

TEST REPORT

Test report no.: 1-7883/19-01-04-B

DAKKS
Deutsche
Akrediterungsstelle
DP-12076-01-03

BNetzA-CAB-02/21-102

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-03

Applicant

Marquardt GmbH

Schloss-Str. 16

78604 Rietheim-Weilheim / GERMANY

Phone: +49 7424 99-0 Contact: Gerd Siegel

e-mail: Gerd.Siegel@marquardt.de Phone: +49 (0) 74 24 - 99 1589

Manufacturer

Marquardt GmbH

Schloss-Str. 16

78604 Rietheim-Weilheim / GERMANY

Test standard/s

FCC - Title 47 CFR FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

Part 15 frequency devices

RSS - 210 Issue 9 Spectrum Management and Telecommunications Radio Standards Specification -

Licence-Exempt Radio Apparatus: Category I Equipment

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Car Key

Model name: LK1

FCC ID: IYZLK1

IC: 2701A-LK1

Frequency: 260 MHz to 470 MHz
Technology tested: PCB loop antenna
Antenna: Integrated antenna

Power supply: 2.5 V to 3.2 V DC by battery

Temperature range: -20°C to +70°C

Lab Manager

Radio Communications & EMC

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
	p.o.
Christoph Schneider	Sumit Kumar

Testing Manager

Radio Communications & EMC

Table of contents

1	Table	of contents2
2	Gene	ral information3
	2.1 2.2 2.3	Notes and disclaimer
3	Test	standard/s and references4
4	Test	environment5
5	Test i	item5
	5.1 5.2	General description
6	Desc	ription of the test setup6
	6.1 6.2 6.3	Shielded semi anechoic chamber
7	Sequ	ence of testing10
	7.1 7.2 7.3	Sequence of testing radiated spurious 9 kHz to 30 MHz
8	Meas	urement uncertainty13
9	Sumr	nary of measurement results14
	9.1	Additional comments14
10	Ме	asurement results15
	10.1 10.2 10.3 10.4 10.5	Timing of the transmitter
11	Ob	servations41
Anı	nex A	Glossary42
Anı	nex B	Document history43
Δηι	nev C	Accreditation Certificate 43

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-7883/19-01-04-A and dated 2019-02-28.

2.2 Application details

Date of receipt of order: 2019-01-21
Date of receipt of test item: 2019-02-04
Start of test: 2019-02-05
End of test: 2019-02-06

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 43

3 Test standard/s and references

Test standard	Date	Description
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 9	August 2016	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment
RSS - Gen Issue 5	April 2018	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus

Guidance	Version	Description
ANSI C63.4-2014 ANSI C63.10-2013	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz American national standard of procedures for compliance testing of unlicensed wireless devices

© CTC advanced GmbH Page 4 of 43

4 Test environment

Temperature	T _{nom} 23 °C during room temperature tests T _{max} +70 °C during high temperature tests T _{min} -20 °C during low temperature tests		
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
Power supply :		V _{nom} V _{max} V _{min}	3.0 V DC by battery 3.2 V 2.5 V

5 Test item

5.1 General description

Kind of test item	:	Car Key
Type identification :	:	LK1
HMN :	:	-/-
PMN :	:	LK1
HVIN :	:	H10
FVIN :	:	-/-
S/N serial number	:	-/-
Hardware status	:	-/-
Software status	:	-/-
Firmware status	:	-/-
Frequency band	:	260 MHz to 470 MHz Lowest Channel: 433.47 MHz Middle Channel: 433.92 MHz Highest Channel: 434.37 MHz
Type of radio transmission: Use of frequency spectrum:		modulated carrier
Type of modulation :	:	FSK
Number of channels :	: _	3
Antenna :	:	Integrated antenna
Power supply :	:	2.5 V to 3.2 V DC by battery
Temperature range	:	-20°C to +70°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-7883/19-01-01_AnnexA

1-7883/19-01-01_AnnexB 1-7883/19-01-01_AnnexD

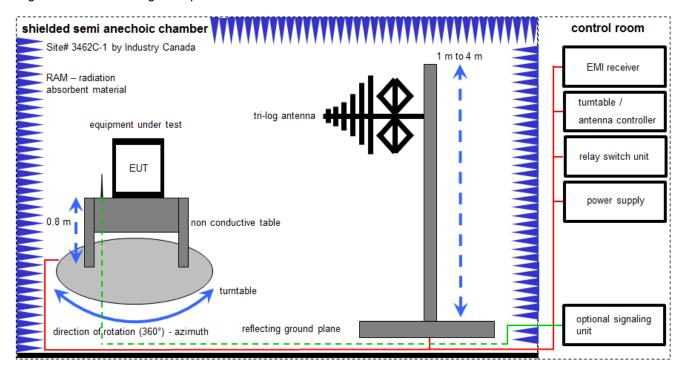
© CTC advanced GmbH Page 5 of 43

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 6 of 43

6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

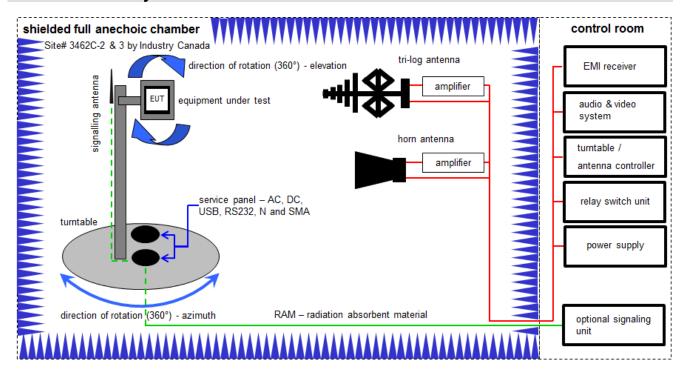
EMC32 software version: 10.30.0

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
3	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023	-/-	300000551	ne	-/-	-/-
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vIKI!	24.11.2017	23.11.2020
8	A.	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	12.12.2018	11.12.2019

