

FCC Measurement/Technical Report on Remote control vehicle key DC12B

FCC ID: IYZDC12BA

IC: ---

Report Reference: MDE_MARQ_1851_FCCa_rev1

Test Laboratory: 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Table of Contents

1	App	ollied Standards and Test Summary	3	
1	.1 .2 .3	Applied Standards FCC-IC Correlation table Measurement Summary /Signatures	3 4 5	
2	Adn	ninistrative Data	6	
2	2.1 2.2 2.3 2.4	Testing Laboratory Project Data Applicant Data Manufacturer Data	6 6 6	
3	Tes	t object Data	7	
3	3.1 3.2 3.3 3.4 3.5	General EUT Description EUT Main components EUT Setups Operating Modes Product labelling	7 8 9 9	
4	Tes	t Results	10	
2	1.1 1.2 1.3 1.4	Duty cycle measurement (based on dwell time measurement) Spurious radiated emissions Maximum radiated field strength at fundamental frequency Occupied bandwidth	10 15 23 26	
5	Tes	t Equipment	28	
6	Ant	enna Factors, Cable Loss and Sample Calculations	31	
6	5.1 5.2 5.3	Antenna R&S HFH2-Z2 (9 kHz - 30 MHz) Antenna R&S HL562 (30 MHz - 1 GHz) Antenna R&S HF907 (1 GHz - 18 GHz)	31 32 33	
7	MEA	ASUREMENT UNCERTAINTIES	34	
8	Pho	to Report	34	
9	Set	Setup Drawings 34		

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator (Periodic operation in the band above 70 MHz)

Applicable FCC Rules

Edition of FCC Rules: October 1, 2015

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15. The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

§ 15.201 Equipment authorization requirement

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.231 Periodic operation in the band 40.66-40.70 MHz, above 70 MHz

Note: none

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for Momentarily (incl. Periodically) Operated Devices and Remote Control from FCC and IC

Radio equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5: 8.8
Transmitter spurious radiated emissions	§ 15.231 (b)	RSS Gen Issue 5: 6.10/6.13/8.9/8.10; RSS-210 Issue 9: A1.1.2, A1.1.5
Duty cycle measurement (based on dwell time measurement)	§ 15.231 (a)	RSS-210 Issue 9: A1.1.1, A1.1.5
Maximum radiated field strength at fundamental frequency	§ 15.231 (b)	RSS-210 Issue 9: A1.1.2, A1.1.5; RSS Gen Issue 5: 6.12
Occupied bandwidth	§ 15.231 (c)	RSS-210 Issue 9: A1.1.3
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5: 8.3
Receiver spurious emissions	_	RSS-210 Issue 9: 2.3 RSS Gen Issue 5: 5/7 *)

^{*)} Receivers are exempted from certification besides if operating in stand-alone mode in the frequency range 30–960 MHz or if these are scanner receivers.

1.3 MEASUREMENT SUMMARY /SIGNATURES

FCC Part 15, Subpart C

§ 15.207

Conducted emissions (AC power line)

The measurement was performed according to ANSI C63.10

OP-Mode

Setup

2013 **Final Result**

AC Port (power line)

N/A

FCC Part 15, Subpart C

₹ 15.231

Duty cycle measurement (based on dwell time measurement)

The measurement was performed according to ANSI C63.10

OP-Mode

Setup

Port

Port

2013 **Final Result**

op-mode 3 Setup 03

Enclosure

§ 15.231

passed

FCC Part 15, Subpart C

Spurious Radiated Emissions

The measurement was performed according to ANSI C63.10

2013

OP-Mode

Setup

Port

Final Result

op-mode 1

Setup_01

Enclosure

passed

op-mode 1

Setup 02

Enclosure

passed

FCC Part 15, Subpart C

§ 15.231

Maximum radiated field strength at fundamental frequency The measurement was performed according to ANSI C63.10

2013

OP-Mode op-mode 2 Setup Setup 01

Port Enclosure

§ 15.231

Final Result

passed

FCC Part 15, Subpart C

Occupied Bandwidth

The measurement was performed according to ANSI C63.10

2013

OP-Mode

Setup Setup 01 Port

Final Result

passed

op-mode 1

Enclosure

N/A not applicable (the EUT is powered by internal CR2032 lithium battery)

	Report version control				
Version Release date		Change Description	Version validity		
initial	2019-02-08		invalid		
rev1 2019-03-15		FCC 15.231 (d) & (e) from the table on page 4, removed.	valid		

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

(responsible for accreditation scope) Dipl.-Ing. Marco Kullik

(responsible for testing and report)

B. Sc. Jens Dörwald

2 ADMINISTRATIVE DATA

2	1	TESTI	NG	IARC	PA^{-}	$\Gamma \cap RY$
∠.		$I \cup J \cup I$		$L \cap L$	$^{\prime\prime}$	$\cdot \cup \cdot \cdot$

Company Name: 7layers GmbH

Address: Borsigstr. 11

40880 Ratingen

Germany

This facility has been fully described in a report submitted to the ISED and accepted under the registration number: Site# 3699A-1.

