Report on the FCC and IC Testing of the Marquardt GmbH NFC door handle Model: HH2 In accordance with FCC 47 CFR Part 15 C and ISED RSS-210 and ISED RSS-Gen

Prepared for: Marquardt GmbH Schloßstr. 16 78604 Rietheim-Weilheim Germany

FCC ID: IYZHH2 IC: 2701A-HH2

COMMERCIAL-IN-CONFIDENCE

Date: 2021-08-30

Document Number: TR-33652-24237-04 (Edition 02)

RESPONSIBLE FOR	NAME	DATE	SIGNATURE	
Project Management	Martin Steindl	2021-09-03	Skindl Martin SIGN-1D 550027	
Authorised Signatory	Alex Fink	2021-09-03	SIGN-10 550067	

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service document control rules. Engineering Statement:

This measurement shown in this report were made in accordance with the procedures described on test pages.

All reporded testing was carried out on a sample equipment to demonstrate limited compilance with with FCC 47 CFR Part 15 C and ISED RSS-210 and RSS-GEN.

The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME		DATE		SIGNATURE	
Testing	Martin Steindl		2021-09-03		Skinell sign-id	
Laboratory Accreditation DAkkS Reg. No. D-PL-11321-11-02 DAkkS Reg. No. D-PL-11321-11-03		Laboratory recognition Registration No. BNetzA-CAB	Industry Canada test site registration B-16/21-15 3050A-2		egistration	

Executive Statement:

A sample of this product was tested and found to be compilant with FCC 47 CFR Part 15 C:2019 and ISED RSS-210:2019 and ISED RSS-Gen:2019

Becauciagentur OHecal-CAD-1621-15	DISCLAIMER AND COPYRIGHT This non-binding report has been prepared by TÜV SÜD Product Service with all reasonable skill and care. The document is confiden- tial to the potential Client and TÜV SÜD Product Service. No part of this document may be reproduced without the prior written ap- proval of TÜV SÜD Product Service. © 2021 TÜV SÜD Product Service. ACCREDITATION Our BNetzA Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our BNetzA Accred
	itation.

Trade Register Munich HRB 85742 VAT ID No. DE129484267 Information pursuant to Section 2(1) DL-InfoV (Germany) at www.tuev-sued.com/imprint Managing Directors: Walter Reithmaier (CEO) Dr. Jens Butenandt Patrick van Welij Phone: +49 (0) 9421 55 22-0 Fax: +49 (0) 9421 55 22-99 www.tuev-sued.de TÜV SÜD Product Service GmbH

Äußere Frühlingstraße 45 94315 Straubing Germany

Product Service

Add value.

Inspire trust.

TÜV SÜD Product Service

Content

Content.		1
1 Rep	ort Summary	2
1.1	Modification Report	n
		2
1.2	Introduction	
1.3	Brief Summary of Results	
1.4	Product Information	
1.5	EUT Modifications Record	
1.6	Test Location	6
2 Test	t Details	7
2.1	Bandwidth of Signal	7
2.2	Radiated Emissions	
2.3	Temperature Stability	6
2.0		0
3 Mea	asurement Uncertainty1	9
Annex A:	Photographs of Test Setup 1 pag	е
Annex B:	External photographs of EUT4 page	S

1 Report Summary

1.1 Modification Report

Alternations and additions of this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of changes	Date of Issue
1	First Issue	2021-08-30
2	Correction of antenna size	2021-09-03

Table 1: Report of Modifications

1.2 Introduction

Applicant	Marquardt GmbH Schloßstr. 16 78604 Rietheim-Weilheim
	Germany
Manufacturer	Marquardt GmbH Schloßstr. 16 78604 Rietheim-Weilheim
	Germany
Model Number(s)	HH2
Serial Number(s)	Continuous_Mode, System_Test_Mode
Hardware Version(s)	N/A
Software Version(s)	N/A
Number of Samples Tested	2
Test Specification(s) /	FCC 47 CFR Part 15 C : 2020 and
Issue / Date	ISED RSS-210, Issue 10, Amd. 1 : 2019
	ISED RSS-Gen, Issue 5, Amd. 1 : 2019
Test Plan/Issue/Date	
Order Number Date	6200494494
Date of Receipt of EUT	2021-08-13
Start of Test	2021-08-16
Finish of Test	2021-08-20
Name of Engineer(s)	M. Steindl
Related Document(s)	ANSI C63.10:2013

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15 C and ISED RSS-210 and RSS-Gen is shown below.