© CTC advanced GmbH Page 7 of 43

6.2 Shielded fully anechoic chamber

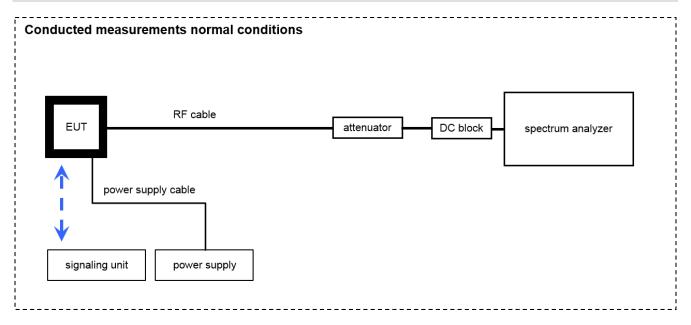
Measurement distance: tri-log antenna and horn antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 <math>\mu V/m$)


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	k	14.02.2017	13.02.2019
2	A,B	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A,B.	Highpass Filter	WHKX2.9/18G- 12SS	Wainwright	1	300003492	ev	-/-	-/-
4	A,B.	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	14.09.2018	13.12.2019
5	A,B.	Broadband Amplifier 5-13 GHz	CBLU5135235	CERNEX	22010	300004491	ev	-/-	-/-
6	A,B.	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
7	A,B	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO	-/-	300004682	ne	-/-	-/-
8	A,B	PC	ExOne	F+W	-/-	300004703	ne	-/-	-/-
9	А	TRILOG Broadband Test-Antenna	VULB9163	Schwarzbeck Mess Elektronik	01029	300005379	k	07.04.2017	06.04.2020

© CTC advanced GmbH Page 8 of 43

6.3 Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Signal- and Spectrum Analyzer	FSW26	R&S	101455	300004528	k	19.12.2018	18.12.2019
2	Α	Loop Antenna	-/-	ZEG TS Steinfurt	-/-	400001208	ev	-/-	-/-
3	Ā	RF Cable BNC	RG58	Huber & Suhner	-/-	400001209	ev	-/-	-/-

© CTC advanced GmbH Page 9 of 43

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

© CTC advanced GmbH Page 10 of 43

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 11 of 43

7.3 Sequence of testing radiated spurious 1 GHz to 12.75 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 12 of 43

8 Measurement uncertainty

Measurement uncertainty						
Test case	Uncertainty					
Occupied bandwidth	± used RBW					
Field strength of the fundamental	± 3 dB					
Field strength of the harmonics and spurious	± 3 dB					
Receiver spurious emissions and cabinet radiations	± 3 dB					
Conducted limits	± 2.6 dB					

© CTC advanced GmbH Page 13 of 43

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
	CFR Part 15			
RF-Testing	RSS 210, Issue 9	See table!	2019-03-06	-/-
	RSS-Gen, Issue 5			

Test specification clause	Test case	Temperature conditions	Power source voltages	С	NC	NA	NP	Remark
§ 15.35 (c) RSS-Gen, Issue 5	Timing of the transmitter (Duty cycle correction factor)	Nominal	Nominal					
§ 15.231 (a) (1) RSS-210 Issue 9	Switch off time	Nominal	Nominal	\boxtimes				-/-
§ 15.231 (b) (3) (c) RSS-210 Issue 9	Emission bandwidth	Nominal	Nominal	\boxtimes				-/-
§ 15.231 (b) RSS-210 Issue 9	Fieldstrength of Fundamental	Nominal	Nominal	\boxtimes				-/-
§ 15.209 RSS-210 Issue 9	Fieldstrength of harmonics and spurious	Nominal	Nominal	\boxtimes				-/-
§ 15.209 RSS-Gen, Issue 5	Receiver spurious emissions (radiated)	Nominal	Nominal			\boxtimes		-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

9.1 Additional comments

Reference documents: None

Special test descriptions: None

Configuration descriptions: None

© CTC advanced GmbH Page 14 of 43

10 Measurement results

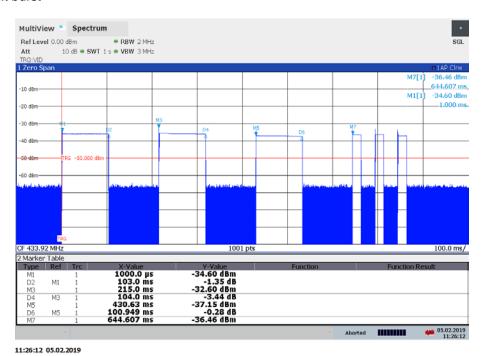
10.1 Timing of the transmitter

Measurement:

Measurement parameter				
Detector:	Peak			
Sweep time:	1 s			
Resolution bandwidth:	1 MHz			
Video bandwidth:	3 MHz			
Span:	Zero			
Trace-Mode:	Single sweep			
Test setup	See chapter 6.3 A			

Limits:

IC.


(c) Unless otherwise specified, e.g. Section 15.255(b), when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

© CTC advanced GmbH Page 15 of 43

Result:

Plot 1: Transmit burst

Maximum transmit time (Tx on) = 104 ms (Plot 1) Tx on + Tx off > 100 ms (Plot 1)

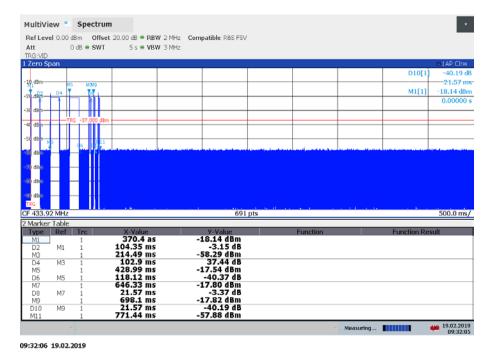
The peak-to-average correction factor is calculated with 20Log [Tx on/(Tx on + Tx off)]. Hereby the peak-to-average correction factor is 0 dB

© CTC advanced GmbH Page 16 of 43

10.2 Switch off time

Measurement:

Measurement parameter				
Detector:	Peak			
Sweep time:	5s			
Resolution bandwidth:	1 MHz			
Video bandwidth:	3 MHz			
Span:	Zero			
Trace-Mode:	Single sweep			
Test setup	See chapter 6.3 A			
Measurement uncertainty	8			


Limits:

|--|

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

Results:

Plot 1: TX on time

The EUT automatically ceases transmission within 771.44 ms after releasing the switch.