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-00

FCC Designation Number: DE0015

FCC Test Firm Registration: 929146

Responsible for accreditation scope: Dipl.-Ing. Marco Kullik

Report Template Version: 2017-07-14

2.2 PROJECT DATA

Responsible for testing and report: B. Sc. Jens Dörwald

Date of Report: 2019-03-15

Testing Period: 2019-02-19 to 2019-02-26

2.3 APPLICANT DATA

Company Name: Marquardt GmbH

Address: Schloss-Str. 16

78604 Rietheim-Weilheim

Germany

Contact Person: Mr. Gerd Siegel

2.4 MANUFACTURER DATA

Company Name: please see applicant data

Address:

Contact Person:

3 TEST OBJECT DATA

3.1 GENERAL EUT DESCRIPTION

Kind of Device product description	SRD Transmitter, operating in 433 MHz ISM band		
Product name	Remote control vehicle key		
Туре	DC12B		
Declared EUT data by	the supplier		
Voltage Type	DC lithium battery, CR2025 Type		
Normal Voltage	3.0 V		
Low Voltage	2.25 V		
High Voltage	3.1 V		
Normal Temperature	25 °C		
Low Temperature	- 20 °C		
High Temperature	+60 °C		
Channel frequency	Ch 1 433.47 MHz Ch 2 433.92 MHz Ch 3 434.37 MHz		
Specific product description for the EUT	The EUT is a remote-control vehicle key, part of locking and drive permission system. The remote active functions are manually locking/unlocking the vehicles doors and boot lid.		
The EUT provides the following ports:	Enclosure		
Special software used for testing	The applicant provided two kinds of samples. One with a modified software, which operates in continuously modulated carrier mode. The other one is a production sample, with not modified software.		

The main components of the EUT are listed and described in Chapter 3.2.

3.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description	
DE1307004 EUT A	aa01 radiated sample		
Sample Parameter	Value		
Serial No.	9		
HW Version	12/23/00		
SW Version	11/35/00		
Comment	Sample with test software, switchable CW and continuously		
	modulated signal		

Sample Name	Sample Code	Description	
DE1307004 EUT B	ab01	radiated sample	
Sample Parameter	Value		
Serial No.	15		
HW Version	12/23/00		
SW Version	11/35/00		
Comment	Sample with test software, switchab modulated signal	le CW and continuously	

Sample Name	Sample Code	Description	
DE1307004 EUT C	ad01	radiated sample	
Sample Parameter	Value		
Serial No.	114		
HW Version	12/23/00		
SW Version	11/35/00		
Comment	Sample with not modified software, used for a Duty Cycle		
	measurement		

General description of ancillary equipment

Device	Details (Manufacturer, Type Model, OUT Code)	Reason for using

General description of auxiliary equipment

Device	Details (Manufacturer, HW, SW, S/N)	Description

3.3 EUT SETUPS

This chapter describes the combination of EUTs and ancillary equipment used for testing.

Setup No.	Combination of EUTs	Description
Setup_01	EUT A	Setup for radiated measurements
Setup_02	EUT B	Setup for radiated measurements
Setup_03	EUT C	Setup for Duty Cycle measurements

3.4 OPERATING MODES

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of	Remarks
	Operating Modes	
op-mode 1	Continuous modulated	Transmitter sends continuously FSK modulated signal with 10 kBd data rate
op-mode 2	CW	Transmitter sends continuous wave (non-modulated) signal at f_u (f_c - $\Delta f/2$)
op-mode 3	Pulse train	Transmitter sends a pulse train after pressing some of the buttons

Remark: For continuous modulated mode, a special test software, provided by applicant was used.

3.5 PRODUCT LABELLING

3.5.1 FCC ID label IYZDC12BA

3.5.2 IC Label

3.5.3 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

4 TEST RESULTS

4.1 DUTY CYCLE MEASUREMENT (BASED ON DWELL TIME MEASUREMENT)

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.1.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was setup in a shielded room to perform the dwell time measurements. For analyzer settings please see measurement plots.

4.1.2 TEST REQUIREMENTS / LIMITS

Depending on the function of the EUT different paragraphs of FCC §15.231 apply:

Either

(a)(1): A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

Or

(a)(2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

And

(a) (3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.

Otherwise

(e) Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) of this section and may be employed for any type of operation [...]. In addition, [...] the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

This test is also performed to determine the pulse train of the transmitter and calculate the correction factor for pulse modulated transmitters according to FCC §15.35. This factor is used as a correction factor for the field strength measurements, both for Spurious radiated emissions and Maximum radiated field strength at fundamental frequency.

4.1.3 TEST PROTOCOL

Temperature: 23 °C Air Pressure: 1009 hPa Humidity: 38 %

Op. Mode	Setup	Port
op-mode 3	Setup_02	Enclosure

a) Determine the total duration of a transmission within 100 ms:

Duty cycle = ((L1*N1) + (L2*N2) + ... + (Ln*Nn)) / 100 ms or T, whichever is less Correction factor = 20 * LOG (Duty cycle) [dB]

Step 1	Holdover time	Less than 5s
Step 2	Cycle to determine the on/off ratio within a cycle (period T)	100 ms
Step 3	Sweep of a data word to determine the on time within a data word (L1-LN)	L1 = 67.266 ms
		L2 = 32.128 ms

Calculation of Duty Cycle / Correction Factor:

```
If T > 100 ms => T = 100 ms; L1 = 67.266 ms; N1 = 1; L2 = 32.128 ms; N2 = 1 (Plot 2) D2 + (D4 - D3) = 67.266 + 32.128 = 99.394 ms In 100 ms T_{on} = 99.394 ms Duty cycle = 99.394 /100 = 0.99394
```

CORRECTION FACTOR = 20 * LOG (0.99394) = 0.05 dB

b) Determine the period of periodic re-transmission, if any, or cease (deactivation) time: No period of retransmission occur, independent on how long the single button is pressed.