Section	Specification	Test Description	Result
	Clause		
	15.203	Antenna requirement	Integrated
			antenna
2.1	15.215(c)	Bandwidth of Signal	Pass
2.2	15.207	Conducted Disturbance at Mains Terminal	Pass
	15.209, 15.225	Radiated Disturbance	Not applicable
2.3	15.225(e)	Frequency Tolerance	Pass

Table 2: Results according to FCC 47 CFR Part 15 C

Specification	Test Description	Result
Clause		
7.3	Radiated Emissions	Pass
7.3	AC Power Line Conducted Emissions	Not applicable
B.6 b.	Frequency Tolerance	Pass
	Clause 7.3 7.3	Clause 7.3 Radiated Emissions 7.3 AC Power Line Conducted Emissions

Table 3: Results according to ISED RSS-210

Section	Specification	Test Description	Result
	Clause		
2.1	6.7	Bandwidth of Signal	Pass
	8.8	AC Power Line Conducted Emissions	Not applicable
2.2	8.9, 8.10	Radiated Emissions	Pass
2.3	6.11	Frequency Tolerance	Pass

Table 4: Results according to ISED RSS-Gen

1.4 Product Information

1.4.1 Technical Description

Functional description

The **HH2** is a door handle for a car with capacitive touch sensors and NFC. An integrated NFC antenna inside into the door handle, smartphones, wearables and NFC tags can be identified and a driver can be authorized by the car so the door can be opened.

The **HH2** is connected to the car using a CAN-FD interface. It acts as communication channel between CAR Electronics control Unit and NFC Readers. The car ECU NFC Reader requests to the **HH2** which communicates with the NFC device on the integrated antenna using a magnetic field.

User manual

The user places his authorized NFC device (a smartcard or a mobile phone / wearable with an integrated secure element ID) onto the door handle. The **HH2** authorizes the user to the car automatically as soon as a valid device is recognized. Then the door is unlocked and the driver can access the car. The NFC communication is only activated once a NFC device is placed onto the door handle.

Test mode

For the radio testing, a test mode is configured in software. After providing the power supply, **HH2** will transmit continuously at 13.56 MHz

Temperature Range Working temperature: Storage temperature:	-40 °C to + 80 °C -40 °C to + 85 °C
Data of RF-Part Transmission Mode Reader to card Card to reader Transmission center frequency 3 dB bandwidth Maximum magnetic field strength Antenna	Continuous Transmission mode 100 % ASK, Miller Coded, 106 kbit/s Subcarrier Load Modulation, Manchester Coded, 106 kbit/s 13.56 MHz 400 kHz 7.5 A/m Integrated PCB antenna, approx. 73x15.5 mm

1.4.2 EUT Ports / Cables identification

Port	Usage	Туре	Screened
Wiring harness		DC supply CAN	No

Table 5

1.5 EUT Modifications Record

The table below details modifications made to the EUT during the test programme. The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
0	As supplied by the customer	Not Applicable	Not Applicable

Table 6

1.6 Test Location

TÜV SÜD Product Service conducted the following tests at our Straubing test laboratory:

Test Name	Name of Engineer(s)
Bandwidth of Signal	M. Steindl
Radiated Distubance	M. Steindl
Frequency tolerance	M. Steindl

Office Address:

Äußere Frühlingstraße 45 94315 Straubing Germany

2 Test Details

- 2.1 Bandwidth of Signal
- 2.1.1 Specification Reference

FCC 47 CFR Part 15 C, Clause 15.215(c) ISED RSS-Gen, Clause 6.7

2.1.2 Equipment under Test and Modification State

HH2 - S/N: System_Test_Mode - Modification State 0

2.1.3 Date of Test

2021-08-18

2.1.4 Environmental Conditions

Ambient Temperature	26 °C
Relative Humidity	46 %

2.1.5 Specification Limits

No limitation - Bandwidth noted

2.1.6 Test Method

The test was performed according to ANSI C63.10, clauses 6.9 See section 2.2 of this test report for details.

