Amber Helm Development L.C.

92723 Michigan Hwy-152 Sister Lakes, Michigan 49047 USA

Tel: 888-847-8027

MQCE1-WR2232US
Issued: December 10, 2022

EMC Test Report

regarding

USA: CFR Title 47, Part 15.209 (Emissions)
Canada: ISED RSS-210v10/GENv5 (Emissions)

for

CE1

Category: LF Transmitter with UHF Receiver

Judgments:

15.209 and RSS-210v10 Compliant Transmitter

Testing Completed: December 7, 2022

Prepared for:

Marquardt GmbH

Schloss Str. 16, 78604 Rietheim-Weilheim N/A 78604 Germany Phone: +49 7424 99 1747, Fax: +49 7424 99 2122

Contact: Gerd Villing, gerd.villing@marquardt.com

Data Rec./Rev. by:

John Mantz

Rpt. Auth. by:

Joseph Brunett, EMC-002790-NE

Rpt. Prep./Rev. by:

John Nantz

Date of Issue:

December 10, 2022

Revision History

Rev. No.		Date	Details	Revised By
r(0	December 10, 2022	Initial Release.	J. Brunett
\mathbf{C}_{0}	ontents			
Re	evision Hist	ory		2
Ta	able of Cont	ents		2
1	1.1 Labora 1.2 Report 1.3 Subcon 1.4 Test Da 1.5 Limitat 1.6 Copyrig 1.7 Endors 1.8 Test Lo	Retention		4
2		fications and Procedures pecification and General Pro-		6 6
3	3.1 Descrip 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7	tion and Declarations EUT Configuration Modes of Operation Variants Test Samples Functional Exerciser Modifications Made Production Intent		7 8 8 8 8 8 8 9 9
	4.1.1 4.1.2 4.1.3 4.2 Intentio 4.2.1 4.2.2 4.2.3 4.3 Uninter 4.3.1	Radiated Test Setup and P Conducted Emissions Test Power Supply Variation onal Emissions Fundamental Emission Puls Fundamental Emission Bar Fundamental Emission ntional Emissions Transmit Chain Spurious E	Setup and Procedures	
5	Measureme	ent Uncertainty and Acc	creditation Documents	17

List of Tables

1	Test Site List	5
2	Equipment List.	5
3	EUT Declarations	
4	Pulsed Emission Characteristics (Duty Cycle)	3
5	Intentional Emission Bandwidth	4
6	Fundamental Radiated Emissions	5
7	Transmit Chain Spurious Emissions	6
8	Measurement Uncertainty	7
List	of Figures	
1	Photos of EUT.	7
2	EUT Test Configuration Diagram	8
3	Radiated Emissions Diagram of the EUT	0
4	Radiated Emissions Test Setup Photograph(s)	1
5	Pulsed Emission Characteristics (Duty Cycle)	3
6	Intentional Emission Bandwidth	4

1 Test Report Scope and Limitations

1.1 Laboratory Authorization

Test Facility description and attenuation characteristics are on file with the FCC Laboratory, Columbia, Maryland (FCC Reg. No: US5348 and US5356) and with ISED Canada, Ottawa, ON (File Ref. No: 3161A and 24249). Amber Helm Development L.C. holds accreditation under NVLAP Lab Code 200129-0.

1.2 Report Retention

For equipment verified to comply with the regulations herein, the manufacturer is obliged to retain this report with the product records for the life of the product, and no less than ten years. A copy of this Report will remain on file with this laboratory until January 2033.

1.3 Subcontracted Testing

This report does not contain data produced under subcontract.

1.4 Test Data

This test report contains data included within the laboratory's scope of accreditation. Any data in this report that is not covered under the laboratory's scope is clearly identified.

1.5 Limitation of Results

The test results contained in this report relate only to the item(s) tested. Any electrical or mechanical modification made to the test item subsequent to the test date shall invalidate the data presented in this report. Any electrical or mechanical modification made to the test item subsequent to this test date shall require reevaluation.

1.6 Copyright

This report shall not be reproduced, except in full, without the written approval of Amber Helm Development L.C.

1.7 Endorsements

This report shall not be used to claim product endorsement by any accrediting, regulatory, or governmental agency.