After the button is released, the EUT sends once again the whole sequence of 3 bursts ("triplet" of 202.758 ms shown on Plot 3), as it is shown on Plot 1.

Deactivation after $T_C \approx 0.203$ s, Limit: ≤ 5 s when each of buttons "Lock" or "Unlock" are continuously pressed and then released.

Deactivation after $T_C \approx 1.18 \text{ s}$, Limit: $\leq 5 \text{ s}$ when the button "Trunk" is continuously pressed and then released.

c) Determine the total duration of periodic transmissions within 1 hour, if any:

Duration t_d of all pulses/bursts during T_R ("on-time"):

td depends on which button is pressed and then released.

By pressing each of buttons "Lock" or "Unlock", the $t_d \approx 0.403$ s. (67.266 X 6) ms = 0.403356 s

By pressing the button "Trunk", the $t_d \approx 0.807$ s. (67.266 X 12) ms = 0.806712 s

d) If the result of c) exceeds 2 seconds/hour then paragraph (e) applies

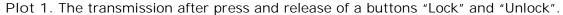
Determine the duration of each transmission (one complete pulse train) and silent time:

Duration t_{PT} , Limit: ≤ 1 s (Remark: t_{PT} is identical to t_d if $T \leq 100$ ms)

There is no periodical transmission after any button is released. Hence, the t_{PT} is identical to t_{d}

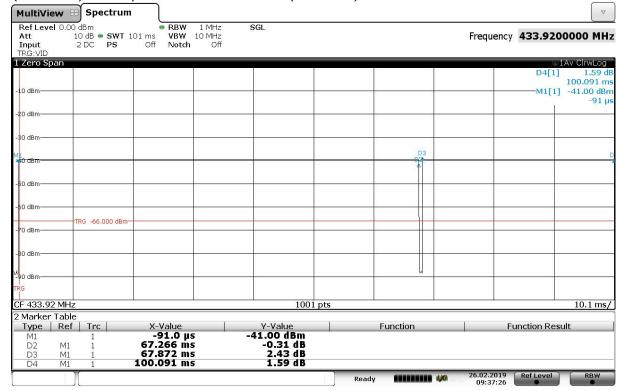
For buttons "Lock" and "Unlock" $t_{PT}=t_{d}\thickapprox 0.403~s$ For button "Trunk" $t_{PT}=t_{d}\thickapprox 0.807~s$

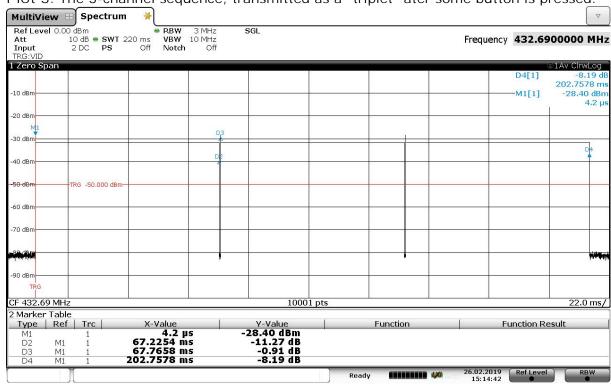
Silent time between transmissions $t_S = N/A$, Limit: \leq Maximum (10 s and 30* t_{PT}).


4.1.4 TEST RESULT: DUTY CYCLE / CORRECTION FACTOR


FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 3	passed

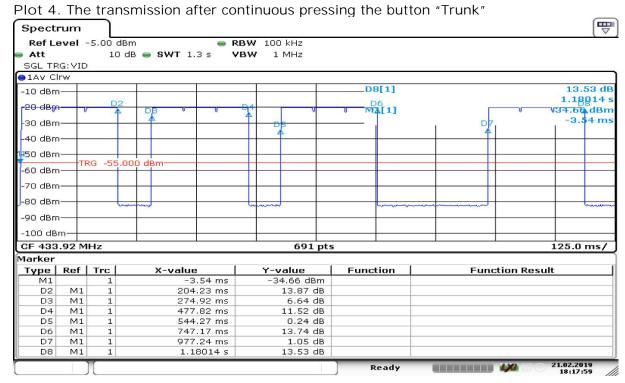
Test report Reference: MDE_MARQ_1851_FCCa_rev1


4.1.5 MEASUREMENT PLOTS DUTY CYCLE


Date: 21.FEB.2019 17:59:41

Plot 2. The transmission in first 100 ms. There is the first Channel transmission (M1 to D2) and a part of the second one (D3 to D4).

09:37:27 26.02.2019



Plot 3. The 3-channel sequence, transmitted as a "triplet" ater some button is pressed.

15:14:43 26.02.2019

Normally, each burst (D2) should be sent on a different channel. In this case, all the three bursts of a triplets are sent at channel 2 with fc = 433.92 MHz.

Date: 21.FEB.2019 18:18:00

After the button "Trunk" is released, the EUT does not send any pulses. Please see Plot 4 above.