© CTC advanced GmbH Page 17 of 43

10.3 Emission bandwidth

Measurement:

Measurement of the 99 % bandwidth of the modulated signal

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	1 % of the span			
Video bandwidth:	3 x RBW			
Span:	500 kHz			
Trace-Mode:	Max. hold			

Limits:

FCC	IC
433.47 MHz: The OBW shall not be wider than 0.25 %	of the center frequency, here maximum 1.0837 MHz.
433.92 MHz: The OBW shall not be wider than 0.25 %	of the center frequency, here maximum 1.0848 MHz.
434.37 MHz: The OBW shall not be wider than 0.25 %	of the center frequency, here maximum 1.0859 MHz.

Result:

a) Modulated signal with data rate 5 Kbit/s

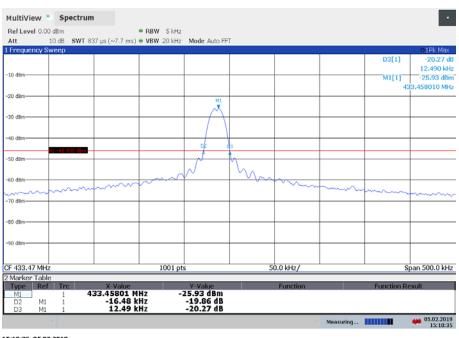
Channel / MHz	Test conditions		Signal bandwidth / kHz		
Offamile / Willia	Mode		OBW 99%	20 dB-bandwidth	
433.47	T _{nom}	V _{nom}	39.81	28.47	
433.92	T _{nom}	V _{nom}	39.62	28.97	
434.37	T _{nom}	V _{nom}	40.38	28.97	

b) Modulated signal with data rate 20 Kbit/s

Channel / MHz	Test conditions		Signal bandwidth / kHz		
Charmer / Wil 12	Mode		OBW 99%	20 dB-bandwidth	
433.47	T_{nom}	V_{nom}	158.92	159.84	
433.92	T_{nom}	V_{nom}	158.98	159.84	
434.37	T_{nom}	V _{nom}	160.56	159.84	

© CTC advanced GmbH Page 18 of 43

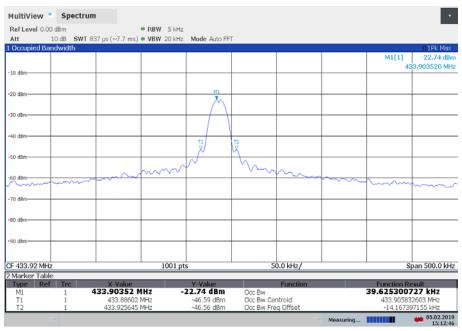
Plots:


a) Modulated signal with date rate 5 Kbit/s

Plot 1: 99 % bandwidth lowest channel

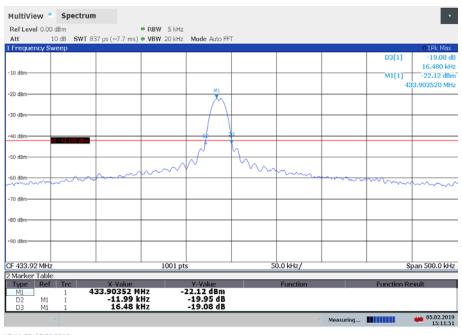
15:09:51 05.02.2019

Plot 2: 20 dB bandwidth lowest channel



15:10:36 05.02.2019

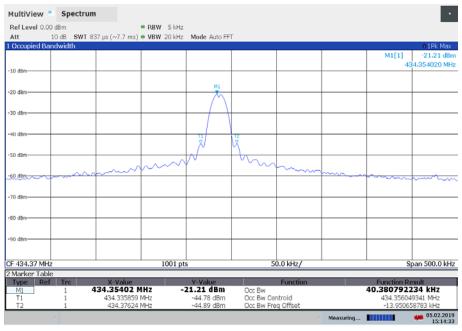
© CTC advanced GmbH Page 19 of 43



Plot 3: 99 % bandwidth middle channel

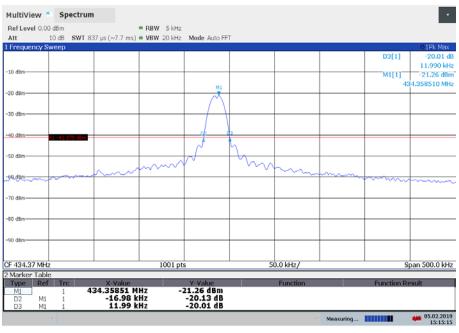
15:12:46 05.02.2019

Plot 4: 20 dB bandwidth middle channel



15:11:52 05.02.2019

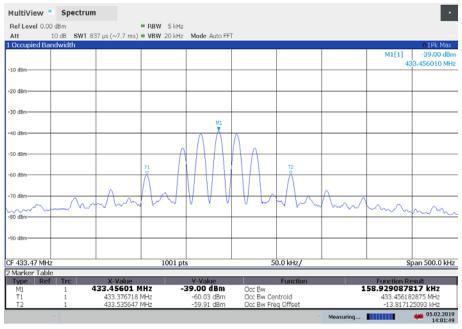
© CTC advanced GmbH Page 20 of 43



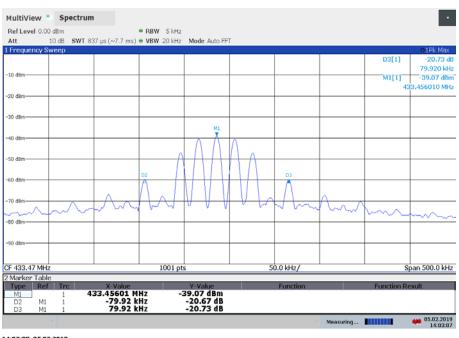
Plot 5: 99 % bandwidth highest channel

15:14:33 05.02.2019

Plot 6: 20 dB bandwidth highest channel


15:15:16 05.02.2019

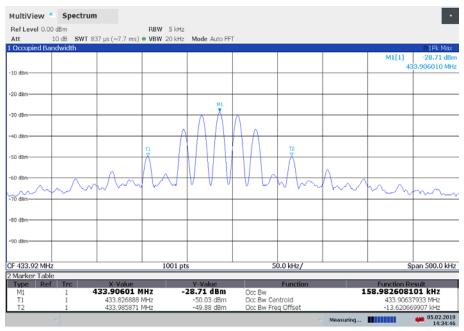
© CTC advanced GmbH Page 21 of 43


b) Modulated signal with date rate 20 Kbit/s

Plot 1: 99 % bandwidth lowest channel

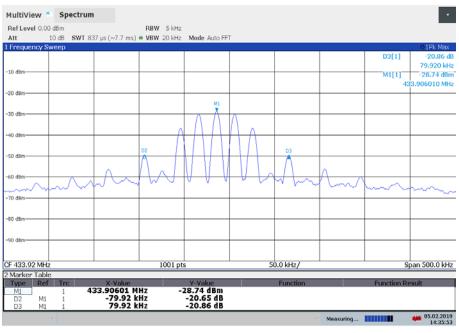
14:01:50 05.02.2019

Plot 2: 20 dB bandwidth lowest channel



14:03:08 05.02.2019

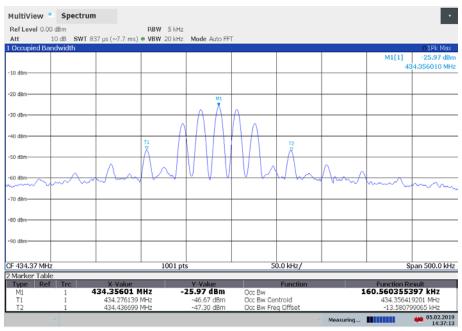
© CTC advanced GmbH Page 22 of 43



Plot 3: 99 % bandwidth middle channel

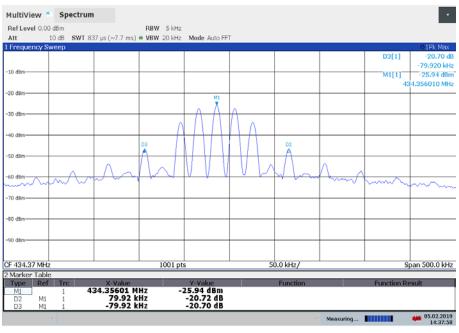
14:34:47 05.02.2019

Plot 4: 20 dB bandwidth middle channel



14:35:53 05.02.2019

© CTC advanced GmbH Page 23 of 43



Plot 5: 99 % bandwidth highest channel

14:37:13 05.02.2019

Plot 6: 20 dB bandwidth highest channel

14:37:59 05.02.2019

© CTC advanced GmbH Page 24 of 43

10.4 Field strength of the fundamental

Measurement:

Measurement parameter				
Detector:	Peak / pulse averaging / quasi peak			
Sweep time:	Auto			
Resolution bandwidth:	120 kHz			
Video bandwidth:	3 x RBW			
Span:	Zero			
Trace-Mode:	Max. hold			
Test setup	See chapter 6.1 A			
Measurement uncertainty	8			

Limits:

FCC	IC		
Field strongth of the fundamental			

Field strength of the fundamental.

In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency (MHz)	Field strength of Fundamental (µV/m)	Measurement distance (m)			
40.66 – 40.70	2,250	3			
70-130	1,250	3			
130-174	1,250 to 3,750	3			
174-260	3,750	3			
260-470	3,750 to 12,500	3			
Above 470	12,500	3			

Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

- for the band 130-174 MHz, μ V/m at 3 meters = 56.81818(F) 6136.3636;
- for the band 260-470 MHz, μ V/m at 3 meters = 41.6667(F) 7083.3333.

© CTC advanced GmbH Page 25 of 43

Result:

a) Modulated signal with data rate 5 Kbit/s

Test conditions	Maximum power (dBµ)	Limit	
Channel / MHz	Peak	Average	Average
433.47	71.71	70.67	80.8
433.92	71.29	70.25	80.8
434.37	71.19	70.17	80.8

^{*}Value recalculated from the peak value with a correction factor of 0 dB acc. Chapter 10.1

b) Modulated signal with data rate 20 Kbit/s

Test conditions	Maximum power (dBµ\	Limit	
Channel / MHz	Peak	Average	Average
433.47	71.73	70.69	80.8
433.92	70.88	69.75	80.8
434.37	71.13	70.11	80.8

^{*}Value recalculated from the peak value with a correction factor of 0 dB acc. Chapter 10.1

© CTC advanced GmbH Page 26 of 43

10.5 Field strength of the harmonics and spurious

Measurement:

Measurement parameter					
Detector:	Peak / average / quasi peak				
Sweep time:	Auto				
Resolution bandwidth:	200 Hz / 9 kHz / 120 kHz				
Video bandwidth:	3 x RBW				
Span:	See plots				
Trace-Mode:	Max. hold				
Test setup	See chapter 6.1 A & 6.2 A, B				
Measurement uncertainty	8				

Limits:

FCC		IC		
	Field strength of	he fundamental.		
In addition to the provisions of S	ection 15.205, the f	eld strength of er	nissions from intentional radiators	
operated (under this Section s	hall not exceed th	e following:	
Fundamental Frequency (MHz)	Field strength (µV/		Measurement distance (m)	
40.66 – 40.70	22	5	3	
70-130	12	5	3	
130-174	125 to	375	3	
174-260	37	5	3	
260-470	375 to	,250	3	
Above 470	1,25	0	3	

Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in Section 15.209, whichever limit permits a higher field strength.