1.8 Test Location

The EUT was fully tested by **Amber Helm Development L.C.**, headquartered at 92723 Michigan Hwy-152, Sister Lakes, Michigan 49047 USA. Table 1 lists all sites employed herein. Specific test sites utilized are also listed in the test results sections of this report where needed.

Table 1: Test Site List.

Description	Location	Quality Num.
OATS (3 meter)	3615 E Grand River Rd., Williamston, Michigan 48895	OATSC

1.9 Traceability and Equipment Used

Pertinent test equipment used for measurements at this facility is listed in Table 2. The quality system employed at Amber Helm Development L.C. has been established to ensure all equipment has a clearly identifiable classification, calibration expiry date, and that all calibrations are traceable to the SI through NIST, other recognized national laboratories, accepted fundamental or natural physical constants, ratio type of calibration, or by comparison to consensus standards.

Table 2: Equipment List.

Description	${\bf Manufacturer/Model}$	$\mathbf{S}\mathbf{N}$	Quality Num.	Cal/Ver By / Date Due
Spectrum Analyzer	R & S / FPC1000	101060	RSFPC1K01	RS / Jan-2023
Spectrum Analyzer	R & S / FSV30	101660	RSFSV30001	RS / Apr-2023
Biconical	EMCO / 93110B	9802-3039	BICEMCO01	Keysight / Aug-2023
Log Periodic Antenna	EMCO / 3146	9305-3614	LOGEMCO01	Keysight / Aug-2023
BNC-BNC Coax	WRTL / $RG58/U$	001	CAB001-BLACK	AHD / March-2023
Shielded Loop Antenna	EMCO / 6507	9012-1264	EMCOLOOP2	Keysight / Aug-2023

2 Test Specifications and Procedures

2.1 Test Specification and General Procedures

The goal of Marquardt GmbH is to demonstrate that the Equipment Under Test (EUT) complies with the Rules and/or Directives below. Detailed in this report are the results of testing the Marquardt GmbH CE1 for compliance to:

Country/Region	Rules or Directive	Referenced Section(s)
United States	Code of Federal Regulations	CFR Title 47, Part 15.209
Canada	ISED Canada	ISED RSS-210v10/GENv5

It has been determined that the equipment under test is subject to the rules and directives above at the date of this testing. In conjunction with these rules and directives, the following specifications and procedures are followed herein to demonstrate compliance (in whole or in part) with these regulations.

ANSI C63.4:2014	"Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"
ANSI C63.10:2013	"American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices"
TP0102RA	"AHD Internal Document TP0102 - Radiated Emissions Test Procedure"
ISED Canada	"The Measurement of Occupied Bandwidth"

3 Configuration and Identification of the Equipment Under Test

3.1 Description and Declarations

The equipment under test is part of an automotive Wireless Beltminder System (seat belt status and occupant detection monitor) consisting of an LF transmitter with an RF receiver. The EUT is approximately $17 \times 12.5 \times 3$ cm in dimension, and is depicted in Figure 1. It is powered by 13.5 VDC Vehicular Power System. In use, this device is mounted inside an automotive vehicle. Table 3 outlines provider declared EUT specifications.

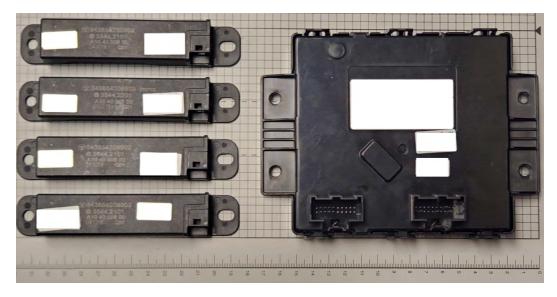


Figure 1: Photos of EUT.

Table 3: EUT Declarations.

General Declarations

Equipment Type: LF Transmitter with UHF Receiver

Country of Origin:
Not Declared
Nominal Supply:
13.5 VDC
Oper. Temp Range:
-40C to 85C
Frequency Range:
125 kHz
Antenna Dimension:
Not Declared

Antenna Type: PCB trace (Rx.), Potted Ferrite Coils (Tx.)