4.2 SPURIOUS RADIATED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10–2013

4.2.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre-measurement

- Anechoic chamber
- Antenna distance: 3 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 MHz and 0.15 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF-Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 0.2 10 kHz
- Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)

- Frequency range: 30 - 1000 MHz

Frequency steps: 30 kHzIF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 ms

- Turntable angle range: -180° to 90°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: \pm 45 $^{\circ}$ around the determined value

- Height variation range: ± 100 cm around the determined value

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 $^{\circ}$.

The turn table step size (azimuth angle) for the preliminary measurement is 45 $^{\circ}$. Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by $\pm 45^{\circ}$

EMI receiver settings (for all steps):

Detector: Peak, AverageIF Bandwidth = 1 MHz

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / Average

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 1 MHzMeasuring time: 1 s

4.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Calculate Limit (dBµV/m @10m)	Limit (dBµV/m) @10m
0.009 - 0.49	2400/F (kHz)	300	(48.5 – 13.8) + 59.1 dB	107.6 – 72.9
0.49 - 1.705	24000/F (kHz)	30	(33.8 – 23.0) + 19.1 dB	52.9 – 42.1
1.705 – 30	30	30	29.5 + 19.1 dB	39.5

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limit (dBµV/m)
30 – 88	100	3	40.0
88 – 216	150	3	43.5
216 – 960	200	3	46.0
above 960	500	3	54.0

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

 $\S15.35(b)$..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit ...

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

§15.35(c):

[...] when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted [...].

§15.231(b)(3)

The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator.

Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasipeak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

Interpretation of the test laboratory:

The last subordinate clause of §15.231(b)(3) is overruled by §15.205/209, therefore within the restricted bands the limits defined at §15.205/209 and outside the restricted bands the limits defined at §15.231(b) resp. §15.231(e) are applied.

4.2.3 TEST PROTOCOL

4.2.3.1 MEASUREMENT UP TO 30 MHZ

Temperature: 24 °C Air Pressure: 1009 hPa Humidity: 35 %

Op. Mode	Op. Mode						Port			
op-mode 1				Setup_01		Enclosure				
Measuring Antenna	Spurious Emission Frequency	ission Corrected value			Limit [dBµV/m]	Limit [dBµV/m]	Margin to Margin to Limit limit limit [dBµV/m] [dB] [dB]			
Polarisation	[MHz]	QP	Peak	AV	QP	Peak	AV	QP/Peak	AV	
0°										
90°										

Remark: In step 1 no spurious emissions above the limit were found using a peak detector, therefore step 2 (using a QP-detector) was not performed. For this test the EUT was sending a continuously modulated signal. Please see the measurement plots.

The EUT is tested in horizontal position, as it is normally pointed to the vehicle's door.

4.2.3.2 MEASUREMENT ABOWE 30 MHz TO 6 GHz

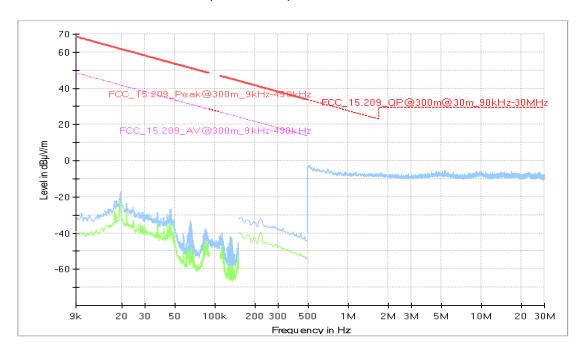
Temperature: 24 °C Air Pressure: 1006 hPa Humidity: 32 %

Op. Mode	Setup	Port
op-mode 1	Setup_01	Enclosure
op-mode 1	Setup_02	Enclosure

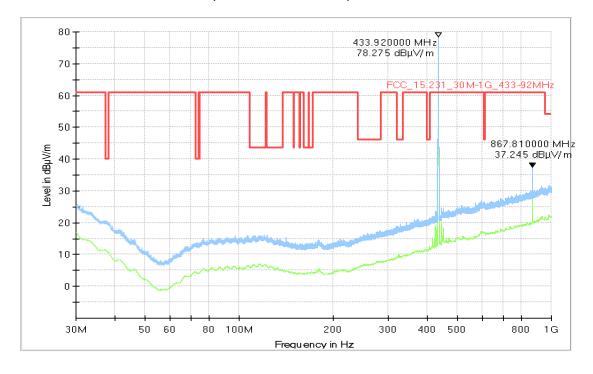
Polarisation of the	Spurious Emission	Corr	ected val	ue	Limit	Limit	Limit	Margin to limit	Margin to limit
antenna and	Frequency	[0	[dBµV/m]			[dBµV/m]	[dBµV/m]	[dB]	[dB]
the EUT	[MHz]	QP	QP Peak AV		QP	Peak	AV	QP/Peak	AV

Remarks: - No spurious emissions in the range 15 dB below the limit were found. The test was performed in the frequency range from 30 MHz to 6 GHz. For this test the EUT was sending a continuously modulated signal.

- Please see the measurement plots.
- The EUT is tested in horizontal position, as it is normally pointed to the vehicle's door.


