

TEST REPORT

Test report no.: 1-3499/17-02-02

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Applicant

Marquardt GmbH

Schloss-Str. 16

78604 Rietheim-Weilheim / GERMANY Phone: +49 (0) 74 24 – 99 0 Fax: +49 (0) 74 24 – 99 2122

Contact: Gerd Siegel

e-mail: <u>Gerd.Siegel@marquardt.de</u> Phone: +49 (0) 74 24 – 99 1589

Manufacturer

Marquardt GmbH

Schloss-Str. 16

78604 Rietheim-Weilheim / GERMANY

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

RSS - 210 Issue 9 Spectrum Management and Telecommunications Radio Standards Specification - Licence-

Exempt Radio Apparatus: Category I Equipment

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Vehicle key

Model name: DAG13

FCC ID: IYZDAG13

IC: 2701A-DAG13

Frequency band: 260 MHz to 470 MHz

Technology tested: Proprietary

Antenna: Integrated antenna

Power supply: 3.00 V DC by CR2032 battery

Temperature range: -20°C to +65°C

Radio Communications & EMC

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
p.o	
Christoph Schneider Lab Manager	Yves Olsommer Testing Manager

Radio Communications & EMC

Table of contents

1	Table	of contents	2
2	Gene	ral information	3
	2.1 2.2 2.3	Notes and disclaimerApplication details	.3
3	Test	standard/s	4
4	Test o	environment	5
5	Test i	item	5
	5.1 5.2	General descriptionAdditional information	
6	Desc	ription of the test setup	6
	6.1 6.2 6.3	Shielded fully anechoic chamber Test setup for normalized measurement configurations Shielded semi anechoic chamber	8
7	Sequ	ence of testing1	0
	7.1 7.2 7.3	Sequence of testing radiated spurious 9 kHz to 30 MHz1 Sequence of testing radiated spurious 30 MHz to 1 GHz1 Sequence of testing radiated spurious 1 GHz to 4 GHz1	1
8	Sumr	nary of measurement results1	3
	8.1	Additional comments1	3
9	Meas	urement results1	4
	9.1 9.2 9.3 9.4 9.5	Timing of the transmitter	6 7 9
10	Ob	servations2	4
Anı	nex A	Glossary2	5
Anı	nex B	Document history2	6
Δni	nev C	Accreditation Cartificate	6

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2017-05-19
Date of receipt of test item: 2017-05-29
Start of test: 2017-05-30
End of test: 2017-06-02
Person(s) present during the test: Mr. Mathias Kiefer

2.3 Test laboratories sub-contracted

None

3 Test standard/s

Test standard	Date	Test standard description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 9	August 2016	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment

Guidance	Version	Description
ANSI C63.4-2014 ANSI C63.10-2013	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Temperature	÷	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests +65 °C during high temperature tests -20 °C during low temperature tests		
Relative humidity content			48 %		
Barometric pressure			not relevant for this kind of testing		
Power supply	:	V _{nom} V _{max} V _{min}	3.00 V DC by CR2032 battery 3.00 V 2.55 V		

5 Test item

5.1 General description

Kind of test item	:	Vehicle key
Type identification	:	DAG13
HMN	:	-/-
PMN	:	DAG13
HVIN	:	DAG13
FVIN	:	-/-
S/N serial number	:	-/-
HW hardware status	:	-/-
SW software status	:	-/-
Frequency band	:	260 MHz to 470 MHz Carrier frequency: 314.9 MHz
Type of radio transmission Use of frequency spectrum	:	Modulated carrier
Type of modulation	:	2FSK
Number of channels	:	1
Antenna	:	Integrated antenna
Power supply	:	3.00 V DC by CR2032 battery
Temperature range	:	-20°C to +65°C

