 41 Report No.: FC01-068A

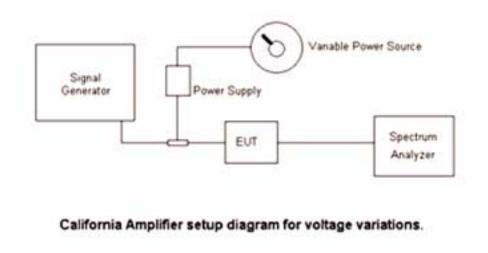


Front View, Horizontal Position

Front View, Vertical Position

Back View, Horizontal Position

Back View, Vertical Position


2.1033(c)(14)/2.1055/21.101- FREQUENCY STABILITY

AC Mains Variations Temperature 23°C

Voltage	Frequency (MHz)	Delta
102	2331.2884	5.7
120	2331.2885	5.6
138	2331.2884	5.7

Voltage Variation						
Equipment	Manufacturer	Model #	Serial #	Asset #	Cal Date	Cal Due
Digital Multimeter	Radio Shack	22-183	NA	1241	8/30/01	8/30/02
Power Stat	Superior Electric	126	N/A	2037	3/29/01	3/29/02
QP Adapter	HP	85650A	2811A01267	478	11/3/00	11/3/01
S/A Display	HP	8566B	2403A08241	489	11/3/00	11/3/01
Spectrum Analyzer	HP	8566B	2209A01404	490	11/3/00	11/3/01

Notes: 1) Frequency stability test was performed on the TX reference clock. A spectrum analyzer was used in lieu of a frequency counter because the fundamental has a much higher output. **2)** Temperature testing has been performed by Cal Amp and will be provided as a separate document.

Page 34 of 41 Report No.: FC01-068A

<u>15.207 – AC CONDUCTED EMISSIONS</u>

Test Location: CKC Laboratories, Inc. • 5473A Clouds Rest • Mariposa, CA 95338 • 800-500-4362

Customer: California Amplifier
Specification: FCC 15.107 Class B

 Work Order #:
 77604
 Date:
 09/20/2001

 Test Type:
 Conducted Emissions
 Time:
 12:12:33 PM

Equipment: MMDS Transceiver Sequence#: 13

Manufacturer: California Amplifier Tested By: Randal Clark

Model: 520031-2 S/N: 002

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
MMDS Transceiver*	California Amplifier	520031-2	002	

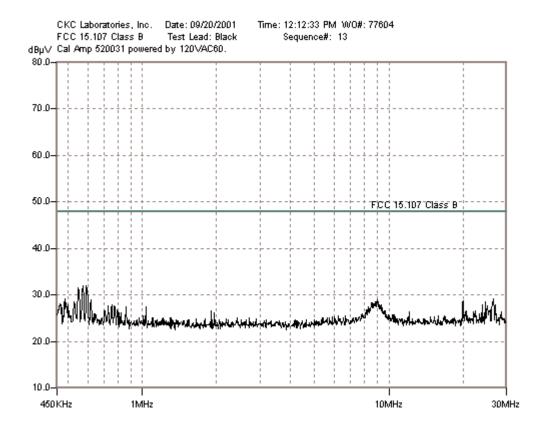
Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	HP	E4437B	US39260147
Power Supply	Cal Amp	71441	N/A

Test Conditions / Notes:

EUT is a MMDS transceiver with QPSK modulation of 1.2MSps with a bandwidth of 1.6MHz. EUT is turned on and all clocks are active. EUT is not transmitting. Antenna is terminated in a 500hm load.

Measur	rement Data:	R	eading li	sted by ma	argin.	Test Lead: Black					
			Cable	LISN							
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	575.370k	31.5	+0.1	+0.4			+0.0	32.0	48.0	-16.0	Black
2	593.758k	31.4	+0.1	+0.4			+0.0	31.9	48.0	-16.1	Black
3	550.296k	31.1	+0.1	+0.4			+0.0	31.6	48.0	-16.4	Black
4	26.644M	28.3	+0.3	+0.6			+0.0	29.2	48.0	-18.8	Black
5	486.775k	28.7	+0.1	+0.4			+0.0	29.2	48.0	-18.8	Black
6	9.038M	23.8	+0.2	+5.0			+0.0	29.0	48.0	-19.0	Black
7	618.832k	28.5	+0.1	+0.4			+0.0	29.0	48.0	-19.0	Black
8	20.011M	27.9	+0.3	+0.6			+0.0	28.8	48.0	-19.2	Black
9	24.576M	27.6	+0.4	+0.6	_		+0.0	28.6	48.0	-19.4	Black
10	481.760k	28.1	+0.1	+0.4			+0.0	28.6	48.0	-19.4	Black