Antenna Gain: Not declared

Number of Channels:

Channel Spacing: Not Applicable
Alignment Range: Not Declared

Type of Modulation: FSK (RF), BPSK (LF)

United States

FCC ID Number: IYZCE1 Classification: DSC

Canada

IC Number: 2701A-CE1

Classification: Remote Control Device

3.1.1 EUT Configuration

The EUT is configured for testing as depicted in Figure 2.

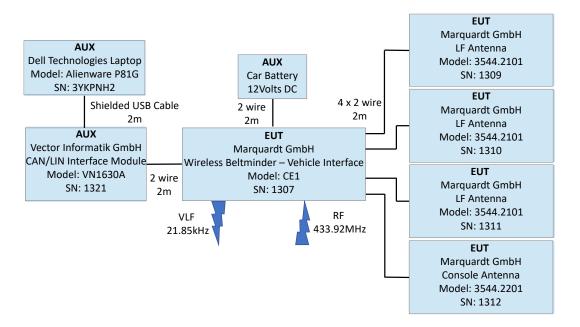


Figure 2: EUT Test Configuration Diagram.

3.1.2 Modes of Operation

There are two modes of operation. First, TXMODE is triggered over the CAN network, the EUT will transmit an encoded 21.85kHz interrogation signal (for example at ignition switch on) to a seat mounted device. This requests an occupant detection / seat belt engagement status sampling from the seat mounted device. The seat mounted device then responds with the requested status at 433.92MHz. In the second RXMODE, the seat mounted controller transmits detected occupant or seat belt changes of state back to the EUT which is listening in only the receiving mode.

3.1.3 Variants

There is only one variant of the EUT as tested. The EUT utilizes 2 different types of potted transmitting coils: CONSOLE/IMMO antenna (only includes a ferrite coil) and an LF/STANDARD antenna (includes a tuning capacitor along with the ferrite coil). There are a total of 3 LF and 1 CONSOLE antennas populated with the EUT.

3.1.4 Test Samples

Two samples of the EUT were provided including one normal operating and one paired with a CD1 Wireless Belt-minder and configured for cyclical operation.

3.1.5 Functional Exerciser

Normal operating EUT functionality was verified by observation of transmitted signal.

3.1.6 Modifications Made

There were no modifications made to the EUT by this laboratory.

3.1.7 Production Intent

The EUT appears to be a production ready sample.

3.1.8 Declared Exemptions and Additional Product Notes

The EUT is permanently installed in a transportation vehicle. As such, digital emissions are exempt from US and Canadian digital emissions regulations (per FCC 15.103(a) and IC correspondence on ICES-003). The UHF receiver included in this device has been separately evaluated following with SDoC guidelines.

4 Emissions

4.1 General Test Procedures

4.1.1 Radiated Test Setup and Procedures

Radiated electromagnetic emissions from the EUT are first pre-scanned in our screen room. Spectrum and modulation characteristics of all emissions are recorded. Instrumentation, including spectrum analyzers and other test equipment as detailed in Section 1.8 are employed. After pre-scan, emission measurements are made on the test site of record. If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in relevant test standards are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed if the resulting emissions appear to be worst-case in such a configuration. See Figure 3. All intentionally radiating elements that are not fixed-mounted in use are placed on the test table lying flat, on their side, and on their end (3-axes) and the resulting worst case emissions are recorded. If the EUT is fixed-mounted in use, measurements are made with the device oriented in the manner consistent with installation and then emissions are recorded. If the EUT exhibits spurious emissions due to internal receiver circuitry, such emissions are measured with an appropriate carrier signal applied.

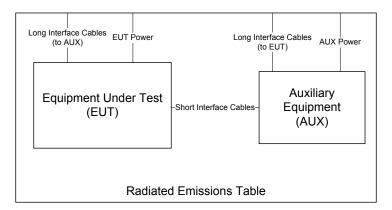


Figure 3: Radiated Emissions Diagram of the EUT.

For devices with intentional emissions below 30 MHz, a shielded loop antenna and/or E-field and H-Field broad-band probes are used depending on the regulation. Shielded loops are placed at a 1 meter receive height at the desired measurement distance. For exposure in this band, 10cm diameter single-axis broadband probes meeting the requirements of ISED SPR-002 section 5.2 are employed. Measurements are repeated and summed over three axes, and the entire frequency range is measured with and without the EUT transmitting.

