Report on the FCC and IC Testing of the Marquardt GmbH Passive Car Entry Key Model: BK1 In accordance with FCC 47 CFR Part 15 F and ISED RSS-220 and ISED RSS-Gen

Prepared for:

Marquardt GmbH Schloss-Str. 16 78604 Rietheim-Weilheim Germany

 FCC ID:
 IYZBK1

 IC:
 2701A-BK1

COMMERCIAL-IN-CONFIDENCE

Date: 2020-10-01

Document Number: TR-64038-83123-07 | Issue 2

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Project Management	Alex Fink	2020-10-01	Sign-10 405743
Authorised Signatory	Markus Biberger	2020-10-01	Kanan Sign- SIGN-ID 405840

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service document control rules. Engineering Statement:

This measurement shown in this report were made in accordance with the procedures described on test pages. All reporded testing was carried out on a sample equipment to demonstrate limited compilance with with FCC 47 CFR Part 15 F and ISED RSS-220 and RSS-GEN.

The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME		DATE		SIGNATURE
Testing	Alex Fink		2020-	-10-01	Sint
					SIGN-ID 405743
Laboratory Accreditation		Laboratory re	cognition	Industry Canad	a test site registration
DAkkS Reg. No. D-PL-11	321-11-02	Registration I	No. BNetzA-CAB-16/21-15	3050A-2	
DAkkS Reg. No. D-PL-11	321-11-03	-			

Executive Statement:

A sample of this product was tested and found to be compilant with FCC 47 CFR Part 15 F:2019 and ISED RSS-220:2018 and ISED RSS-Gen:2019

Budesiveragemar Bharga CAB 1021-15	DISCLAIMER AND COPYRIGHT This non-binding report has been prepared by TÜV SÜD Product Service with all reasonable skill and care. The document is confiden- tial to the potential Client and TÜV SÜD Product Service. No part of this document may be reproduced without the prior written ap- proval of TÜV SÜD Product Service. © 2020 TÜV SÜD Product Service. ACCREDITATION Our BNetzA Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our BNetzA Accred-
	itation. Results of tests not covered by our BNetzA Accreditation Schedule are marked NBA (Not BNetzA Accredited).

Trade Register Munich HRB 85742 VAT ID No. DE129484267 Information pursuant to Section 2(1) DL-InfoV (Germany) at www.tuev-sued.com/imprint Managing Directors: Dr. Peter Havel (Sprecher / CEO) Dr. Jens Butenandt Patrick van Welij Phone: +49 (0) 9421 55 22-0 Fax: +49 (0) 9421 55 22-99 www.tuev-sued.de TÜV SÜD Product Service GmbH

Äußere Frühlingstraße 45 94315 Straubing Germany

Product Service

Add value. Inspire trust.

TÜV SÜD Product Service

Content

1 Re	eport Summary	2
1.1	Modification Report	2
1.2	Introduction	
1.3	Brief Summary of Results	
1.4	Product Information	
1.5	EUT Modifications Record	6
1.6	Test Location	
2 Te 2.1	est Details Bandwidth of Signal	
2.2	Peak Power	
2.3	Radiated Emissions	
2.4	Radiated Emissions in GPS bands	
2.5	RF Exposure	
3 Ме	easurement Uncertainty	

Annex to Test Report TR-64038-83123-07 | Issue: 01

1 Report Summary

1.1 Modification Report

Alternations and additions of this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of changes	Date of Issue
1	First Issue	2020-08-21
2	UWB device subclass and section for signal deactivation added	2020-10-01

Table 1: Report of Modifications

1.2 Introduction

Applicant Manufacturer Model Number(s) Serial Number(s) Hardware Version(s) Software Version(s) UWB device subclass Additional information	Marquardt GmbH Marquardt GmbH BK1 47BA99B6 Hand-held Communication Device No data port in the radio terminal available
Number of Samples Tested Test Specification(s) / Issue / Date	1 FCC 47 CFR Part15 F: 2019, FCC 47 CFR Part15 C: 2019 and ISED RSS-220, Issue 1, Amd. 1: 2018 ISED RSS-Gen, Issue 5, Amd. 1: 2019
Test Plan/Issue/Date	
Order Number	6200401493-G51
Date	2020-02-28
Date of Receipt of EUT	2020-07-29
Start of Test	2020-07-28
Finish of Test	2020-08-21
Name of Engineer(s)	Alex Fink
Related Document(s)	ANSI C63.10:2013

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15 F and ISED RSS-220 and RSS-Gen is shown below.