Page 35 of 41 Report No.: FC01-068A

11	8.833M	23.7	+0.2	+4.6	+0.0	28.5	48.0	-19.5	Black
12	530.237k	28.0	+0.1	+0.4	+0.0	28.5	48.0	-19.5	Black
13	8.526M	24.4	+0.2	+3.7	+0.0	28.3	48.0	-19.7	Black
14	8.710M	23.7	+0.2	+4.3	+0.0	28.2	48.0	-19.8	Black
15	461.701k	27.7	+0.1	+0.4	+0.0	28.2	48.0	-19.8	Black

Page 36 of 41 Report No.: FC01-068A

Customer: California Amplifier Specification: FCC 15.107 Class B

 Work Order #:
 77604
 Date:
 09/20/2001

 Test Type:
 Conducted Emissions
 Time:
 12:16:01 PM

Equipment: MMDS Transceiver Sequence#: 14

Manufacturer: California Amplifier Tested By: Randal Clark

Model: 520031-2 S/N: 002

Equipment Under Test (* = EUT):

Equipment entire Test (- Ee 1).							
Function	Manufacturer	Model #	S/N				
MMDS Transceiver*	California Amplifier	520031-2	002				

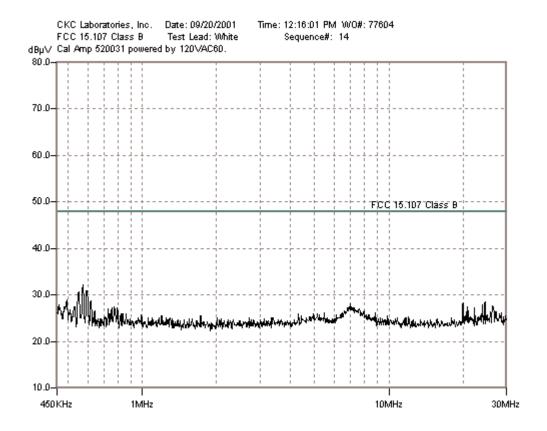
Support Devices:

Function	Manufacturer	Model #	S/N	
Signal Generator	HP	E4437B	US39260147	
Power Supply	Cal Amp	71441	N/A	

Test Conditions / Notes:

EUT is a MMDS transceiver with QPSK modulation of 1.2MSps with a bandwidth of 1.6MHz. EUT is turned on and all clocks are active. EUT is not transmitting. Antenna is terminated in a 500hm load.

Measurement Data: Reading listed by margin.					nargin.			Test Lead	d: White		
			Cable		LISN						
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	577.042k	31.6	+0.1		+0.5		+0.0	32.2	48.0	-15.8	White
2	597.101k	30.4	+0.1		+0.5		+0.0	31.0	48.0	-17.0	White
3	553.639k	30.1	+0.1		+0.5		+0.0	30.7	48.0	-17.3	White
4	493.462k	28.2	+0.1		+0.6		+0.0	28.9	48.0	-19.1	White
5	618.832k	28.1	+0.1		+0.5		+0.0	28.7	48.0	-19.3	White
6	24.576M	27.6	+0.4		+0.6		+0.0	28.6	48.0	-19.4	White
7	20.011M	27.7	+0.3		+0.4		+0.0	28.4	48.0	-19.6	White
8	6.950M	24.1	+0.2		+3.8		+0.0	28.1	48.0	-19.9	White
9	458.358k	27.2	+0.1	_	+0.6	_	+0.0	27.9	48.0	-20.1	White
10	23.991M	26.8	+0.4		+0.6		+0.0	27.8	48.0	-20.2	White
11	26.391M	26.6	+0.3		+0.7		+0.0	27.6	48.0	-20.4	White


Page 38 of 41 Report No.: FC01-068A

12	20.908M	26.8	+0.3	+0.4	+0.0	27.5	48.0	-20.5	White
13	769.276k	26.9	+0.1	+0.5	+0.0	27.5	48.0	-20.5	White
14	530.237k	26.8	+0.1	+0.6	+0.0	27.5	48.0	-20.5	White
15	480.089k	26.8	+0.1	+0.6	+0.0	27.5	48.0	-20.5	White

Page 39 of 41 Report No.: FC01-068A

VIDEO BANDWIDTH AND RESOLUTION BANDWIDTH SETTINGS:

BEGINNING	ENDING	BANDWIDTH
FREQUENCY	FREQUENCY	SETTING
450 kHz	30 MHz	9 kHz

Equipment	Manufacturer	Model #	Serial #	Asset #	Cal Date	Cal Due
QP Adapter	HP	85650A	2811A01267	00478	11/03/00	11/3/01
S/A Display	HP	8566B	2403A08241	00489	11/3/00	11/3/01
Spectrum Analyzer	HP	8566B	2209A01404	00490	11/3/00	11/3/01
LISN	Solar	8028-50-TS-24-BNC	814493, 474	02056	5/22/01	5/22/02

AC Conducted, Font View

AC Conducted, Back View