FCC		IC			
Frequency (MHz)	Field strength (µV/m)		Measurement distance (m)		
0.009 - 0.490	2400/F	(kHz)	300		
0.490 - 1.705	24000/F(kHz)		30		
1.705 – 30	30)	30		
30 – 88	10	0	3		
88 – 216	15	0	3		
216 – 960	200		3		
above 960	50	0	3		

© CTC advanced GmbH Page 27 of 43

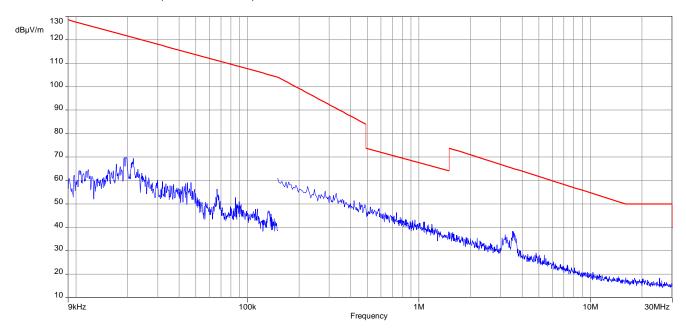
Results:

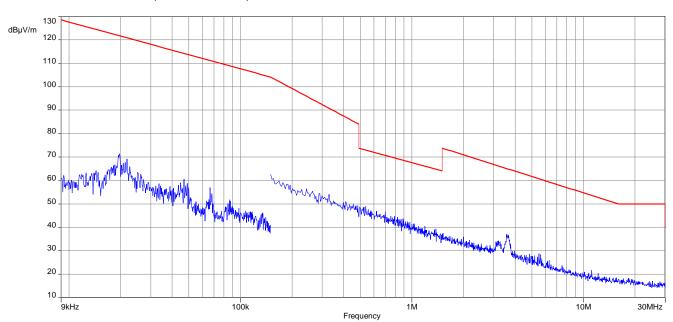
a) Modulated signal with data rate 5 Kbit/s

Fundamental Frequency	Spurious Frequency	Detector	Limit max. allowed [dBµV/m]	Amplitude of emission [dBµV/m]					
433.47 MHz			No Caurious Emissions detected						
433.92 MHz		No Spurious Emissions detected.							
434.37 MHz	2418 MHz	RMS	54.0	26.7					

b) Modulated signal with data rate 20 Kbit/s

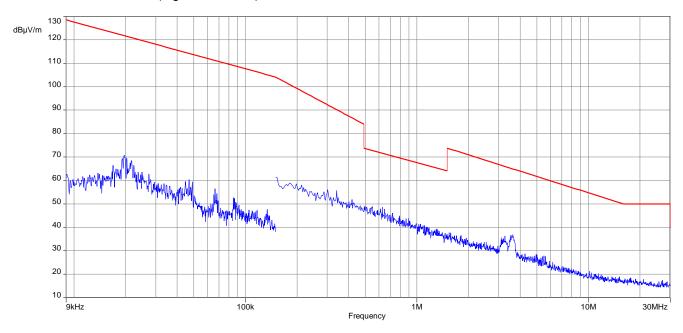
Fundamental Frequency	Spurious Frequency	Detector	Limit max. allowed [dBµV/m]	Amplitude of emission [dBµV/m]						
433.47 MHz										
433.92 MHz		No Spurious Emissions detected.								
434.37 MHz										


© CTC advanced GmbH Page 28 of 43

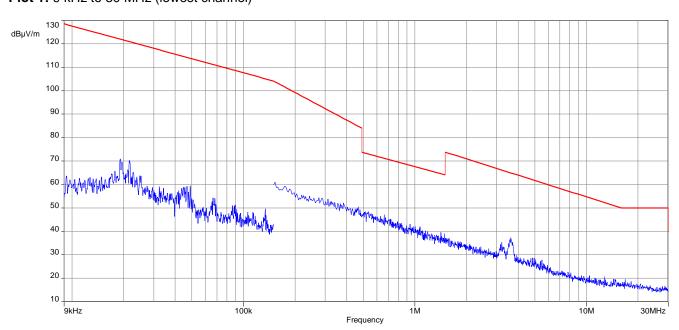

Plots:

a) Modulated Signal with date rate 5 Kbit/s

Plot 1: 9 kHz to 30 MHz (lowest channel)

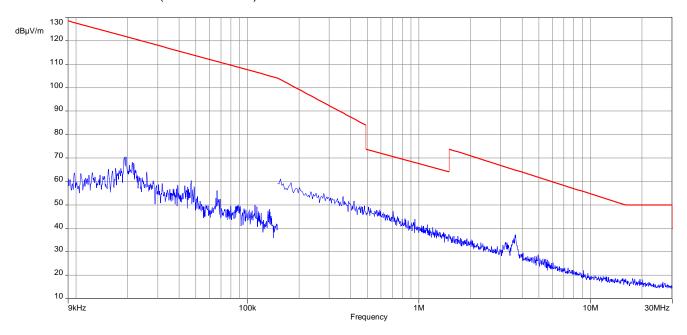

Plot 2: 9 kHz to 30 MHz (middle channel)

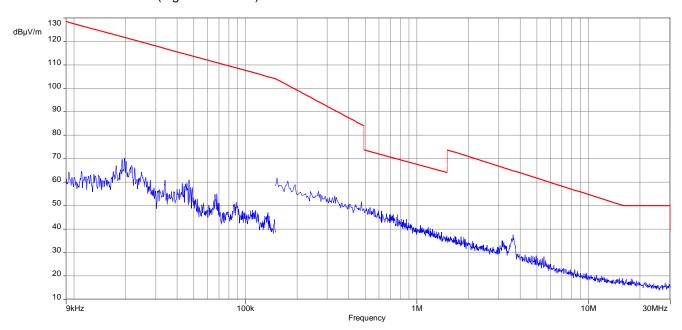
© CTC advanced GmbH Page 29 of 43



Plot 3: 9 kHz to 30 MHz (highest channel)