Section	Specification Clause	Test Description	Result
Transmittin	g continuously		
2.1	15.503(d)	Bandwidth of Signal	Pass
2.2	15.519(e), 15.521	Peak Power	Pass
2.3	15.505(a), 15.519(c), 15.209	Radiated Emissions	Pass
2.4	15.519(d)	Radiated Emissions in GPS bands	Pass
N/A	15.505(a), 15.207	Conducted Disturbance at Mains Terminal	Not applicable, battery supply
2.5	15.519(a)	Signal deactivation	Pass

Table 2: Results according to FCC 47 CFR Part 15 F

Section	Specification	Test Description	Result
	Clause		
Transmittin	g continuously		
2.1	2	Bandwidth of Signal	Pass
2.2	5.3.1(g),	Peak Power	Pass
	Annex 4		
2.3	5.3.1(c)	Radiated Emissions	Pass
	5.3.1(d)		
2.4	5.3.1(e)	Radiated Emissions in GPS bands	Pass
2.5	5.3.1(b)	Signal deactivation	Pass

Table 3: Results according to ISED RSS-220

Section	Specification Clause	Test Description	Result
Transmittin	g continuously		
2.1	6.7	Bandwidth of Signal	Pass
2.3	8.9	Radiated Emissions	Pass
N/A	8.8	AC Power Line Conducted Emissions	Not applicable, battery supply
2.3	8.9, 8.10	Radiated Emissions	Pass

Table 4: Results according to ISED RSS-Gen

1.4 Product Information

1.4.1 Technical Description

The BK1, as a passive entry vehicle key, is part of a driving authorisation system, which further consists of a Body Control Unit and up to 6 UWB vehicle modules. The Body Control Unit sends an LF signal for wake up. The BK1 corresponds in return over RF bidirectionally. In the meantime, a time-of-flight measurement is triggered bidirectionally between the UWB vehicle module and the BK1. The distance is measured between the UWB vehicle module and the BK1 by means of the time of flight based on speed of light. The components exchange encrypted data for car access, to start the engine and to locate the key.

User manual

The BK1 has up to four keys. Open, Close, Trunk and Panic (optional for North American market).

On each button press it initiates the communication to the Body Control Module and the range measurement process. Wireless transmission is indicated by a flashing red LED.

Open Button

- To unlock the vehicles doors when the button is pressed short.
- In case the button is pressed long the windows will open additionally.

Close Button

- Locks the vehicles doors when the button is pressed short.
- When the button is pressed long the windows will close additionally.
- To activate the power save mode when pressed twice. This mode is deactivated by pressing

any button.

Trunk Button

To unlock and open the vehicles trunk lid.

Optional the car can be accessed without handling the key. In this case RF signals are exchanged bidirectional when touching the door handle.

In case the battery is low car access is possible by means of an integrated mechanic emergency key. The BK1 is then to be placed into a dedicated slot inside the vehicles centre console to be powered wireless by means of a magnetic field for passive Transponder communication.