5.2 Additional information

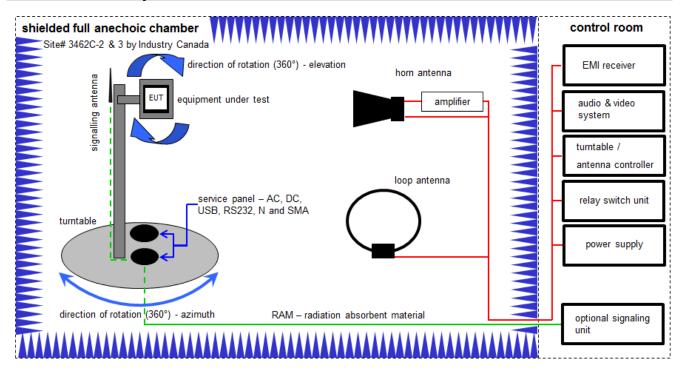
The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-3499/17-02-01_AnnexA

1-3499/17-02-01_AnnexB 1-3499/17-02-01_AnnexD

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).


In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

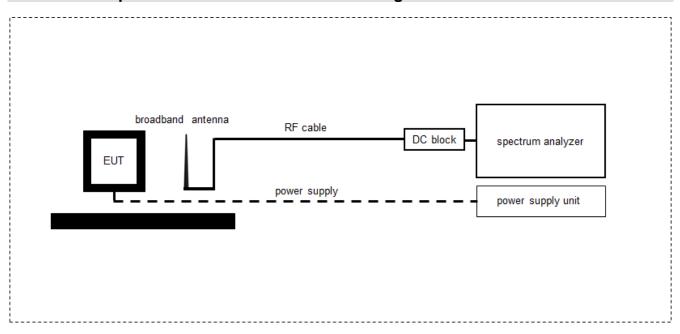
6.1 Shielded fully anechoic chamber

Measurement distance: tri-log antenna and horn antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:


 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A, B	Spectrum-Analyzer	FSU26	R&S	200809	300003874	k	31.01.2017	30.01.2018
2	A, B	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vIKI!	14.02.2017	13.02.2019
4	A, B	Switch / Control Unit	3488A	HP	-/-	300000199	ne	-/-	-/-
5	А	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
6	В	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
7	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
8	A, B	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
9	A, B	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO	-/-	300004682	ne	-/-	-/-
10	A, B	PC	ExOne	F+W	-/-	300004703	ne	-/-	-/-

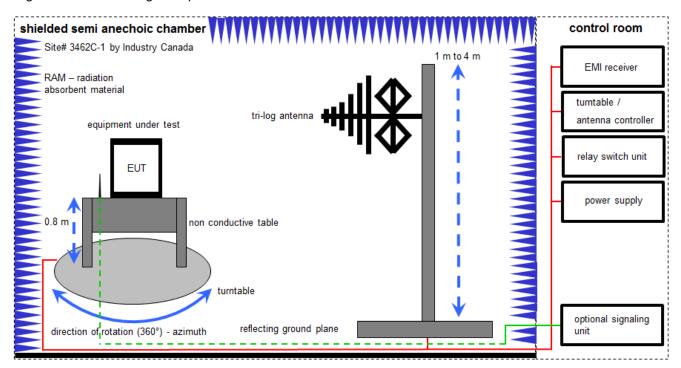
6.2 Test setup for normalized measurement configurations

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

 $\overline{OP \text{ [dBm]}} = -65.0 \text{ [dBm]} + 50 \text{ [dB]} - 20 \text{ [dBi]} + 5 \text{ [dB]} = -30 \text{ [dBm]} (1 \mu\text{W})$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	DC Power Supply, 60V, 10A	6038A	HP	3122A11097	300001204	Ve	21.01.2015	21.01.2018
2	А	Signal- and Spectrum Analyzer	FSW26	R&S	101455	300004528	k	25.01.2017	24.01.2018
3	Α	Loop Antenna	-/-	ZEG TS Steinfurt	-/-	400001208	ev	-/-	-/-
4	Α	RF Cable BNC	RG58	Huber & Suhner	-/-	400001209	ev	-/-	-/-

6.3 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
3	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
4	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018
5	Α	Spectrum-Analyzer	FSU26	R&S	200809	300003874	k	31.01.2017	30.01.2018