2.1.7 Test Results

Center frequency	20 dB Bandwidth
13.560217 MHz	1.042 kHz

Table 7: 20 dB bandwidth

Centre Frequency	99% Bandwidth			
13.56 MHz	260.4920 kHz			

Table 8: 99% bandwidth

2.1.8 Test Location and Test Equipment

The test was carried out in radio test laboratory

Instrument	Manufacturer	Туре No	TE No	Calibra- tion Pe- riod (months)	Calibration Due
Spectrum Analyser	Rohde&Schwarz	FSV40	20219	24	2022-01
Climatic test chanber	Feutron	KPK200-2	19868	12	2023-02-28

Table 9

2.2 Radiated Emissions

2.2.1 Specification Reference

FCC 47 CFR Part 15 C, Clauses 15.205, 15.209 and 15.225 ISED RSS-210, Clause 7.7 and B.6 ISED RSS-Gen, Clauses 8.9 and 8.10

2.2.2 Equipment under Test and Modification State

HH2 - S/N: System_Test_Mode - Modification State 0

2.2.3 Date of Test

2021-08-18

2.2.4 Environmental Conditions

Ambient Temperature	26 °C
Relative Humidity	46 %

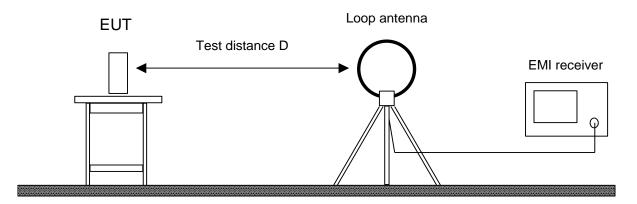
2.2.5 Specification Limits

		Radiated en	nission limits:			
Frequency Range	Test distance	Field s	trength	Field	strength	
(MHz)	(m)	(μA/m)	(dBµA/m)	(μV/m)	(dBμV/m)	
0.009 - 0.49	300	6.37 / f	20*lg(6.37 / f)	2400 / f	20*lg(2400 / f)	
0.49 - 1.705	30	63.7 / f	20*lg(63.7 / f)	24000 / f	20*lg(24000 / f)	
1.705 - 13.110	30	0.08	-21.94	30	29.54	
13.110 - 13.410	30	0.283	-11.0	106	40.5	
13.410 - 13.553	30	0.891	-1.0	334	50.5	
13.553 – 13.567	30	42.26	32.5	15848	84	
13.567 – 13.710	30	0.891	-1.0	334	50.5	
13.710 - 14.010	30	0.283	-11.0	106	40.5	
14.010 - 30	30	0.08	-21.94	30	29.54	
30 - 88	3			100	40	
88 - 216	3			150	43.5	
126 – 960	3			200	46	
above 960	3			500	54	
Note 1: <i>f</i> in kHz		1	1		-	

Table 10 Radiated emission limits

2.2.6 Test Method

The test was performed according to ANSI C63.10, sections 11.11 and 11.12

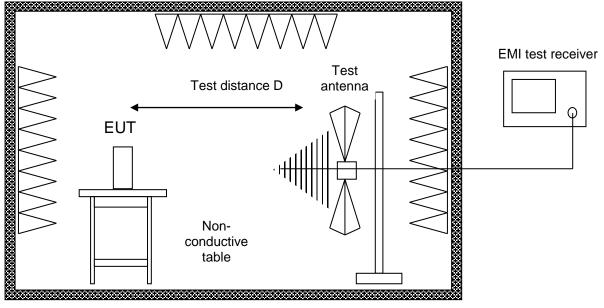

Prescans are performed in six positions of the EUT to get the full spectrum of emission caused by the EUT with the measuring antenna raised and lowered from 1 m to 4 m with vertical and horizontal polarisation to find the combination of table position, antenna height and antenna polarisation for the maximum emission levels.

Data reduction is applied to these results to select those levels having less margin than 10 dB or exceeding the limit using subranges and limited number of maximums.

Further maximisation for adjusting the maximum position is following.

Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

2.2.6.1 Frequency range 9 kHz – 30 MHz


The EUT was placed on a non-conductive table, 0.8 m above the ground.

Radiated emissions in the frequency 9 kHz – 30 MHz is measured within a semi-anechoic room with an active loop antenna with the measurement detector set to peak. In addition in the frequency range 9 kHz to 490 kHz also an average detector was used. The measurement bandwidth of the receiver was set to 300 Hz in the frequency range 9 kHz to 150 kHz and 10 kHz in the frequency range 150 kHz to 30 MHz. Prescans were performed in six positions of the EUT.