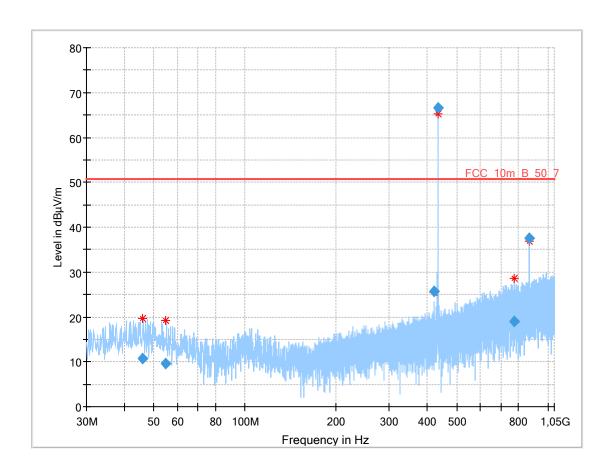
b) Modulated signal with date rate 20 Kbit/s


Plot 1: 9 kHz to 30 MHz (lowest channel)


© CTC advanced GmbH Page 30 of 43

Plot 2: 9 kHz to 30 MHz (middle channel)

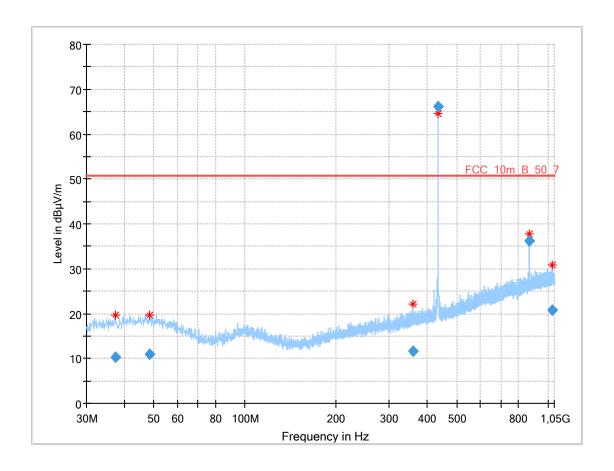
Plot 3: 9 kHz to 30 MHz (highest channel)



© CTC advanced GmbH Page 31 of 43

a) Modulated Signal with data rate 5 Kbit/s

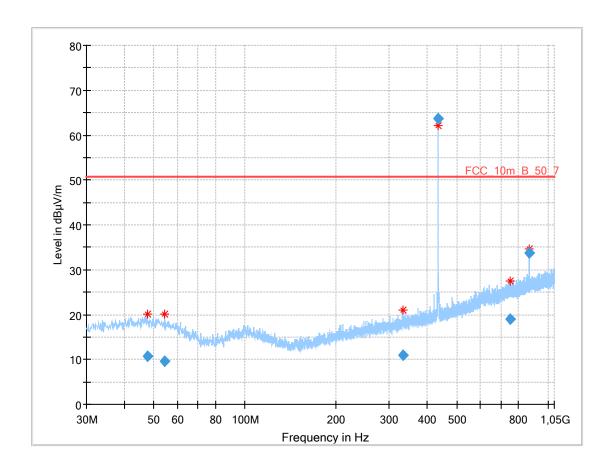
Plot 1: 30 MHz to 1000 MHz, vertical & horizontal polarisation 433.47 MHz


Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heig ht (cm)	Pol	Azimuth (deg)
46.000	10.76	50.7	39.94	1000	120	103.0	н	91.0
54.713	9.57	50.7	41.13	1000	120	273.0	Н	226.0
420.365	25.72	50.7	24.98	1000	120	200.0	Н	24.0
433.453	66.63	50.7	-15.93	1000	120	203.0	Н	23.0
775.311	18.91	50.7	31.79	1000	120	400.0	v	70.0
866.920	37.45	50.7	13.25	1000	120	100.0	Н	336.0

© CTC advanced GmbH Page 32 of 43

Plot 2: 30 MHz to 1000 MHz, vertical & horizontal polarisation 433.92 MHz

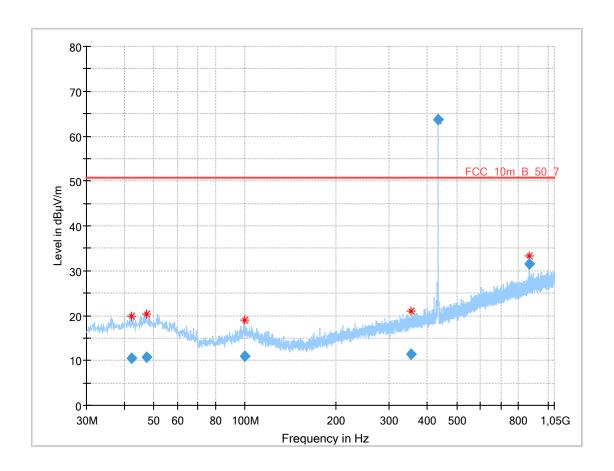

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heig ht (cm)	Pol	Azimuth (deg)
37.291	10.35	50.7	40.35	1000	120	173.0	v	263.0
48.292	10.91	50.7	39.79	1000	120	200.0	v	270.0
358.991	11.56	50.7	39.14	1000	120	200.0	Н	161.0
433.902	66.15	50.7	-15.45	1000	120	203.0	Н	25.0
867.806	36.18	50.7	14.52	1000	120	100.0	Н	115.0
1033.603	20.87	50.7	29.83	1000	120	400.0	н	279.0

© CTC advanced GmbH Page 33 of 43

Plot 3: 30 MHz to 1000 MHz, vertical & horizontal polarisation 434.37 MHz

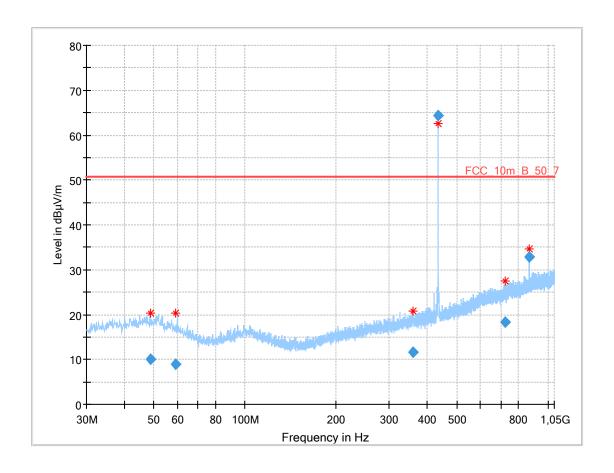
Final_Result


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heig ht (cm)	Pol	Azimuth (deg)
47.602	10.71	50.7	39.99	1000	120	203.0	v	271.0
54.527	9.58	50.7	41.12	1000	120	203.0	Н	353.0
333.134	10.90	50.7	39.80	1000	120	349.0	v	315.0
434.355	63.60	50.7	-12.90	1000	120	400.0	v	71.0
749.344	18.96	50.7	31.74	1000	120	200.0	v	25.0
868.710	33.69	50.7	17.01	1000	120	100.0	н	-19.0