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. For both horizontal and vertical polarizations, the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected. The EUT is then rotated through 360^{o} in azimuth until the highest emission is detected. The test antenna is then raised and lowered one last time from 1 to 4 m and the worst case value is recorded. Emissions above 1 GHz are characterized using standard gain or broadband ridge-horn antennas on our OATS with a 4×5 m rectangle of ECCOSORB absorber covering the OATS ground screen and a 1.5m table height. Care is taken to ensure that test receiver resolution and video bandwidths meet the regulatory requirements, and that the emission bandwidth of the EUT is not reduced. Photographs of the test setup employed are depicted in Figure 4.

Where regulations allow for direct measurement of field strength, power values (dBm) measured on the test receiver / analyzer are converted to $dB\mu V/m$ at the regulatory distance, using

$$E_{dist} = 107 + P_R + K_A - K_G + K_E - C_F$$

where P_R is the power recorded on spectrum analyzer, in dBm, K_A is the test antenna factor in dB/m, K_G is the combined pre-amplifier gain and cable loss in dB, K_E is duty correction factor (when applicable) in dB, and C_F is a distance conversion (employed only if limits are specified at alternate distance) in dB. This field strength value is then compared with the regulatory limit. If effective isotropic radiated power (EIRP) is computed, it is computed as

$$EIRP(dBm) = E_{3m}(dB\mu V/m) - 95.2.$$

When presenting data at each frequency, the highest measured emission under all possible EUT orientations (3-axes) is reported.

Figure 4: Radiated Emissions Test Setup Photograph(s).

4.1.2 Conducted Emissions Test Setup and Procedures

4.1.3 Power Supply Variation

Tests at extreme supply voltages are made if required by the procedures specified in the test standard, and results of this testing are detailed in this report.

4.2 Intentional Emissions

4.2.1 Fundamental Emission Pulsed Operation

The details and results of testing the EUT for pulsed operation are summarized in Table 4.

Table 4: Pulsed Emission Characteristics (Duty Cycle).

Frequency Range	Det	IF Bandwidth	Video Bandwidth	Test Date:	12-Nov-22
$9~kHz \le f \le 150~kHz$	Pk/QPk	5 kHz	20kHz	Test Engineer:	J. Nantz
				EUT Mode:	See Below
				Meas. Distance:	10cm
				EUT Tested:	MARQ1 CE1

		Ov	erall Transn	nission		Internal Frame Characteristics					
R0		Min. Repetition	Max. No.	Total Transmission	Max. Frame Length	Min. Frame		Compute	ed Duty Cycle		
	EUT Mode	Rate (sec)	of Frames	Length (sec)	(ms)	Period (s)	Frame Encoding	(%)	Duty (dB)		
R1	RUN	single	9	0.075	64.0		When manually activated the EUT transmits 1 data frame followed by 8 test frames (2 from each of 4 LF antennas).	64.000	N/A		
#	C1	C1 C2 C3 C4			C5	C6	C7	C8	C9		
(ROW) (COLUMN) NOTE: R1 C9 No Duty Cycle is employed when demonstrating compliance.											

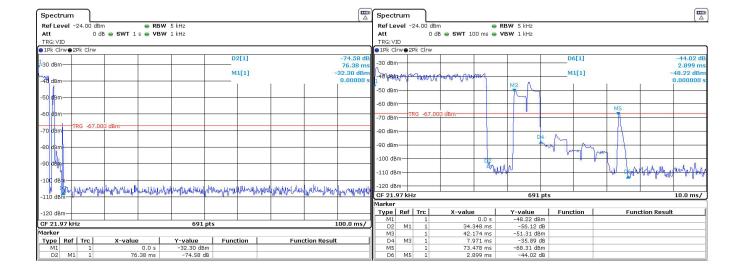


Figure 5: Pulsed Emission Characteristics (Duty Cycle).