Working temperature: -20° to +65° C (UHF and UWB) Rough mechanical dimensions: 87 X 44 X 13 mm Weight: 50 g

Data of UWB-Part

Transmission mode:	bidirectional RF 4 channels
Receiver	
Channel frequencies (center):	Channel 5: 6489,6 MHz Channel 6: 6988,8 MHz Channel 8: 7488,0 MHz Channel 9: 7987,2 MHz
10 dB bandwidth:	> 500 MHz per channel
Frequency tolerance: (production, aging, temperature)	+/-25 ppm
Sensitivity:	-90 dBm
Modulation:	BFSK
Frequency deviation:	+/- 125 MHz
Modulation content: pulse rate data rate	digital binary data stream, 16 pulses per bit 4 Mpulse/s 250 kBit/s
Antenna:	integrated PCB antenna, combined for Rx / Tx
Transmitter:	
Center frequency:	see Rx
Frequency tolerance: (production, aging, temperature)	+/-25 ppm
Transmitter power:	Max41.3 dBm/MHz EIRP with PCB antenna
Modulation:	BFSK
Frequency deviation:	+/- 125 MHz
Antenna:	integrated PCB antenna, combined for Rx / Tx

1.5 EUT Modifications Record

The table below details modifications made to the EUT during the test programme. The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
0	As supplied by the customer SN: 47BA99B6 – test sample with antenna	Not Applicable	Not Applicable

Table 5

1.6 Test Location

TÜV SÜD Product Service conducted the following tests at our Straubing test laboratory:

Test Name	Name of Engineer(s)	
Transmitting continuously		
Bandwidth of Signal	Alex Fink	
Peak Power	Alex Fink	
Radiated Emissions	Alex Fink	
Radiated Emissions in GPS bands	Alex Fink	
Signal deactivation	Alex Fink	
RF Exposure	Alex Fink	

Office Address:

Äußere Frühlingstraße 45 94315 Straubing Germany

2 Test Details

2.1 Bandwidth of Signal

2.1.1 Specification Reference

FCC 47 CFR Part 15 F, Clause 15.503(d) ISED RSS-220, Clause 2 ISED RSS-Gen, Clause 6.7

2.1.2 Equipment under Test and Modification State

BK1, S/N: 47BA99B6 - Modification State 0

2.1.3 Date of Test

2020-07-28 and 2020-08-21

2.1.4 Environmental Conditions

Ambient Temperature	21 °C
Relative Humidity	35 %

2.1.5 Specification Limits

A UWB device is an intentional radiator that has either a -10 dBc bandwidth $\left(\frac{f_H+f_L}{2}\right)$ of at least 500 MHz or a -10 dB $\left(2\frac{f_H-f_L}{f_H+f_L}\right)$ fractional bandwidth greater than 0.2.

2.1.6 Test Method

The test was performed according to ANSI C63.10, clauses 6.9 and 10.1 See section 2.3 of this test report for details.

2.1.7 Test Results

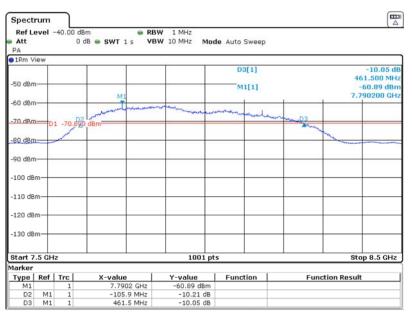

Frequency Channel	f∟ (GHz)	fн (GHz)	f _M (GHz)	-10 dB Fractional Band- width (MHz)
5	6.223	6.809	6.568	586
9	7.684	8.252	7.790	567

Table 6: 10 dB bandwidth

Date: 28.JUL.2020 21:09:42

Date: 28.JUL.2020 21:20:16

Figure 2 – 10 dB Bandwidth for Channel 9

Frequency Channel	99% Bandwidth (MHz)
5	601
9	616

Table 7: 99% bandwidth

10:21:31 21.08.2020

Figure 3 – 10 dB Bandwidth for Channel 5

Figure 4 – 10 dB Bandwidth for Channel 9

2.1.8 Test Location and Test Equipment

This test was carried out in Semi anechoic room - cabin no. 11.