© CTC advanced GmbH Page 34 of 43

b) Modulated Signal with data rate 20 Kbit/s

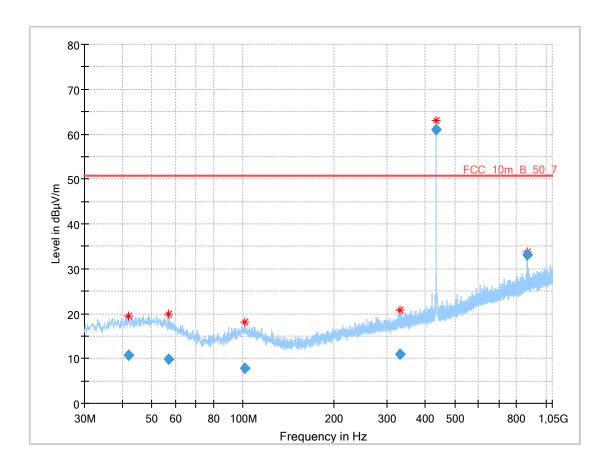
Plot 1: 30 MHz to 1000 MHz, vertical & horizontal polarisation 433.47 MHz


Final_Result

Frequency (MHz)	QuasiPeak (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heig ht (cm)	Pol	Azimuth (deg)
42.326	10.48	50.7	40.22	1000	120	349.0	v	136.0
47.526	10.73	50.7	39.97	1000	120	200.0	Н	181.0
99.552	11.04	50.7	39.66	1000	120	349.0	v	261.0
352.859	11.39	50.7	39.31	1000	120	357.0	Н	225.0
433.437	63.64	50.7	-12.94	1000	120	100.0	v	89.0
866.943	31.53	50.7	19.17	1000	120	103.0	Н	161.0

© CTC advanced GmbH Page 35 of 43

Plot 2: 30 MHz to 1000 MHz, vertical & horizontal polarisation 433.92 MHz


Final_Result

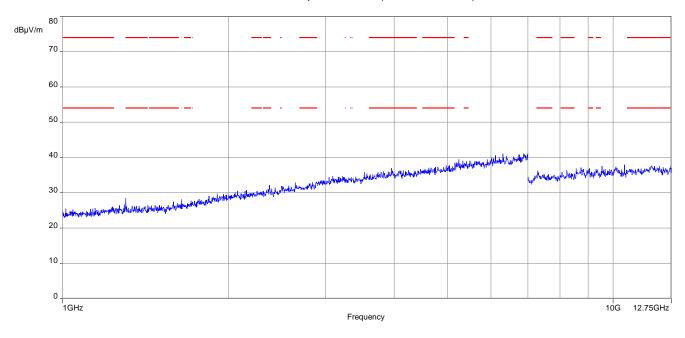
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heig ht (cm)	Pol	Azimuth (deg)
48.850	10.13	50.7	40.57	1000	120	100.0	v	352.0
59.297	8.91	50.7	41.79	1000	120	102.0	v	0.0
357.809	11.52	50.7	39.18	1000	120	271.0	v	202.0
433.887	64.43	50.7	-13.73	1000	120	400.0	v	251.0
724.697	18.38	50.7	32.32	1000	120	349.0	н	218.0
867.792	32.93	50.7	17.77	1000	120	100.0	н	2.0

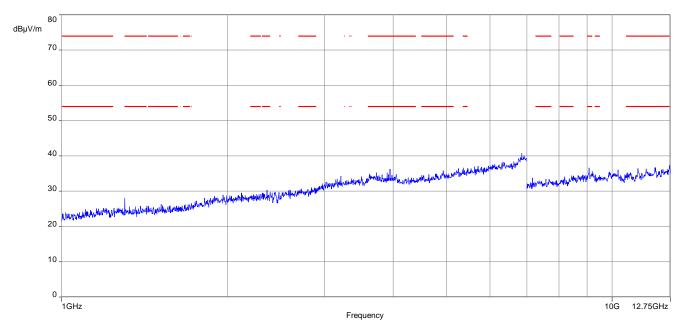
© CTC advanced GmbH Page 36 of 43

Plot 3: 30 MHz to 1000 MHz, vertical & horizontal polarisation 434.37 MHz

Final_Result

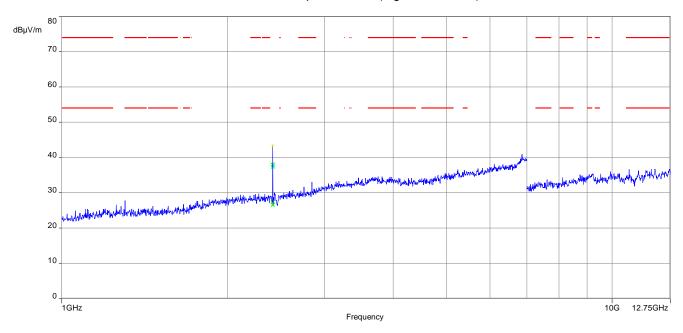
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heig ht (cm)	Pol	Azimuth (deg)
41.785	10.73	50.7	39.97	1000	120	103.0	н	245.0
56.687	9.79	50.7	40.91	1000	120	273.0	н	53.0
101.377	7.82	50.7	42.88	1000	120	350.0	н	181.0
329.076	10.88	50.7	39.82	1000	120	203.0	Н	270.0
434.338	61.02	50.7	-10.32	1000	120	272.0	V	251.0
868.762	32.98	50.7	17.72	1000	120	100.0	н	-36.0