For final measurements the detector was set to CISPR quasi-peak and in addition to CISPR average in the frequency range 9 kHz to 490 kHz with a resolution bandwidth 200 Hz in the frequency range 9 kHz to 150 kHz and 9 kHz in the frequency range 150 kHz to 30 MHz. Final tests were performed immediately after a final frequency and zoom (for drifting disturbances) and maximum adjustment.

2.2.6.2 Frequency range 30 MHz – 1 GHz

Alternate test site (semi anechoic room)

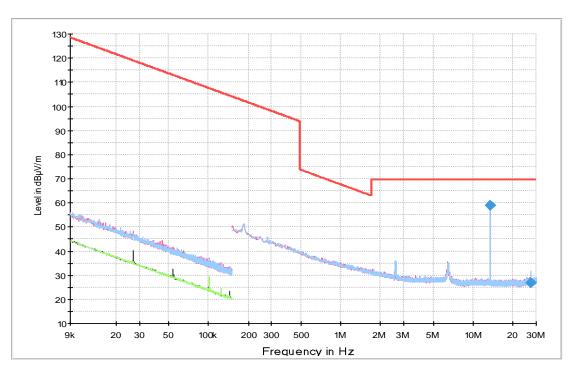
The EUT was placed on a non-conductive table, 0.8 m above the ground plane

Radiated emissions in the frequency range 30 MHz - 1 GHz is measured within a semi-anechoic room with groundplane complying with the NSA requirements of ANSI C63.4. for alternative test sites. A linear polarised logarithmic periodic antenna combined with a 4:1 broadband dipole ("Trilog broadband antenna") is used.

For prescan tests the test receiver is set to peak-detector with a bandwidth of 120 kHz.

With the measurement bandwidth of the test receiver set to 120 kHz CISPR quasi-peak detector is selected for final measurements following immediately after a final frequency zoom (for drifting disturbances) and maximum adjustment.

2.2.7 Test Results

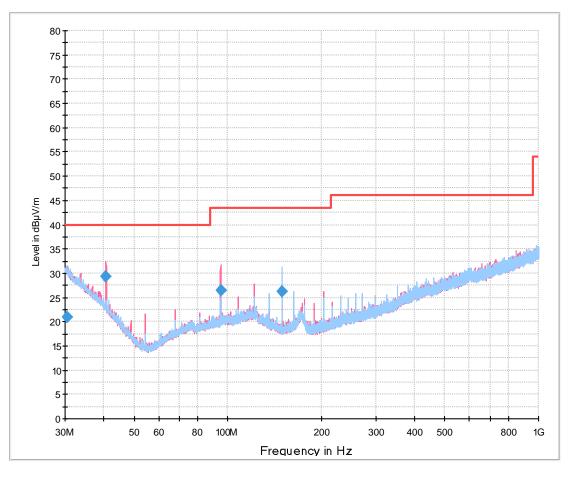

Frequency range	Limit applied	Test distance					
9 kHz – 30 MHz	15.209; 15.225	3 m					
30 MHz – 1 GHz	15.209	3 m					

Sample calculation:

Final Value (dBµV/m) =

Reading Value (dB μ V) + (Cable attenuation (dB) + Antenna Transducer (dB(1/m)))

Frequency range 9 kHz – 30 MHz:


Preview Result 2V-AVG Preview Result 1V-PK+ Preview Result 2H-AVG

- Preview Result 1H-PK+
 - FCCPart 15CElect ric Field Strength 3m QP+AV(9k-30M) Final_Result QPK Final_Result CAV

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Band- width	Pol	Azimuth	Corr.
MHz	dBµV/m	dBµV/m	dB	ms	kHz		deg	dB/m
13.560000	59.02	124.00	64.98	1000	9	V	-79.0	18.9
27.118500	26.81	69.54	42.73	1000	9	Н	-83.0	19.6

Frequency range 30 MHz – 1 GHz:

Preview Result 1V-PK+ FCCPart 15CElectric Field Strength 3m QP PreviewResult 1H-PK+ Final_Result QPK