Instrument	Manufacturer	Туре No	TE No	Calibra- tion Pe- riod (months)	Calibration Due
EMI test receiver	Rohde & Schwarz	ESW44	39897	03/20	03/21
Horn antenna	Rohde & Schwarz	HF907	40089	02/19	02/21
Semi anechoic room	Rohde & Schwarz	No. 11			

Table 8

2.2 Peak Power

2.2.1 Specification Reference

FCC 47 CFR Part 15 F, Clause 15.519(e) and 15.521 ISED RSS-220, Clauses 4. 5.3.1(g) and Annex 4

2.2.2 Equipment under Test and Modification State

BK1, S/N: 47BA99B6 - Modification State 0

2.2.3 Date of Test

2020-07-27

2.2.4 Environmental Conditions

Ambient Temperature	21 °C
Relative Humidity	35 %

2.2.5 Specification Limits

There is a limit on the peak level of the emissions contained within a 50 MHz bandwidth centered on the frequency at which the highest radiated emission occurs, f_M . That limit is 0 dBm e.i.r.p. It is acceptable to employ a different resolution bandwidth, and a correspondingly different peak emission limit, following the procedures.

2.2.6 Test Method

The test was performed according to ANSI C63.10, section 10.3.5 See section 2.3 of this test report for details.

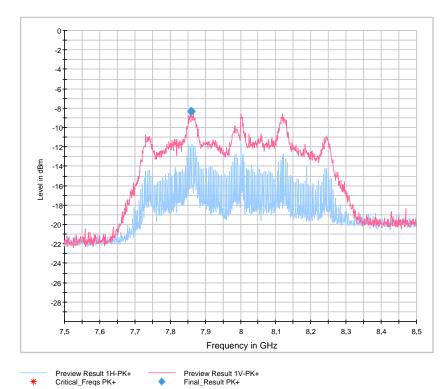
2.2.7 Test Results

Frequency Channel	f _M (GHz)	Resolution Bandwidth (MHz)	Peak Power (dBm)	Peak Power Limit (dBm)
6.4896	6.614	50	-5.51	0
7.9872	7.861	50	-8.31	0

Table 9: Peak Power

*

01 -2 -4 -6--8 -10-Level in dBm -12 -14 -16 -18--20 Hilshil Harro -22 6,1 6,2 6,3 6,5 6,6 6,7 6,8 6,9 6 6,4 7 Frequency in GHz Preview Result 1V-PK+ Final_Result PK+ Preview Result 1H-PK+ Critical_Freqs PK+


Mean Power Spectral Density for Channel 5

Final Results:

Frequency MHz	MaxPeak dBm	Limit dBm	Margin dB	Meas. Time	Bandwidth kHz	Height	Pol	Azimuth	Corr. dB
IVITIZ	UDIII	ubiii	uБ	ms	KITZ	ст		deg	uБ
6614.000000	-5.51	0.00	5.51	500.0	50000.000	150.0	V	-158.0	-53.3

۲

Mean Power Spectral Density for Channel 9

Final Results:

Frequency	MaxPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
MHz	dBm	dBm	dB	ms	kHz	cm		deg	dB
7861.000000	-8.31	0.00	8.31	500.0	50000.000	150.0	V	-121.0	-51.8

2.2.8 Test Location and Test Equipment

This test was carried out in Semi anechoic room - cabin no. 11.

Instrument	Manufacturer	Туре No	TE No	Calibra- tion Pe- riod (months)	Calibration Due
EMI test receiver	Rohde & Schwarz	ESW44	39897	03/20	03/21
Horn antenna	Rohde & Schwarz	HF907	40089	02/19	02/21
Semi anechoic room	Rohde & Schwarz	No. 11			

2.3 Radiated Emissions

2.3.1 Specification Reference

FCC 47 CFR Part 15 F, Clauses 15.505(a) and 15.519(c) FCC 47 CFR Part 15 C, Clauses 15.209 ISED RSS-220, Clause 5.3.1(c), 5.3.1(d) ISED RSS-Gen, Clauses 8.9