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 4 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS 210, Issue 9, Annex A	See table!	2017-08-01	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	С	NC	NA	NP	Remark
§ 15.35 (c) RSS-GEN	Timing of the transmitter (Duty cycle correction factor)	Nominal	Nominal	-/-		-/-		
§ 15.231 (a) (1) RSS-210 Issue 9	Switch off time	Nominal	Nominal	\boxtimes				-/-
§ 15.231 (b) (3) (c) RSS-210 Issue 9	Emission bandwidth	Nominal	Nominal	\boxtimes				-/-
§ 15.231 (b) RSS-210 Issue 9	Fieldstrength of Fundamental	Nominal	Nominal	\boxtimes				-/-
§ 15.209 RSS-210 Issue 9	Fieldstrength of harmonics and spurious	Nominal	Nominal	\boxtimes				-/-
§ 15.209 RSS-GEN	Receiver spurious emissions (radiated)	Nominal	Nominal			\boxtimes		-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

8.1 Additional comments

Reference documents: None

Special test descriptions: None

Configuration descriptions: None

9 Measurement results

9.1 Timing of the transmitter

Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	100 ms		
Resolution bandwidth:	1 MHz		
Video bandwidth:	1 MHz		
Span:	Zero		
Trace-Mode: Single sweep			
Test setup See chapter 6.2 A			

Limits:


FCC IC

(c) Unless otherwise specified, e.g. Section 15.255(b), when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

Result:

Plot 1: Transmit burst

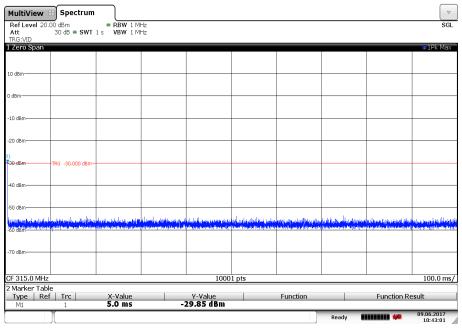
Transmit time (Tx on) = 15.35 msTx on + Tx off = 100 ms

The peak-to-average correction factor is calculated with 20Log [Tx on/(Tx on + Tx off)]. Hereby the peak-to-average correction factor is -16.28 dB

9.2 Switch off time

Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	1 s		
Resolution bandwidth:	1 MHz		
Video bandwidth:	1 MHz		
Span:	Zero		
Trace-Mode:	Single sweep		
Test setup	See chapter 6.2 A		


Limits:

FCC	IC	
A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.		

Results:

The EUT automatically ceases transmission within 5 ms after releasing the button

Plot: Switch off time

10:43:01 09.06.2017

9.3 Emission bandwidth

Measurement:

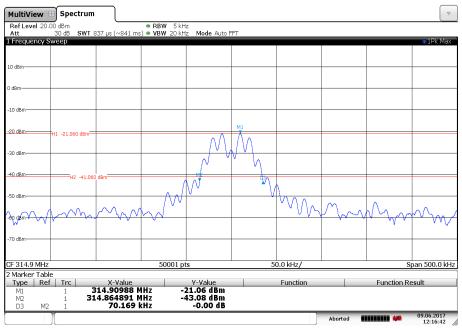
Bandwidth is determined at the points 20 dB down from the modulated carrier and the 99 % bandwidth of the modulated signal.

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth:	1 % of the span	
Video bandwidth:	3 x RBW	
Span:	500 kHz	
Trace-Mode:	Max hold	
Test setup	See chapter 6.2 A	

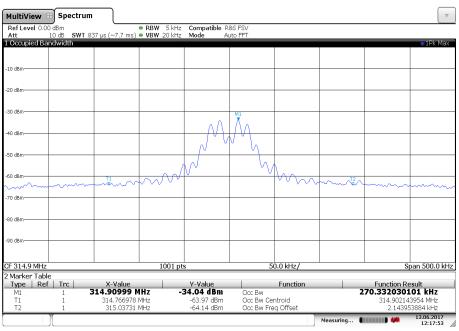
Limits:

FCC	IC
The OBW shall not be wider than 0.25% of the centre frequency, here maximum 787.25 kHz	

Result:


Measurement procedure	Emission bandwidth		
	Fı	F _h	
20 dB bandwidth	314.865 MHz	314.935 MHz	
99 % bandwidth	314.767 MHz	315.037 MHz	
Limit	314.506 MHz	315.293 MHz	
Maximum emission bandwidth	270.33	32 kHz	

Where: F_1 = is the lower edge of the emission bandwidth / MHz is the upper edge of the emission bandwidth / MHz


Plots: Emission bandwidth

Plot 1: 20 dB bandwidth

12:16:43 09.06.2017

Plot 2: 99% bandwidth

12:17:54 13.06.2017

9.4 Field strength of the fundamental

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth:	120 kHz	
Video bandwidth:	3 x RBW	
Span:	Depends on the signal	
Trace-Mode:	Max hold	
Test setup See chapter 6.3 A		

Limits:

FCC			IC
	Field strength of	the fundamental.	
In addition to the provisions of S	Section 15.205, the f	ield strength of en	nissions from intentional radiators
operated under this Section shall not exceed the following:			e following:
Fundamental Frequency / MHz	Field strength of µV/		Measurement distance / m
40.66 – 40.70	2,25	50	3
70-130	1,25	0	3
130-174	1,250 to	3,750	3
174-260	3,75	50	3
260-470	3,750 to	12,500	3

Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

- for the band 130-174 MHz, μ V/m at 3 meters = 56.81818(F) 6136.3636;
- for the band 260-470 MHz, μ V/m at 3 meters = 41.6667(F) 7083.3333.

Result:

TEST CONDITIONS		MAXIMUM POWER (@ 3 m distance)			
Me	Mode		Duty cycle average*	Limit	
T _{nom}	V _{nom}	7396 μV/m 1135 μV/m 77.4 dBμV/m 61.1 dBμV/m		6038 μV/m 75.6 dΒμV/m	
Measurement uncertainty			±3dB		

^{*)} Including the peak-to-average correction factor of -16.28 dB (see chapter 9.1).

9.5 Field strength of the harmonics and spurious

Measurement:

Measurement parameter			
Detector:	Peak / duty cycle average / quasi peak		
Sweep time:	Auto		
Resolution bandwidth:	200 Hz / 9 kHz / 1000 kHz		
Video bandwidth:	3 x RBW		
Span:	See plots		
Trace-Mode:	Max hold		
Test setup	See chapter 6.1 A / B, 6.3 A		

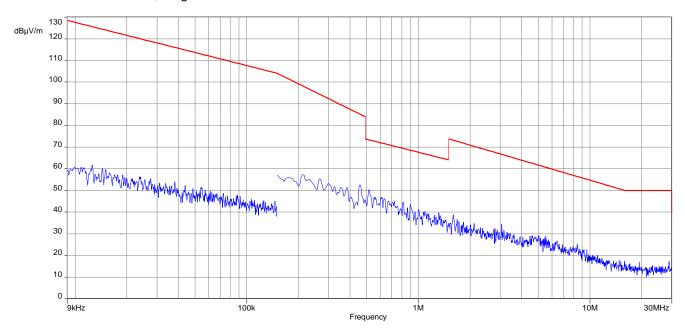
Limits:

FCC		IC				
Field strength of the fundamental.						
In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators						
operated under this Section shall not exceed the following:						
Fundamental Frequency / MHz	Field strength µV/		Measurement distance / m			
40.66 - 40.70	22	5	3			
70-130	12:	5	3			
130-174	125 to	375	3			
174-260	37	5	3			
260-470	375 to	1,250	3			
Above 470	1,25	50	3			

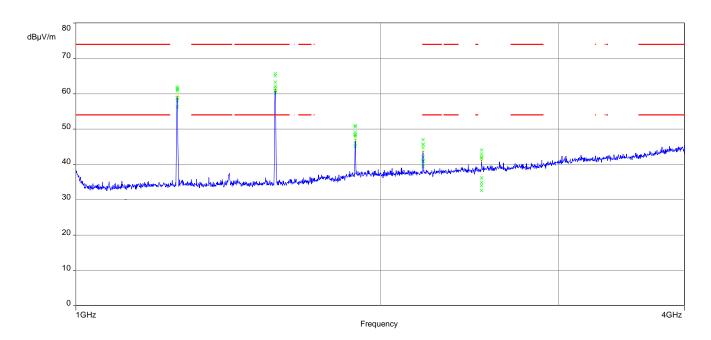
The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in Section 15.209, whichever limit permits a higher field strength.