4.2.2 Fundamental Emission Bandwidth

Emission bandwidth (EBW) of the EUT is measured with the device placed in the test mode(s) with the shortest available frame length and minimum frame spacing. Radiated emissions are recorded following the test procedures listed in Section 2.1. The 20 dB EBW is measured as the max-held peak-detected signal when the IF bandwidth is greater than or equal to 1% of the receiver span. For complex modulations other than ASK and FSK, the 99% emission bandwidth per IC test procedures has a different result, and is also separately reported. The results of EBW testing are summarized in Table 5. Plots showing measurements employed to obtain the emission bandwidth reported are provided in Figure 6.

Table 5: Intentional Emission Bandwidth.

	9 kHz ≤	ency Range $\leq f \leq 150 \text{ kHz}$ $\leq f \leq 30 \text{ MHz}$	Det Pk Pk	IF Bandwidth > 1% Span > 1% Span	Video Bandwidth >= 3 * IFBW >= 3 * IFBW	Test Date: Test Engineer: EUT Mode: Meas. Distance: EUT Tested:	J. Nantz See Below 0.1 m
RO	Mode	Frequency		20 dB EBW	99% EBW	fL (20 dBc)	fH (20 dBc)

R0	Mode	Frequency			20 dB EBW	99% EBW	fL (20 dBc)	fH (20 dBc)	
KO		(MHz)	Temp (C)	Supply (VDC)	(kHz)	(kHz)	(kHz)	(kHz)	
R1	RUN (LF Ant.)	0.02185	18	13.4	19.02	14.23	13.97	32.99	
R2	RUN (Console Ant.)	0.02185	18	13.4	18.25	13.99	14.7	32.95	
#	C1	C2	C3	C4	C5	C6	C7	C8	

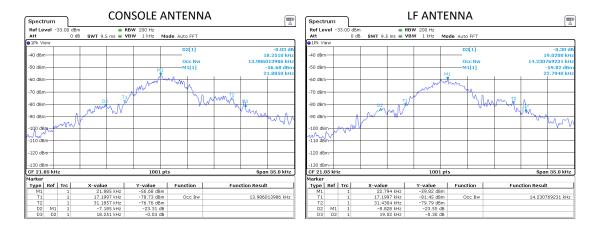


Figure 6: Intentional Emission Bandwidth.

4.2.3 Fundamental Emission

Following the test procedures listed in Section 2.1, field emissions measurements are made on the EUT for both Horizontal and Vertically polarized coupling fields. The EUT's loop antenna(s) are measured along all three axes, including when the EUT loop axes are aligned in the same axis as the test loop and aligned coplanar (in the same plane) with the test loop antenna. Table 6 details the results of these measurements.

Table 6: Fundamental Radiated Emissions.

Frequency Range	Det	IF Bandwidth	Video Bandwidth	Test Date:	14-Nov-22
$9 \text{ kHz} \le \text{f} \le 150 \text{ kHz}$	Pk/QPk/Ave	200 Hz	300 Hz	Test Engineer:	J. Nantz
$150~kHz \le f \le 30~MHz$	Pk/QPk	9 kHz	30 kHz	EUT Mode:	CW
$25~MHz \leq f \leq 1~000~MHz$	Pk/QPk	120 kHz	300 kHz	Meas. Distance:	3 meters
f>1 000 MHz	Pk	1 MHz	3MHz	EUT Tested:	MARQ1 CE1
f > 1 000 MHz	Avg	1 MHz	3MHz		

	Fundamental Emissions Measurements																	
		EUT	Freq.	Ant.	Ant.**	Table	Ka	Kg	Cf***	E-field	@ 3m	E-field @ 300m			H-field @ 300m (ISED)			
				Used	Height	Azim			3m / 300m	Pk	Qpk	Pk	Qpk	Limit Ave	Pk	Qpk	Limit Ave	Pass By***
#	Mode	Orientation	kHz	QN	m	deg	dB/m	dB	dB	dBu	V/m		dBuV.	/m		dBuA	/m	
1	COMMONE	Flat	21.85	EMCOLOOP2	1.0		10.1		80.0	100.5		20.5		40.8	-31.0		-10.7	20.3
2	CONSOLE- ANTENNA	Side	21.85	EMCOLOOP2	1.0		10.1		80.0	91.7		11.7		40.8	-39.8		-10.7	29.1
3	11.112.1111	End	21.85	EMCOLOOP2	1.0		10.1		80.0	89.1		9.1		40.8	-42.4		-10.7	31.7
4		Flat	21.85	EMCOLOOP2	1.0		10.1		80.0	98.2		18.2		40.8	-33.3		-10.7	22.6
5	LF-ANTENNA	Side	21.85	EMCOLOOP2	1.0		10.1		80.0	90.4		10.4		40.8	-41.1		-10.7	30.4
6		End	21.85	EMCOLOOP2	1.0		10.1		80.0	90.8		10.8		40.8	-40.7		-10.7	30.0

