

TEST REPORT

Test report no.: 1-2447/16-01-09

Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.cetecom.com
e-mail: ict@cetecom.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Applicant

Marquardt GmbH

Schloss-Str. 16

78604 Rietheim-Weilheim / GERMANY

Phone: +49 7424 99-0 Fax: +49 742 499-2532 Contact: Daniel Lutz

e-mail: daniel.lutz@marquardt.de Phone: +49 742 499-2769

Manufacturer

Marquardt GmbH

Schloss-Str. 16

78604 Rietheim-Weilheim / GERMANY

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 247 Issue 1 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

RSS - Gen Issue 4 Spectrum Management and Telecommunications Radio Standards Specifications -

General Requirements and Information for the Certification of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Remote control

Model name: MM1
FCC ID: IYZ-MM1
IC: 2701A-MM1

Frequency: DTS band 2400 MHz to 2483.5 MHz

Technology tested: Bluetooth® LE

Antenna: Integrated PCB antenna

Power supply: 3.0 V DC by DA14583F01DEVKT-B Kit

Temperature range: -20°C to +55°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	
p.o.	
Andreas Luckenbill Lab Manager Radio Communications & EMC	

ı	est	perto	rmea:	

Marco Bertolino Lab Manager Radio Communications & EMC

1 Table of contents

1	Table	of contents	2
2	Gener	al information	
		Notes and disclaimer	
		Application details	
	2.3	Test laboratories sub-contracted	3
3		andard/s and references	
4		nvironment	
5		em	
5			
		General descriptionAdditional information	
_	_		
6	Descri	ption of the test setup	6
		Shielded semi anechoic chamber	
		Shielded fully anechoic chamber	
		Radiated measurements > 18 GHz	
	6.4	Conducted measurements C.BER system	10
7	Seque	nce of testing	11
	7.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	11
		Sequence of testing radiated spurious 30 MHz to 1 GHz	
		Sequence of testing radiated spurious 1 GHz to 18 GHz	
		Sequence of testing radiated spurious above 18 GHz	
8	Measu	rement uncertainty	15
9	Summ	ary of measurement results	16
10	Add	itional comments	17
11		surement results	
• • •			
	11.1	System gain	
	11.2	Power spectral density	
	11.3	DTS bandwidth – 6 dB bandwidth	
	11.4	Occupied bandwidth – 99% emission bandwidth	
	11.5	Maximum output power	
	11.6	Detailed spurious emissions @ the band edge - conducted	
	11.7	Band edge compliance radiated	
	11.8	TX spurious emissions conducted	
	11.9	Spurious emissions radiated below 30 MHz	
	11.10 11.11	Spurious emissions radiated 30 MHz to 1 GHzSpurious emissions radiated above 1 GHz	
		·	
12		ervations	
Anr	nex A	Document history	58
Anr	nex B	Further information	58
Anr	nex C	Accreditation Certificate	59

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2016-08-16
Date of receipt of test item: 2016-10-20
Start of test: 2016-11-04
End of test: 2016-11-11

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 1	May 2015	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus

Guidance	Version	Description
DTS: KDB 558074 D01	v03r05	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Temperature		T _{nom} T _{max} T _{min}	+22 °C during room temperature tests No tests under extreme conditions required. No tests under extreme conditions required.
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
Power supply		V _{nom} V _{max} V _{min}	3.0 V DC by DA14583F01DEVKT-B Kit No tests under extreme conditions required. No tests under extreme conditions required.

5 Test item

5.1 General description

Kind of test item :	Remote control			
Type identification :	MM1			
HMN :	-/-			
PMN :	MM1			
HVIN :	MM1			
FVIN :	-/-			
S/N serial number :	Radiated unit: 83-1 Conducted unit: 84-1			
HW hardware status :	No information available!			
SW software status :	No information available!			
Frequency band :	DTS band 2400 MHz to 2483.5 MHz (lowest channel 2412 MHz; highest channel 2480 MHz)			
Type of radio transmission: Use of frequency spectrum:	DSSS			
Type of modulation :	GFSK			
Number of channels :	40			
Antenna :	Integrated PCB antenna			
Power supply :	3.0 V DC by DA14583F01DEVKT-B Kit			
Temperature range :	-20°C to +55°C			

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-2447/16-01-20_AnnexA

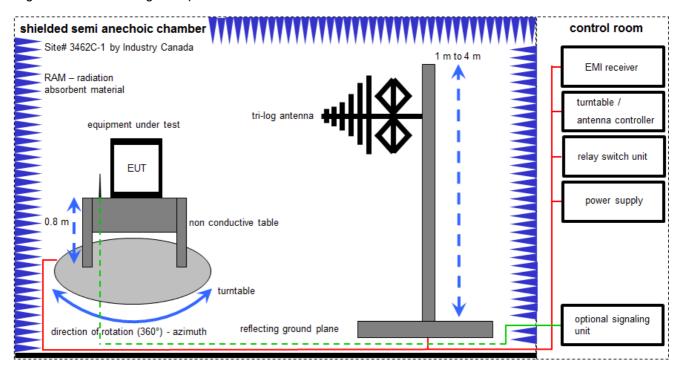
1-2447/16-01-20_AnnexB

1-2447/16-01-20_AnnexD

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

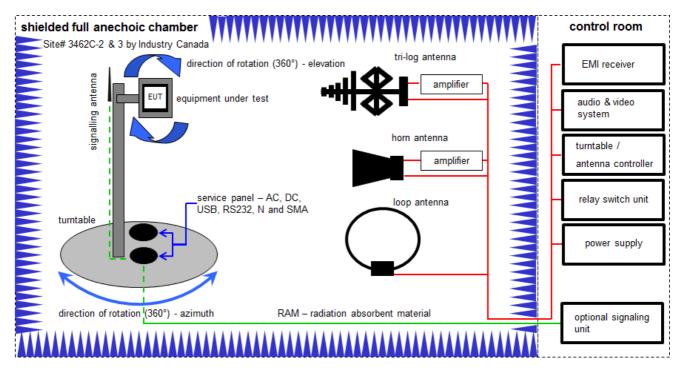
6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