FCC		IC			
Frequency / MHz	Field strength / μV/m		Measurement distance / m		
0.009 - 0.490	2400/F	(kHz)	300		
0.490 - 1.705	24000/F(kHz)		30		
1.705 – 30	30		30		
30 – 88	100		3		
88 – 216	150		88 – 216 150		3
216 – 960	200		3		
above 960	50	0	3		

Results:

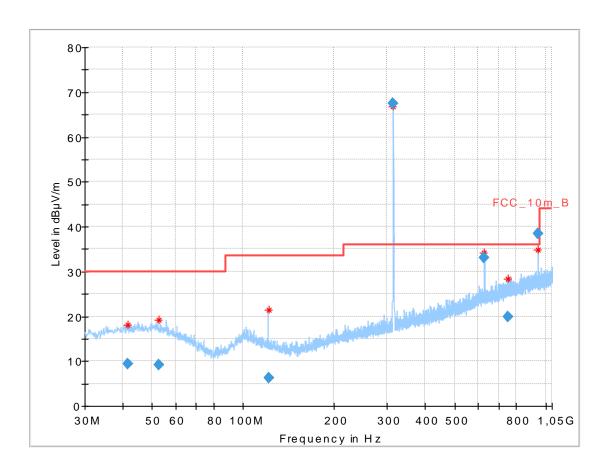

TX Spurious Emissions Radiated						
F / MHz	Detector	Level / dBμV/m	Limit / dBμV/m			
4050	Peak	61.9	,			
1259	Duty cycle average*	45.6	-/-			
4574	Peak	65.7	54.0			
1574	Duty cycle average*	49.4	54.0			
4000	Peak	51.0	1			
1889	Duty cycle average*	34.7	-/-			
0004	Peak 47.0	54.0				
2204	Duty cycle average*	30.7	54.0			
2518	Peak	Peak 44.1 ,				
	Duty cycle average*	27.8	-/-			

^{*)} Including the peak-to-average correction factor of -16.28 dB (see chapter 9.1).



Plots:

Plot 1: 9 kHz to 30 MHz, magnetic



Plot 2: 1000 MHz to 4000 MHz, vertical & horizontal polarisation

Plot 3: 30 MHz to 1000 MHz, vertical & horizontal polarisation

Final result

Frequency / MHz	QuasiPeak / dBμV/m	Limit / dBµV/m	Margin / dB	Meas. Time / ms	Bandwidth / kHz	Height / cm	Pol	Azimuth / deg	Corr. / dB
41.716650	9.49	30.00	20.51	1000.0	120.000	101.0	V	100.0	13.4
52.718700	9.20	30.00	20.80	1000.0	120.000	170.0	Н	80.0	13.4
121.338000	6.23	33.50	27.27	1000.0	120.000	101.0	V	280.0	10.2
314.013900	67.38	36.00	-31.38	1000.0	120.000	98.0	V	81.0	14.9
627.971100	33.11	36.00	2.89	1000.0	120.000	170.0	Η	-8.0	21.0
751.202400	19.78	36.00	16.22	1000.0	120.000	170.0	V	170.0	22.7
941.941350	38.41 / 22.13*	36.00	-2.41 / 13.87*	1000.0	120.000	170.0	V	280.0	24.3

^{*)} Third harmonic including the peak-to-average correction factor of -16.28 dB (see chapter 9.1).

10 Observations

No observations except those reported with the single test cases have been made.

Annex A Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
ETSI	European Telecommunications Standard Institute
EN	European Standard
FCC	Federal Communication Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
ОР	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2017-08-01

Annex C Accreditation Certificate

Note: The current certificate including annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

http://www.dakks.de/as/ast/d/D-PL-12076-01-01.pdf

http://www.dakks.de/as/ast/d/D-PL-12076-01-02.pdf