4.2.4 TEST RESULT: SPURIOUS RADIATED EMISSIONS

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed



4.2.5 MEASUREMENT PLOTS

4.2.5.1 RADIATED EMISSIONS (f < 30 MHz)

4.2.5.2 RADIATED EMISSIONS (30 MHz < f < 1GHz)

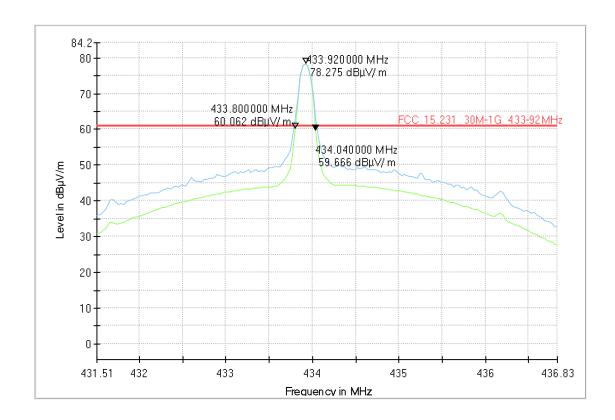
Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Comment
-		-	-		-	-	-	-	

Note: The values over the limit line are from modulated carrier and are entirely in the EUT Occupied BW measured in clause 4.3.

4.2.5.3 RADIATED EMISSIONS (30 MHz < f < 1GHz) Exclusion band (Zoomed)

Test Description: Radiated Emissions, Test Site: Semi Anechoic Chamber @ 3 m

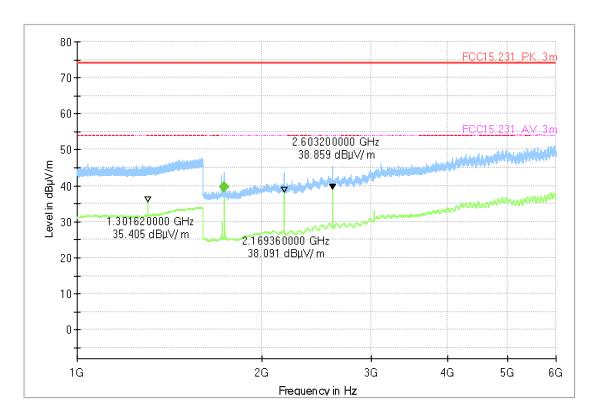

Test Standard: FCC §15.231
EUT / Setup Code: DE1307004ab01
Operating Conditions: SRD (433.92MHz)

Operator Name: MER

Comment: EUT: horizontal

Legend: Trace: blue = PK, green = QP; Star: red or blue = critical frequency;

Rhombus: blue = final QP



Final_Result

F	requency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Comment
	-	•	-	-	•	-	-	-		

4.2.5.4 RADIATED EMISSIONS (1 GHz < f < 6GHz)

Legend: Trace: blue = PK, green = QP; Rhombus: green = final QP

Critical frequencies

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Elevation (deg)
1735.520		39.8	53.98	14.22			150.0	Н	-11.0	-12.0

Final result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Elevation (deg)
1735.520		39.6	53.98	14.39	1000.0	1000.000	150.0	Н	-11.0	-10.0

4.3 MAXIMUM RADIATED FIELD STRENGTH AT FUNDAMENTAL FREQUENCY

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.10–2013

4.3.1 TEST DESCRIPTION

Please refer to sub-clause 4.1.1

4.3.2 TEST LIMITS

Please refer to sub-clause 4.1.2

4.3.3 TEST PROTOCOL

Temperature: 24 °C Air Pressure: 1009 hPa Humidity: 38 %

Op. Mode	Setup	Port
op-mode 2	Setup_01	Enclosure

Frequency [MHz]	Output power [dBµV/m]	Limit [dBµV/m]	Margin to Limit [dB]	Remarks
433.470	78.71	80.81	2.11	Maximum radiated field
433.920	78.28	80.83	2.55	strength at fundamental
434.370	79.36	80.84	1.48	frequency

Notes: 1) The EUT transmitted continuously not modulated carrier at $f_u = f_c - \Delta f/2$ Where Δf is FSK deviation of channel frequency declared by the customer.

2) The Duty Cycle correction factor calculated in clause 4.1 is not used, because it is negligible.

4.3.4 TEST RESULT:

MAXIMUM RADIATED FIELD STRENGTH AT FUNDAMENTAL FREQUENCY

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 2	passed

4.3.5 MEASUREMENT PLOT MAXIMUM RADIATED FIELD STRENGTH AT FUNDAMENTAL FREQUENCY

Common information

Test Description: Radiated Emissions, Test Site: Semi Anechoic Chamber @ 3 m

Test Standard: FCC §15.231
EUT / Setup Code: DE1307004ab01
Operating Conditions: SRD (434.37MHz)

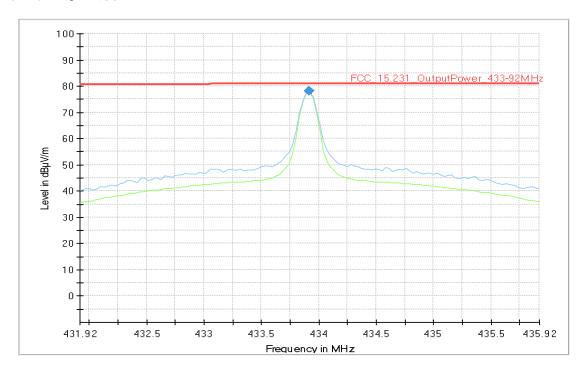
Operator Name: MER

Comment: EUT: vertical

Legend: Trace: blue = PK, green = QP; Star: red or blue = critical frequency;