© CTC advanced GmbH Page 37 of 43

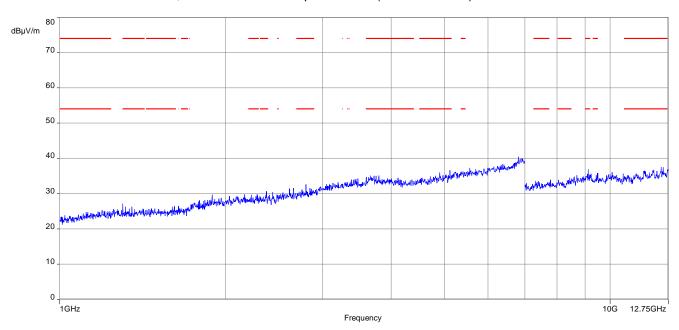

Plots:

a) Modulated signal with date rate 5 Kbit/s

Plot 1: 1 GHz to 12.75 GHz, vertical & horizontal polarisation (lowest channel)

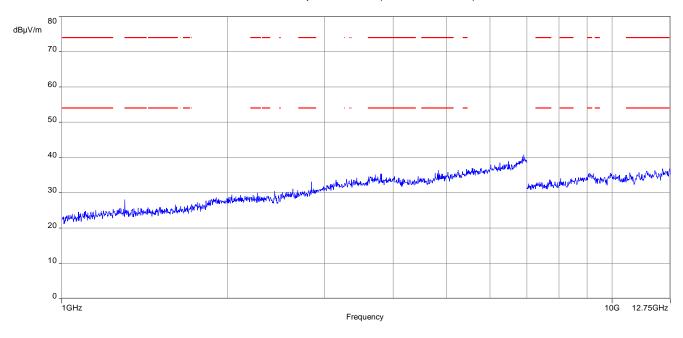

Plot 2: 1 GHz to 12.75 GHz, vertical & horizontal polarisation (middle channel)

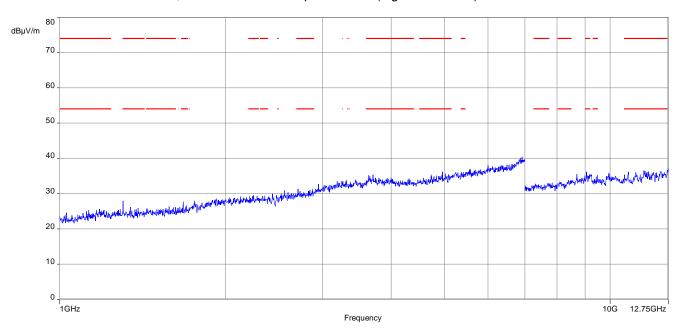
© CTC advanced GmbH Page 38 of 43



Plot 3: 1 GHz to 12.75 GHz, vertical & horizontal polarisation (highest channel)

b) Modulated signal with date rate 20 Kbit/s


Plot 1: 1 GHz to 12.75 GHz, vertical & horizontal polarisation (lowest channel)


© CTC advanced GmbH Page 39 of 43

Plot 2: 1 GHz to 12.75 GHz, vertical & horizontal polarisation (middle channel)

Plot 3: 1 GHz to 12.75 GHz, vertical & horizontal polarisation (highest channel)

© CTC advanced GmbH Page 40 of 43

11 Observations

No observations except those reported with the single test cases have been made.

© CTC advanced GmbH Page 41 of 43

Annex A Glossary

EUT	Equipment under test					
DUT	Device under test					
UUT	Unit under test					
GUE	GNSS User Equipment					
ETSI	European Telecommunications Standards Institute					
EN	European Standard					
FCC	Federal Communications Commission					
FCC ID	Company Identifier at FCC					
IC	Industry Canada					
PMN	Product marketing name					
HMN	Host marketing name					
HVIN	Hardware version identification number					
FVIN	Firmware version identification number					
EMC	Electromagnetic Compatibility					
HW	Hardware					
SW	Software					
Inv. No.	Inventory number					
S/N or SN	Serial number					
С	Compliant					
NC	Not compliant					
NA	Not applicable					
NP	Not performed					
PP	Positive peak					
QP	Quasi peak					
AVG	Average					
ОС	Operating channel					
ocw	Operating channel bandwidth					
OBW	Occupied bandwidth					
ООВ	Out of band					
DFS	Dynamic frequency selection					
CAC	Channel availability check					
OP	Occupancy period					
NOP	Non occupancy period					
DC	Duty cycle					
PER	Packet error rate					
CW	Clean wave					
MC	Modulated carrier					
WLAN	Wireless local area network					
RLAN	Radio local area network					
DSSS	Dynamic sequence spread spectrum					
OFDM	Orthogonal frequency division multiplexing					
FHSS	Frequency hopping spread spectrum					
GNSS	Global Navigation Satellite System					
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz					

© CTC advanced GmbH Page 42 of 43

Annex B Document history

Version	Applied changes	Date of release	
-/-	Initial release	2019-02-22	
А	Version of RSS GEN corrected	2019-02-28	
В	Result on page 28 added	2019-03-06	

Annex C Accreditation Certificate

first page	last page				
Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Multial Recognition Accreditation	Deutsche Akkreditierungsstelle GmbH Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig				
The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields: Telecommunication	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Aldreditierungsstelle GmbH (DAkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf.				
The accreditation certificate shall only apply in connection with the notice of accreditation of 02.06.2017 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 43 pages. Registration number of the certificate: D-PL-12076-01-03	No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attented by DAMAS. The accreditation was granted pursuant to the Act on the Accreditation Body (AMAStelleG) of 31 July 2009 (Federal Law Gazette I, p. 2625) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union L 218 of 9 July 2008, p. 30). DAMAS is a signatory to the Multilateral Agreements for Intuitual Recognition of the European co-operation for Accreditation (EA), international Accreditation for form (IAF) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.uuropean-accreditation.org IIAC: www.liaC.ng IAF: www.liaC.ng				
Frankfurt, 02.06.2027 Steel See of Distribute See seem method.					

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-03.pdf