2.3.2 Equipment under Test and Modification State

BK1, S/N: 47BA99B6 - Modification State 0

2.3.3 Date of Test

2020-08-03 to 2020-08-13

2.3.4 Environmental Conditions

Ambient Temperature	21 °C
Relative Humidity	35 %

2.3.5 Specification Limits

2.3.5.1 Radiated emissions up to 960 MHz according to 47 CFR 15.517(c), 15.519(c) and ISED RSS-220, Clause 5.2.1 (c), 5.2.1 (c), 5.3.1 (d), 5.3.1 (d)

The radiated emissions at or below 960 MHz from a device operating under the provisions of this sections shall not exceed the general radiated emission limits:

General radiated emission limits:							
Frequency Range	Test distance	Field s	trength	Field	strength		
(MHz)	(m)	(μA/m)	(dBµA/m)	(µV/m)	(dBμV/m)		
0.009 - 0.49	300	6.37 / f	20*lg(6.37 / f)	2400 / f	20*lg(2400 / f)		
0.49 - 1.705	30	63.7 / f	20*lg(63.7 / f)	24000 / f	20*lg(24000 / f)		
1.705 - 30	30	0.08	20*lg(0.08 / f)	30	20*lg(30 / f)		
30 - 88	3			100	40		
88 – 216	3			150	43.5		
126 – 960	3			200	46		
Note 1: f in kHz							

 Table 11 General radiated emission limits

2.3.5.2 Radiated emissions above 960 MHz according to 47 CFR 15.517(c)

The radiated emissions above 960 MHz shall not exceed the following average (RMS) limits when measured using a resolution bandwidth of 1 MHz:

Frequency range	EIRP
960 MHz – 1610 MHz	-75.3 dBm
1610 MHz – 1990 MHz	-53.3 dBm
1990 MHz – 3.1 GHz	-51.3 dBm
3.1 GHz – 10.6 GHz	-41.3 dBm
above 10.6 GHz	-51.3 dBm

2.3.5.3 Radiated emissions above 960 MHz according to 47 CFR 15.519(c)

The radiated emissions above 960 MHz shall not exceed the following average (RMS) limits when measured using a resolution bandwidth of 1 MHz:

Frequency range	EIRP
960 MHz – 1610 MHz	-75.3 dBm
1610 MHz – 1990 MHz	-63.3 dBm
1990 MHz – 3.1 GHz	-61.3 dBm
3.1 GHz – 10.6 GHz	-41.3 dBm
above 10.6 GHz	-61.3 dBm

2.3.5.4 Radiated emissions above 960 MHz according to ISED RSS-220, Clause 5.2.1 (d)

The radiated emissions above 960 MHz shall not exceed the following average (RMS) limits when measured using a resolution bandwidth of 1 MHz:

Frequency range	EIRP		
960 MHz – 1610 MHz	-75.3 dBm		
1610 MHz – 4750 MHz	-70.0 dBm		
4750 MHz – 10.6 GHz	-41.3 dBm		
above 10.6 GHz	-51.3 dBm		

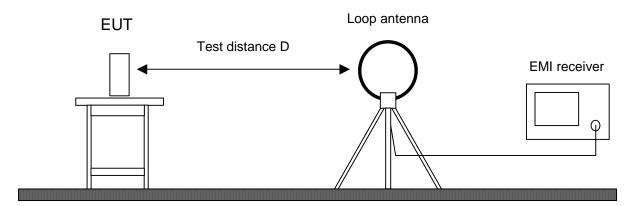
2.3.5.5 Radiated emissions above 960 MHz according to ISED RSS-220, Clause 5.3.1 (d)

The radiated emissions above 960 MHz shall not exceed the following average (RMS) limits when measured using a resolution bandwidth of 1 MHz:

Frequency range	EIRP			
960 MHz – 1610 MHz	-75.3 dBm			
1610 MHz – 4750 MHz	-70.0 dBm			
4750 MHz – 10.6 GHz	-41.3 dBm			
above 10.6 GHz	-61.3 dBm			