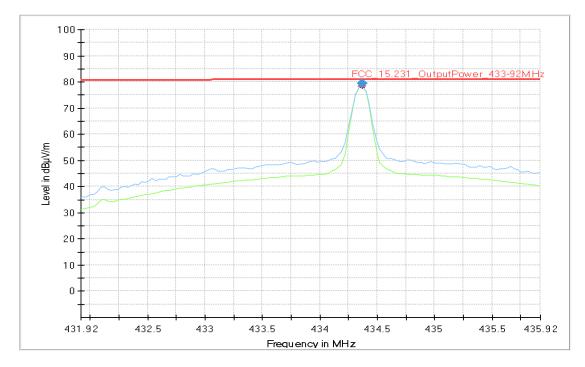
Rhombus: blue = final QP

Channel 1 $f_c = 433.47 \text{ MHz}$



Final Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
				(ms)				
433.470000	78.71	80.81	2.11	1000.0	120.000	118.0	V	89.0



Channel 2 $f_c = 433.92 \text{ MHz}$

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
				(ms)				. 0.
433.920000	78.28	80.83	2.55	1000.0	120.000	118.0	V	84.0

Final Result

Frequence (MHz)	y QuasiPeak (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
434.37000	0 79.36	80.84	1.48	1000.0	120.000	120.0	V	106.0

4.4 OCCUPIED BANDWIDTH

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10-2013

4.4.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was setup in a shielded room to perform the occupied bandwidth measurements.

For analyzer settings please see the measurement plots.

4.4.2 TEST LIMITS

FCC Part 15, Subpart C, §15.231(c)

The maximum 20 dB bandwidth of a transmitter operating at a frequency range:

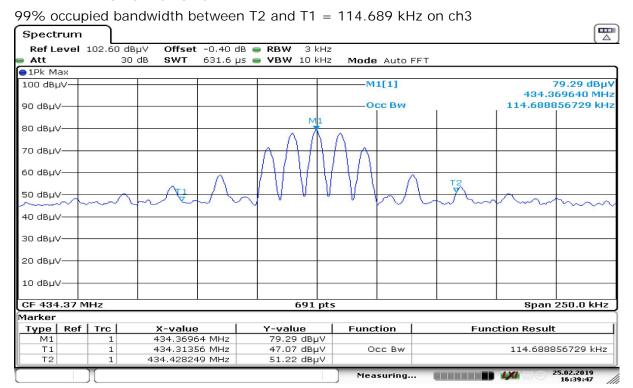
70 to 900 MHz is 0.25% of the centre frequency above 900 MHz is 0.5% of the centre frequency

4.4.3 TEST PROTOCOL

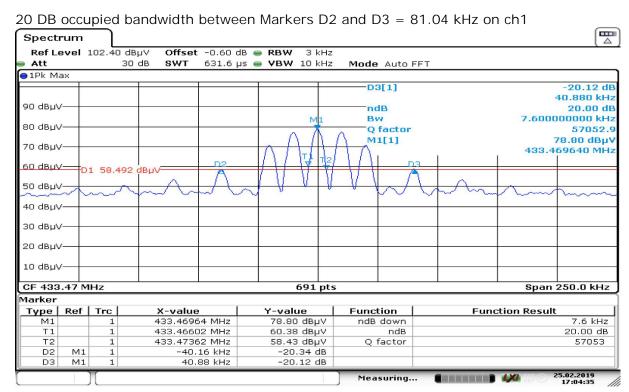
Temperature: 23 °C Air Pressure: 1009 hPa Humidity: 42 %

Op. Mode	Setup	Port
op-mode 1	Setup_01	Enclosure

Cannel	20 dB	99%		
Frequency	bandwidth	bandwidth	Limit	
[MHz]	[kHz]	[kHz]	[kHz]	Remarks
433.47	81.04	111.433	1083.7	The limit is coloulated as:
433.92	80.32	113.242	1084.8	The limit is calculated as:
434.37	80.32	114.689	1085.9	Channel frequency X 0.25%


Remark: Please see the measurement plots.

4.4.4 TEST RESULT: OCCUPIED BANDWIDTH


FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed

4.4.5 MEASUREMENT PLOTS OCCUPIED BANDWIDTH WORST CASES

Date: 25.FEB.2019 16:39:47

Date: 25.FEB.2019 17:04:35

5 TEST EQUIPMENT

1 Radiated Emissions

Lab to perform radiated emission tests

	Lab to periorii	radiated emission	1 16313			
Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	NRV-Z1	Sensor Head A	Rohde & Schwarz GmbH & Co. KG	827753/005		
1.2	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2018-10	2020-10
1.3	Opus10 TPR (8253.00)	ThermoAirpressure Datalogger 13 (Environ)	Lufft Mess- und Regeltechnik GmbH	13936	2017-04	2019-04
1.4	ESW44	EMI Test Receiver	Rohde & Schwarz GmbH & Co. KG	101603	2018-05	2019-05
1.5	Anechoic Chamber	10.58 x 6.38 x 6.00 m ³		none		
1.6	FS-Z60	- 60 GHz	Rohde & Schwarz Messgerätebau GmbH	100178	2016-12	2019-12
1.7	FS-Z220	Harmonic Mixer 140 - 220 GHz	Rohde & Schwarz Messgerätebau GmbH	101005	2017-03	2020-03
1.8	SGH-05	Standard Gain / Pyramidal Horn Antenna (140 - 220 GHz)		075		
1.9	HL 562	Ultralog new biconicals	Rohde & Schwarz	830547/003	2018-07	2021-07
1.10	5HC2700/12750- 1.5-KK	High Pass Filter	Trilithic	9942012		
1.11	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		
1.12	Fully Anechoic Room	8.80m x 4.60m x 4.05m (I x w x h)	Albatross Projects	P26971-647-001-PRB	2018-06	2020-06
1.13	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2018-04	2020-04
1.14	NRVD	Power Meter	Rohde & Schwarz GmbH & Co. KG	828110/016		
1.15	HF 906	Double-ridged horn	Rohde & Schwarz	357357/002	2018-06	2021-06
1.16	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
1.17	3160-09	Standard Gain / Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH	00083069		
1.18	SGH-19	Standard Gain / Pyramidal Horn Antenna (40 - 60 GHz)		093		
1.19	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright	09		
1.20	4HC1600/12750- 1.5-KK	High Pass Filter	Trilithic	9942011		
1.21	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304		