Frequency	Qua-	Limit	Margin	Meas.	Band-	Height	Pol	Azi-	Corr.
	siPeak		-	Time	width	-		muth	
MHz	dBµV/m	dBµV/m	dB	ms	kHz	ст		deg	dB/m
30.480000	21.01	40.00	18.99	1000.0	120.000	150.0	H	58.0	25.7
40.680000	29.34	40.00	10.66	1000.0	120.000	100.0	V	83.0	20.0
94.920000	26.36	43.50	17.14	1000.0	120.000	106.0	V	182.0	17.4
149.160000	26.29	43.50	17.21	1000.0	120.000	237.0	Н	150.0	16.4

2.2.8 Test Location and Test Equipment

The test was carried out in semi anechoic room, No. 11

Instrument	Manufacturer	Туре No	TE No	Calibra- tion Pe- riod (months)	Calibration Due
Loop antenna	Schwarzbeck	FMZB 1519 B	44334	36	2023-01-31
Spectrum Analyser	Rohde&Schwarz	ESW44	39897	12	2022-04-30

Table 12

2.3 Temperature Stability

2.3.1 Specification Reference

FCC 47 CFR Part 15 E, Clause 15.225(e) ISSED RSS-210, Clause B.6 b. ISED RSS-Gen, Clause 6.11

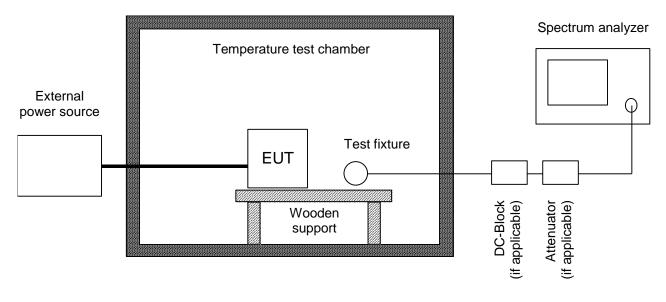
2.3.2 Equipment under Test and Modification State

HH2 - S/N: Continuous_Mode - Modification State 0

2.3.3 Date of Test

2021-08-19

2.3.4 Environmental Conditions


Ambient Temperature	25 °C
Relative Humidity	50 %

2.3.5 Specification Limits

The frequency tolerance of the carrier signal shall be maintained within ± 0.01 % of the operating frequency over a temperature variation of -20 °C to +50 °C at normal supply voltage, and for a variation in the primary supply voltage from 85 % to 115 % of the rated supply voltage at a temperature of 20 °C. For battery operated equipment, the equipment tests shall be performed using a new battery.

2.3.6 Test Method

The test was performed according to ANSI C63.10, section 6.8.

The frequency tolerance of the carrier signal is measured over a temperature variation of -20 °C to +50 °C at normal supply voltage, and for a variation in the primary supply voltage from 85 % to 115 % of the rates supply voltage at a temperature of 20 °C. Temperature and voltage range may vary if the manufacturer states another temperature or voltage range.

If the EUT provides an antenna connector the spectrum analyzer is connected to this port. If required, a resistive matching network equal to the impedance specified or employed for the antenna is used as well as a DC block and appropriate (50 Ω) attenuators. In case where the EUT does not provide an antenna connector or a test fixture is used.

For battery operated equipment, the test is performed using a new battery. Alternatively, an external supply voltage can be used and is at least set to:

- The maximum battery voltage as delivered by a new battery or 115 % of the battery nominal voltage;
- The battery nominal voltage
- 85 % of the battery nominal voltage

• The battery operating end point voltage which shall be specified by the equipment manufacturer. The EUT is operating providing an unmodulated carrier for frequency error tests. The peak detector of the spectrum analyzer is selected and resolution as well as video bandwidth are set to values appropriate to shape of the spectrum of the EUT. The frequency counter mode of the spectrum analyzer is used to maximize the accuracy of the measured frequency tolerance.

If an unmodulated carrier is not available a significant and stable point of the spectrum is selected and the span is reduced to a value that delivers an accuracy which shall be better than 1 % of the maximum frequency tolerance allowed for the carrier signal. This method may be performed as long as the margin to the frequency tolerance is larger than the uncertainty of the measured frequency tolerance.