2.3.6 Test Method

The test was performed according to ANSI C63.10, sections 11.11 and 11.12

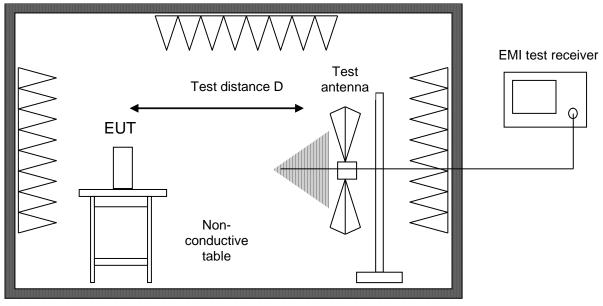

Prescans are performed in six positions of the EUT to get the full spectrum of emission caused by the EUT with the measuring antenna raised and lowered from 1 m to 4 m with vertical and horizontal polarisation to find the combination of table position, antenna height and antenna polarisation for the maximum emission levels.

Data reduction is applied to these results to select those levels having less margin than 10 dB or exceeding the limit using subranges and limited number of maximums.

Further maximisation for adjusting the maximum position is following.

Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

2.3.6.1 Frequency range 9 kHz – 30 MHz


The EUT was placed on a non-conductive table, 0.8 m above the ground.

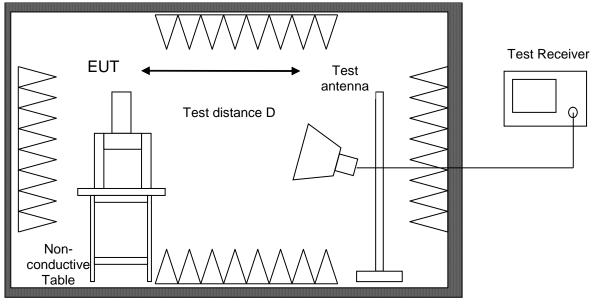
Radiated emissions in the frequency 9 kHz - 30 MHz is measured within a semi-anechoic room with an active loop antenna with the measurement detector set to peak. In addition in the frequency range 9 kHz to 490 kHz also an average detector was used. The measurement bandwidth of the receiver was set to 300 Hz in the frequency range 9 kHz to 150 kHz and 10 kHz in the frequency range 150 kHz to 30 MHz. Prescans were performed in six positions of the EUT.

For final measurements the detector was set to CISPR quasi-peak and in addition to CISPR average in the frequency range 9 kHz to 490 kHz with a resolution bandwidth 200 Hz in the frequency range 9 kHz to 150 kHz and 9 kHz in the frequency range 150 kHz to 30 MHz. Final tests were performed immediately after a final frequency and zoom (for drifting disturbances) and maximum adjustment.

2.3.6.2 Frequency range 30 MHz – 1 GHz

Alternate test site (semi anechoic room)

The EUT was placed on a non-conductive table, 0.8 m above the ground plane


Radiated emissions in the frequency range 30 MHz – 1 GHz is measured within a semi-anechoic room with groundplane complying with the NSA requirements of ANSI C63.4. for alternative test sites. A linear polarised logarithmic periodic antenna combined with a 4:1 broadband dipole ("Trilog broadband antenna") is used.

For prescan tests the test receiver is set to peak-detector with a bandwidth of 120 kHz.

With the measurement bandwidth of the test receiver set to 120 kHz CISPR quasi-peak detector is selected for final measurements following immediately after a final frequency zoom (for drifting disturbances) and maximum adjustment.