1.22	JS4-00102600-	Broadband	Miteq	619368		
	42-5A	Amplifier 30 MHz - 26 GHz				
1.23	TT 1.5 WI	Turn Table	Maturo GmbH	-		
1.24	HL 562 Ultralog	Logper. Antenna	Rohde & Schwarz	100609	2016-04	2019-04
1.25	HF 906	Double-ridged horn	Rohde & Schwarz	357357/001	2018-03	2021-03
1.26	FS-Z325	Harmonic Mixer 220 - 325 GHz	Rohde & Schwarz Messgerätebau GmbH	101006	2017-03	2020-03
1.27	3160-10	Standard Gain / Pyramidal Horn Antenna 40 GHz	EMCO Elektronic GmbH	00086675		
1.28	SGH-08	Standard Gain / Pyramidal Horn Antenna (90 - 140 GHz)		064		
1.29	SGH-12	Standard Gain / Pyramidal HornAntenna (60 - 90 GHz)		326		
1.30	5HC3500/18000- 1.2-KK	High Pass Filter	Trilithic	200035008		
1.31	FS-Z140	Harmonic Mixer 90 -140 GHz	Rohde & Schwarz Messgerätebau GmbH	101007	2017-02	2020-02
1.32	HFH2-Z2	Loop Antenna	Rohde & Schwarz	829324/006	2018-01	2021-01
1.33	Opus10 THI (8152.00)	ThermoHygro Datalogger 12 (Environ)	Lufft Mess- und Regeltechnik GmbH	12482	2017-03	2019-03
1.34	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2016-11	2019-01
1.35	JS4-00101800- 35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
1.36	AS 620 P	Antenna mast	HD GmbH	620/37		
1.37	Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	Maturo GmbH	TD1.5- 10kg/024/3790709		
1.38	SGH-03	Standard Gain / Pyramidal Horn Antenna (220 - 325 GHz)		060		
1.39	FS-Z90	Harmonic Mixer 60 - 90 GHz	Rohde & Schwarz Messgerätebau GmbH	101686	2017-03	2020-03
1.40	ESIB 26	Spectrum Analyzer	Rohde & Schwarz	830482/004	2018-01	2020-01
1.41	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
1.42	AFS42-00101800- 25-S-42	Broadband Amplifier 25 MHz - 18 GHz	Miteq	2035324		
1.43	AM 4.0	Antenna mast	Maturo GmbH	AM4.0/180/11920513		
1.44	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2018-07	2021-07
1.45	FSW43	Spectrum analizer	Rohde & Schwarz	103779	2019-02	2021-02

2 Conducted and Radiated Emissions

Conducted and Radiated, Radio Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2017-07	2020-07
2.2	MFS	Rubidium Frequency Standard	Datum-Beverly	5489/001	2018-10	2020-10
2.3	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2018-04	2020-04
2.4	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2018-04	2020-04
2.5	SMP03	Signal Generator 2 GHz - 27 GHz	Rohde & Schwarz	833680/003	2017-09	2020-09
2.6	FSIQ26	Signal Analyser	Rohde & Schwarz	840061/005	2017-05	2019-05
2.7	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304		
2.8	VT 4002	Temperature Chamber	Vötsch	58566002150010	2018-04	2020-04
2.9	WA1515	Broadband Power Divider SMA	Weinschel Associates	A855		
2.10	A8455-4	4 Way Power Divider (SMA)		-		
2.11	Opus10 THI (8152.00)	ThermoHygro Datalogger 03 (Environ)	Lufft Mess- und Regeltechnik GmbH	7482	2019-01	2020-01
2.12	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	259291	2016-10	2019-10

6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

6.1 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

	AF	
Frequency	HFH-Z2)	Corr.
MHz	dB (1/m)	dB
0.009	20.50	-79.6
0.01	20.45	-79.6
0.015	20.37	-79.6
0.02	20.36	-79.6
0.025	20.38	-79.6
0.03	20.32	-79.6
0.05	20.35	-79.6
0.08	20.30	-79.6
0.1	20.20	-79.6
0.2	20.17	-79.6
0.3	20.14	-79.6
0.49	20.12	-79.6
0.490001	20.12	-39.6
0.5	20.11	-39.6
0.8	20.10	-39.6
1	20.09	-39.6
2	20.08	-39.6
3	20.06	-39.6
4	20.05	-39.5
5	20.05	-39.5
6	20.02	-39.5
8	19.95	-39.5
10	19.83	-39.4
12	19.71	-39.4
14	19.54	-39.4
16	19.53	-39.3
18	19.50	-39.3
20	19.57	-39.3
22	19.61	-39.3
24	19.61	-39.3
26	19.54	-39.3
28	19.46	-39.2
30	19.73	-39.1

cable						
oabio	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-40 dB/	distance	distance
	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.3	0.1	-40	30	3
0.4	0.1	0.3	0.1	-40	30	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