			Test Antenna	Freq.	DC Supply	E-field
	#	Mode	Polarization	kHz	Voltage	dBuV/m
I	7	001/001 F		21.85	15.2	100.8
ı	8	CONSOLE- ANTENNA	Flat	21.85	13.4	100.5
ı	9	ALL LAND		21.85	11.5	100.3

Measured OATS Field Decay Rate Applied for Cf									
	ist from EU	DE (PEG)	Formula Fit						
\\\\\\	\ <u></u>	dBa√/m	(Pk) vs Distanc						
$\geq <$	\gg	$\geq <$	xxx ln(x) ↓ yyy						
><	>+:6<	><	0 Rate of Decay						
><	>	><	(dB/dec)						
	>>:6<	><	m						
><	>5:6<	> <							
**** A $Ln(x) = xxx*A Log(x)$.									

4.3 Unintentional Emissions

4.3.1 Transmit Chain Spurious Emissions

The results for the measurement of transmit chain spurious emissions at the nominal voltage and temperature are provided in Table 7. Following the test procedures listed in Section 2.1, field emissions measurements are made on the EUT for both Horizontal and Vertically polarized coupling fields. The EUT's loop antenna(s) are measured when the EUT loop axes placed in all three axes, including when they are aligned along the same axis as the test loop antenna and are aligned coplanar with the test loop antenna. For all arrangements, test loop is rotated for maximum field. The results for the measurement of transmit chain spurious emissions at the nominal voltage and temperature are provided in Table 7. Measurements are performed to 10 times the highest fundamental operating frequency.

Table 7: Transmit Chain Spurious Emissions.

Frequency Range	Det	IF Bandwidth	Video Bandwidth	Test Date:	14-Nov-22
$9 \text{ kHz} \le \text{f} \le 150 \text{ kHz}$	Pk/QPk	200 Hz	300 Hz	Test Engineer:	J. Nantz
$150 \text{ kHz} \le f \le 30 \text{ MHz}$	Pk/QPk	9 kHz	30 kHz	EUT Mode:	CW
25 MHz \leq f \leq 1 000 MHz	Pk/QPk	120 kHz	300 kHz	Meas. Distance:	3 meters
f>1 000 MHz	Pk/Avg	1 MHz	3MHz	EUT Tested:	MARQ1 CE1