2.3.6.3 Frequency range above 1 GHz

Fully anechoic room

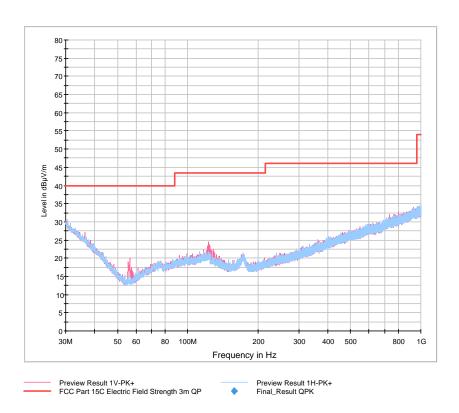
The EUT was placed on a non-conductive table, 1.5 m above the ground plane Radiated emission tests above 1 GHz are performed in a fully anechoic room with the S_{VSWR} requirements of ANSI C63.4. Measurements are performed both in the horizontal and vertical planes of polarisation using a test receiver with the detector function set to peak and average and the resolution bandwidth set to 1 MHz. Testing above 1 GHz is performed with horn antennas with the EUT in boresight of the antenna.

For prescan tests the test receiver is set to peak- and average-detector with a bandwidth of 1 MHz. With the measurement bandwidth of the test receiver set to 1 MHz and peak- and CISPR average-detector is selected for final measurements following immediately after a final frequency zoom (for drifting disturbances) and maximum adjustment.

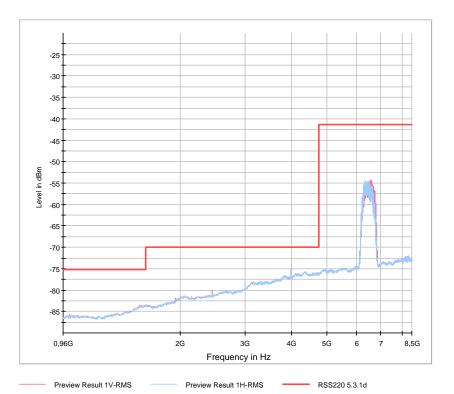
2.3.7 Test Results

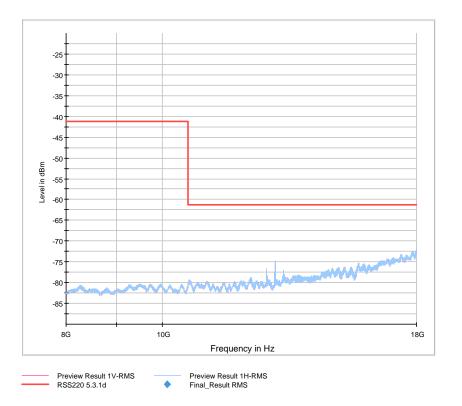
Frequency range	Test distance					
9 kHz to 1 GHz	3 m					
1 GHz to 8 GHz	1 m					
8 GHz to 40 GHz	0.5 m					

Table 12

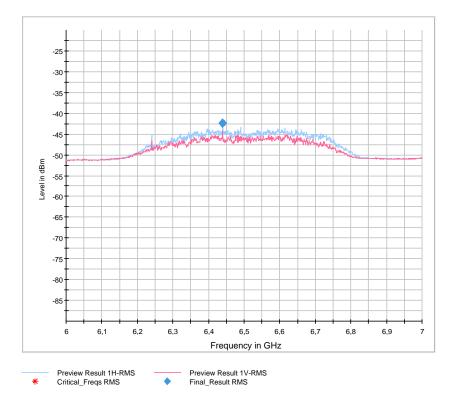

Sample calculation:

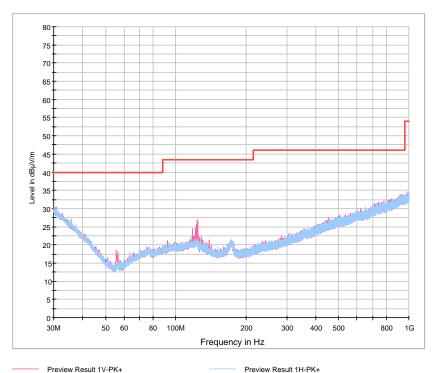
Final Value (dBµV/m) =


Reading Value (dB μ V) + (Cable attenuation (dB) + Antenna Transducer (dB(1/m)))