6.2 ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

$d_{Limit} = 3 \text{ m}$					
Frequency	AF R&S HL562	Corr.			
MHz	dB (1/m)	dB			
30	18.6	0.6			
50	6.0	0.9			
100	9.7	1.2			
150	7.9	1.6			
200	7.6	1.9			
250	9.5	2.1			
300	11.0	2.3			
350	12.4	2.6			
400	13.6	2.9			
450	14.7	3.1			
500	15.6	3.2			
550	16.3	3.5			
600	17.2	3.5			
650	18.1	3.6			
700	18.5	3.6			
750	19.1	4.1			
800	19.6	4.1			
850	20.1	4.4			
900	20.8	4.7			
950	21.1	4.8			
1000	21.6	4.9			

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

 $(d_{limit} = 10 \text{ m})$

(aLimit = 1011	1)							
30	18.6	-9.9		0.29	0.04	0.23	0.02	-10.5
50	6.0	-9.6		0.39	0.09	0.32	0.08	-10.5
100	9.7	-9.2		0.56	0.14	0.47	0.08	-10.5
150	7.9	-8.8		0.73	0.20	0.59	0.12	-10.5
200	7.6	-8.6		0.84	0.21	0.70	0.11	-10.5
250	9.5	-8.3		0.98	0.24	0.80	0.13	-10.5
300	11.0	-8.1		1.04	0.26	0.89	0.15	-10.5
350	12.4	-7.9		1.18	0.31	0.96	0.13	-10.5
400	13.6	-7.6		1.28	0.35	1.03	0.19	-10.5
450	14.7	-7.4		1.39	0.38	1.11	0.22	-10.5
500	15.6	-7.2		1.44	0.39	1.20	0.19	-10.5
550	16.3	-7.0		1.55	0.46	1.24	0.23	-10.5
600	17.2	-6.9		1.59	0.43	1.29	0.23	-10.5
650	18.1	-6.9		1.67	0.34	1.35	0.22	-10.5
700	18.5	-6.8		1.67	0.42	1.41	0.15	-10.5
750	19.1	-6.3		1.87	0.54	1.46	0.25	-10.5
800	19.6	-6.3		1.90	0.46	1.51	0.25	-10.5
850	20.1	-6.0		1.99	0.60	1.56	0.27	-10.5
900	20.8	-5.8		2.14	0.60	1.63	0.29	-10.5
950	21.1	-5.6		2.22	0.60	1.66	0.33	-10.5
1000	21.6	-5.6		2.23	0.61	1.71	0.30	-10.5
·	-		-		-		-	

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/ d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.3 ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

	AF R&S	
Frequency	HF907	Corr.
MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

cable loss 1 (relay + cable	cable loss 2	cable loss 3 (switch unit, atten-	cable	
inside	(outside	uator &	loss 4 (to	
chamber)	chamber)	pre-amp)	receiver)	
dB	dB	dB	dB	
0.99	0.31	-21.51	0.79	
1.44	0.44	-20.63	1.38	
1.87	0.53	-19.85	1.33	
2.41	0.67	-19.13	1.31	
2.78	0.86	-18.71	1.40	
2.74	0.90	-17.83	1.47	
2.82	0.86	-16.19	1.46	

Frequency	AF R&S HF907	Corr.	
MHz	dB (1/m)	dB	
3000	31.0	-23.4	
4000	33.1	-23.3	
5000	34.4	-21.7	
6000	34.7	-21.2	
7000	35.6	-19.8	

			cable loss 4		
cable			(switch		
loss 1	cable	cable	`unit,		used
(relay	loss 2	loss 3	atten-	cable	for
inside	(inside	(outside	uator &	loss 5 (to	FCC
chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
dB	dB	dB	dB	dB	
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	
0.66	2.82	0.86	-25.58	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable					
loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

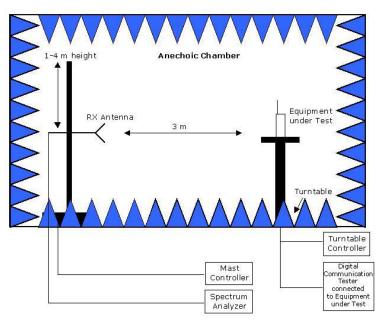
E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.


7 MEASUREMENT UNCERTAINTIES

Parameter	Uncertainty
Radio frequency	± 0.5 ppm
RF power, conducted	± 1.0 dB
Conducted spurious emission of transmitter, valid up to 6 GHz	± 2.0 dB
Conducted emission of receivers	± 2.0 dB
Radiated emission of transmitter, valid up to 6 GHz	± 4.5 dB
Radiated emission of receiver, valid up to 6 GHz	± 4.5 dB
RF level uncertainty for a given BER	± 1.5 dB
Occupied Bandwidth	± 4.5%
Temperature	± 0.3 °C
Humidity	± 3%

8 PHOTO REPORT

Photos are included in an external report.

9 SETUP DRAWINGS

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting ground plane.