	Transmit Chain Spurious Emissions																		
		EUT	Freq.	Ant.	Ant.	Table	Ka	Kg	Cf	E-field	l @ 3m		E-field @ 3	00m	H-fi	eld @ 300:	m (ISED)		
R0					Height	Azim			(3 to 30/300m)	Pk	Qpk	Pk	Qpk	Limit Ave	Pk	Qpk	Limit Ave	Pass By	
	Mode	Orientation	kHz	Used	m	deg	dB/m	dB	dB	dBu	V/m		dBuV/r	n		dBuA/	m		Comments
R1		Max All, Worst	43.7	EMCOLOOP2	1.0	330	10.0		80.0	97.7		17.7		34.8	-33.8		-16.7	17.1	Max All
R2		Max All, Worst	65.6	EMCOLOOP2	1.0	330	10.0		80.0	94.8		14.8		31.3	-36.7		-20.2	16.5	Max All
R3		Max All, Worst	87.4	EMCOLOOP2	1.0	330	10.2		80.0	88.9		8.9		28.8	-42.6		-2.7	19.9	Max All
R4	CONGOLE	Max All, Worst	109.3	EMCOLOOP2	1.0	330	10.2		80.0	89.4		9.4		26.8	-42.1		-4.7	17.4	Max All
R5	CONSOLE- ANTENNA	Max All, Worst	131.1	EMCOLOOP2	1.0	330	10.1		80.0	80.7		0.7		25.3	-50.8		-6.3	24.6	Max All
R6		Max All, Worst	153.0	EMCOLOOP2	1.0	330	10.3		80.0	82.0		2.0		23.9	-49.5		-7.6	21.9	Max All
R7		Max All, Worst	174.8	EMCOLOOP2	1.0	330	11.5		80.0	80.6		0.6		22.8	-50.9		-8.8	22.2	Max All
R8		Max All, Worst	196.7	EMCOLOOP2	1.0	330	11.3		80.0	79.2		-0.8		21.7	-52.3		-9.8	22.5	Max All
R9		Max All, Worst	218.5	EMCOLOOP2	1.0	330	12.3		80.0	75.9		-4.1		20.8	-55.6		-10.7	24.9	Max All
R10																			
R11		Max All, Worst	43.7	EMCOLOOP2	1.0	240	10.0		80.0	94.0		14.0		34.8	-37.5		-16.7	20.8	Max All
R12		Max All, Worst	65.6	EMCOLOOP2	1.0	240	10.0		80.0	93.0		13.0		31.3	-38.5		-20.2	18.3	Max All
R13		Max All, Worst	87.4	EMCOLOOP2	1.0	240	10.2		80.0	77.4		-2.6		28.8	-54.1		-2.7	31.4	Max All
R14		Max All, Worst	109.3	EMCOLOOP2	1.0	240	10.2		80.0	81.5		1.5		26.8	-50.0		-4.7	25.3	Max All
R15	LF- ANTENNA	Max All, Worst	131.1	EMCOLOOP2	1.0	240	10.1		80.0	71.7		-8.3		25.3	-59.8		-6.3	33.6	Max All
R16		Max All, Worst	153.0	EMCOLOOP2	1.0	240	10.3		80.0	79.0		-1.0		23.9	-52.5		-7.6	24.9	Max All
R17		Max All, Worst	174.8	EMCOLOOP2	1.0	240	11.5		80.0	77.8		-2.2		22.8	-53.7		-8.8	25.0	Max All
R18		Max All, Worst	196.7	EMCOLOOP2	1.0	240	11.3		80.0	77.5		-2.5		21.7	-54.0		-9.8	24.2	Max All
R19		Max All, Worst	218.5	EMCOLOOP2	1.0	240	12.3		80.0	74.8		-5.2		20.8	-56.7		-10.7	26.0	Max All
#	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19

⁽ROW) (COLUMN) NOTE:

EUT was tested in periodic CW mode. No averaging applied and Average data was not needed to demonstrate compliance

R0 C5

Emissions were evaluated at 1m test antenna height from 9 kHz to 30 MHz. No significant spurious were observed past the 10th harmonic.

In alignment with FCC Part 15.31 (f)(2), EUT field decay rate is 40dB/dec. EUT field decay rate was not measured over a range of distances to determine CF between measurement and limit distance

5 Measurement Uncertainty and Accreditation Documents

The maximum values of measurement uncertainty for the laboratory test equipment and facilities associated with each test are given in the table below. This uncertainty is computed for a 95.45% confidence level based on a coverage factor of k=2.

Table 8: Measurement Uncertainty.

Measured Parameter	${\bf Measurement~Uncertainty^{\dagger}}$
Radio Frequency	$\pm (f_{Mkr}/10^7 + RBW/10 + (SPN/(PTS - 1))/2 + 1 \text{ Hz})$
Conducted Emm. Amplitude	$\pm 1.9\mathrm{dB}$
Radiated Emm. Amplitude $(f < 30 \mathrm{MHz})$	$\pm 3.1\mathrm{dB}$
Radiated Emm. Amplitude $(30 - 200 \mathrm{MHz})$	$\pm 4.0\mathrm{dB}$
Radiated Emm. Amplitude $(200 - 1000 \mathrm{MHz})$	$\pm 5.2\mathrm{dB}$
Radiated Emm. Amplitude $(f > 1000 \mathrm{MHz})$	$\pm 3.7\mathrm{dB}$

†Ref: CISPR 16-4-2:2011+A1:2014

Figure 7: Accreditation Documents