2.3.7 Test Results

Temperature	Supply Voltage	Frequency	Frequency drift	Frequency drift
-20 °C	13.2 V	13.5603920 MHz	172.5 Hz	12.7 ppm
-10 °C	13.2 V	13.5603925 MHz	173.0 Hz	12.8 ppm
0 °C	13.2 V	13.5603531 MHz	133.6 Hz	9.9 ppm
10 °C	13.2 V	13.5602947 MHz	75.2 Hz	5.5 ppm
20 °C	10.8 V	13.5602082 MHz	-11.3 Hz	-0.8 ppm
20 °C	13.2 V	13.5602195 MHz	0.0 Hz	0.0 ppm
20 °C	15.3 V	13.5602057 MHz	-13.8 Hz	-1.0 ppm
30 °C	13.2 V	13.5601476 MHz	-71.9 Hz	-5.3 ppm
40 °C	13.2 V	13.5600765 MHz	-143.0 Hz	-10.5 ppm
50 °C	13.2 V	13.5600027 MHz	-216.8 Hz	-16.0 ppm
		Table 12		

Table 13

2.3.8 Test Location and Test Equipment

The test was carried out in Radio Test Laboratory

Instrument	Manufacturer	Туре No	TE No	Calibra- tion Pe- riod (months)	Calibration Due
Spectrum Analyser	Rohde&Schwarz	FSV40	20219	24	2022-01
Climatic test chanber	Feutron	KPK200-2	19868	36	2023-02-28

3 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

The measurement uncertainty in the laboratory is less than or equal to the maximum measurement uncertainty according to CISPR16-4-2: $2011 + A1 + A2 + Cor1 (U_{CISPR})$. This normative regulation means that the measured value is also the value to be assessed in relation to the limit value.

Radio Interference Emission Testing		
Test Name	kp	Expanded Uncertainty
Conducted Voltage Emission		
9 kHz to 150 kHz (50Ω/50μH AMN)	2	± 3.8 dB
150 kHz to 30 MHz (50Ω/50μH AMN)	2	± 3.4 dB
100 kHz to 200 MHz (50Ω/5μH AMN)	2	± 3.6 dB
Discontinuous Conducted Emission		
9 kHz to 150 kHz (50Ω/50μH AMN)	2	± 3.8 dB
150 kHz to 30 MHz (50Ω/50μH AMN)	2	± 3.4 dB
Conducted Current Emission		
9 kHz to 200 MHz	2	± 3.5 dB
Magnetic Fieldstrength		
9 kHz to 30 MHz (with loop antenna)	2	± 3.9 dB
9 kHz to 30 MHz (large-loop antenna 2 m)	2	± 3.5 dB
Radiated Emission		
30 MHz to 300 MHz	2	± 4.9 dB
300 MHz to 1 GHz	2	± 5.0 dB
1 GHz to 6 GHz	2	± 4.6 dB
Test distance 10 m		
30 MHz to 300 MHz	2	± 4.9 dB
300 MHz to 1 GHz	2	± 4.9 dB
The expanded uncertainty reported according to to CISPR16-4-2: $2011 + A1$ on a standard uncertainty multiplied by a coverage factor of kp = 2, providing of p = 95.45%	a level of	

Table 15 Measurement uncertainty based on CISPR 16-4-2

Test Name	kp	Expanded Uncertainty
Occupied Bandwdith	2	±5%
Conducted Power		
9 kHz ≤ f < 30 MHz	2	± 1.0 dB
30 MHz ≤ f < 1 GHz	2	± 1.5 dB
1 GHz ≤ f ≤ 40 GHz	2	± 2.5 dB
1 MS/s power sensor (TS8997)	2	± 1.5 dB
Occupied Bandwidth	2	±5%
Power Spectral Density	2	± 3.0 dB
Radiated Power		
9 kHz ≤ f < 26.5 GHz	2	± 6.5 dB
26.5 GHz ≤ f < 60 GHz	2	± 8.0 dB
60 GHz ≤ f < 325 GHz	2	± 10 dB
Conducted Spurious Emissions	2	± 3.0 dB
Radiated Spurious Emissions	2	± 6.0 dB
Voltage		
DC	2	± 1.0 %
AC	2	± 2.0 %
Time (automatic)	2	±5%
Frequency	2	± 10 ⁻⁷

Table 16 Measurement uncertainty based on ETSI TR 100 028