RF Exposure Compliance Requirements IntegraTR UHF Wireless Radio Modem

FCC Rule: 1.1307, 1.1310, 2.1091 (b) (d), 2.1093 IC Rule: RSS 119 Section 9, RSS-102 Section 2.2

Description of Compliance:

The OSMAC base station is intended for use in the Irrigation Monitoring and Control. It will be professionally installed using a 2.5 dBi gain antenna in such a way that a minimum separation distance of more than 33.8 cm will be maintained between the radiating structure and any person to be classified as a mobile. Note: It is the responsibility of the user to guarantee compliance with the FCC MPE regulations when operating this device in a way other than described above.

Antenna Gain vs. Recommended Safety Distance

Antenna Gain	2.5 dBi	
Min Safety Distance (max power)	33.8 cm	

Limits for General Population/Uncontrolled Exposure:

Frequency Range	Electric Field	Magnetic Field	Power Density (mW/cm ²)	Averaging
(MHz)	Strength (V/m)	Strength (A/m)		Time (mins)
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f2)	30
30-300	27.5	0.073	0.2	30
300-1500			f (MHz)/1500 (MHz)	30
1500-100000			1.0	30

Environmental Specification: f(MHz)/(1500 mW/cm²)

 $450.0 \text{ MHz}/(1500 \text{ MHz mW/cm}^2) = 0.3 \text{ mW/cm}^2 \text{ (worst case)}$

 $S = (PG)/(4\pi R^2)$ (OET Bulletin 65)

Where:

 $S = Power Density (mW/cm^2)$

P = Power input to the antenna (mW)

G = Power Gain of the antenna in the direction of interest relative to an isotropic radiator

R = Distance to the center of radiation of the antenna (cm)

Distance Calculation for 2.5dBi antenna:

 $R = \sqrt{((PG)/(4\pi S))}$

 $10^{(2.5 \text{ dBi/10})} = 1.78$ Antenna Gain: 2.5 dBi

Power input to Antenna +20% = 33.81 dBmPower input to the Antenna: $33.81 dBm = 10^{(33.81 dBm/10)} = 2400 mW$

 $R = \sqrt{((2400 \text{mW}*1.78)/(4\pi*0.3 \text{ mW/cm}^2))} = 33.66 \text{ cm} \text{ (Minimum Distance)}$

Minimum Distance Rounded Up = 33.8cm Minimum Distance