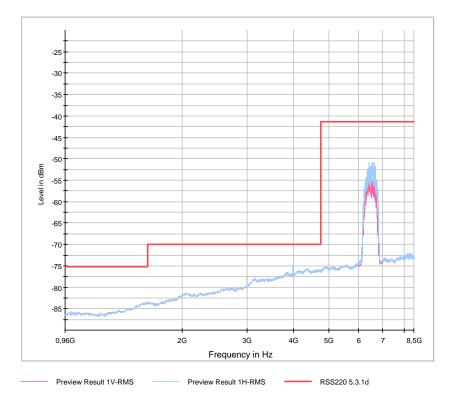

Transmitting continuously, Channel 5 - Preliminary pre-scans for the worst-case orientation

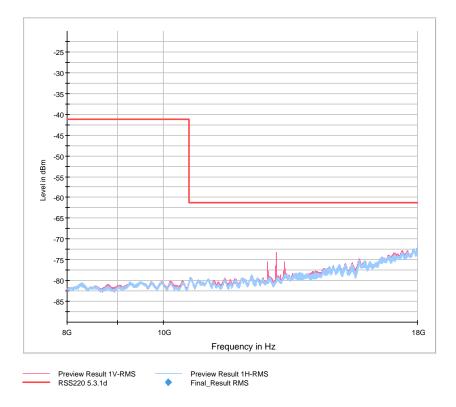
x axis

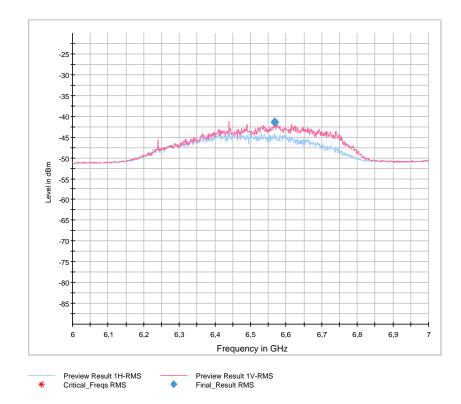


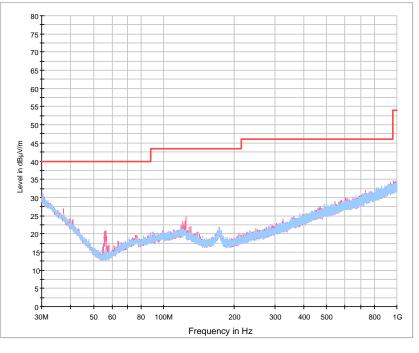


Final Results:


Frequency	RMS	Meas. Time	Bandwidth Height		Pol	Azimuth	Corr.	
MHz	dBm	ms	kHz	cm		deg	dB	
6440.000000	-42.37	1000.0	1000.000	150.0	Н	-11.0	-53.8	

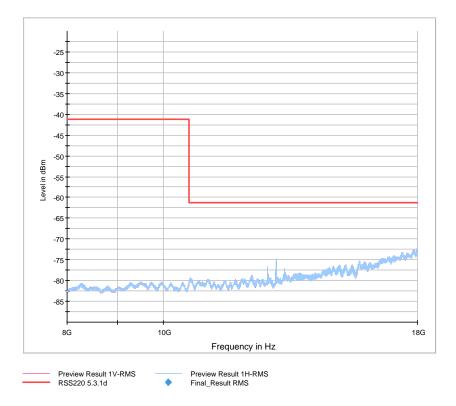

y axis




Final Results:

Frequency MHz	RMS dBm	Limit dBm	Margin dB	Meas. Time ms	Bandwidth kHz	Height cm	Pol	Azimuth deg	Corr. dB
6568.000000	-41.50	-41.30	0.20	1000.0	1000.000	150.0	V	-149.0	-53.4


➔ Worst case orientation is y axis


z axis