Example calculation:

FS [dB μ V/m] = 12.35 [dB μ V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB μ V/m] (35.69 μ V/m)

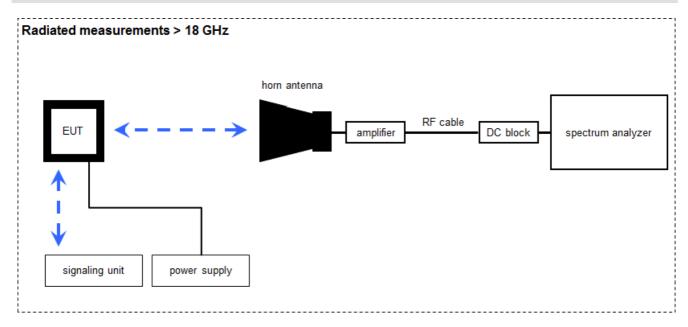
No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	08.03.2016	08.03.2017
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	Α	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018

6.2 Shielded fully anechoic chamber

Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)


Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

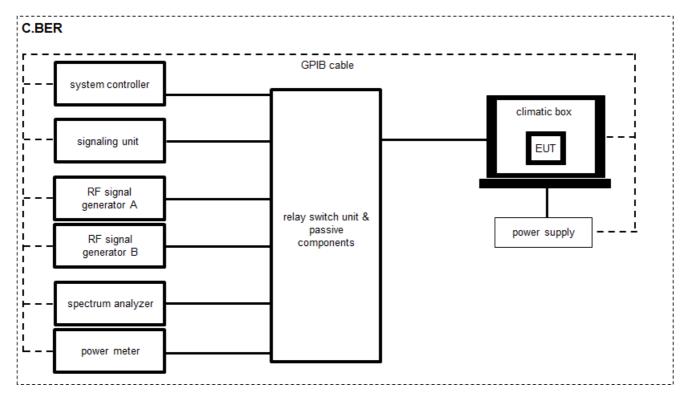
No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	А	Double-Ridged Waveguide Horn Antenna 1-18 GHz	3115	EMCO	8812-3088	300001032	vlKI!	20.05.2015	20.05.2017
2	A, B, C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A, B, C	Switch / Control Unit	3488A	HP	-/-	300000199	ne	-/-	-/-
4	С	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
5	Α	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev	-/-	-/-
6	В	TRILOG Broadband Test- Antenna 30 MHz – 3 GHz	VULB9163	Schwarzbeck	371	300003854	vlKI!	29.10.2014	29.10.2017
7	A, B	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
8	Α	Broadband Amplifier 5-13 GHz	CBLU5135235	CERNEX	22010	300004491	ev	-/-	-/-
9	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
10	A, B, C	EMI Test Receiver 9kHz- 26,5GHz	ESR26	R&S	101376	300005063	vIKI!	13.09.2016	13.03.2018
11	Α	Std. Gain Horn Antenna 12.4 to 18.0 GHz	639	Narda	8402	300000787	k	14.08.2015	14.08.2017
12	Α	Amplifier 2-40 GHz	JS32-02004000-57- 5P	MITEQ	1777200	300004541	ev	-/-	-/-
13	Α	Signal Analyzer 40 GHz	FSV40	R&S	101353	300004819	k	19.09.2016	19.09.2017
14	А	RF-Cable	ST18/SMAm/SMAm /48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
15	А	RF-Cable	ST18/SMAm/SMm/4 8	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
16	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 127377	400001185	ev	-/-	-/-

6.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

 $FS = U_R + CA + AF$

(FS-field strength; U_R-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)


Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda		300000486	k	10.09.2015	10.09.2017
2	Α	Amplifier 2-40 GHz	JS32-02004000-57- 5P	MITEQ	1777200	300004541	ev	-/-	-/-
3	Α	Signal Analyzer 40 GHz	FSV40	R&S	101353	300004819	k	19.09.2016	19.09.2017
4	Α	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
5	Α	RF-Cable	ST18/SMAm/SMm/4 8	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
6	Α	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 127377	400001185	ev	-/-	-/-

6.4 Conducted measurements C.BER system

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch / Control Unit	3488A	HP	-/-	300001691	ne	-/-	-/-
2	А	Frequency Standard (Rubidium Frequency Standard)	MFS (Rubidium)	R&S (Datum)	002	300002681	Ve	29.01.2015	29.01.2017
3	Α	Directional Coupler	101020010	Krytar	70215	300002840	ev	-/-	-/-
4	Α	DC-Blocker	8143	Inmet Corp.	none	300002842	ne	-/-	-/-
5	Α	Powersplitter	6005-3	Inmet Corp.	none	300002841	ev	-/-	-/-
6	Α	USB/GPIB interface	82357B	Agilent Technologies	MY52103346	300004390	ne	-/-	-/-
7	Α	Wideband Power Sensor, 50 MHz to 18 GHz	NRP-Z81	R&S	102585	300004863	k	25.01.2016	25.01.2017
8	Α	Messplatzrechner	Tecline	F+W	102585	300003580	ne	-/-	-/-
9	Α	RF-Cable	ST18/SMAm/SMAm/ 72	Huber & Suhner	Batch no. 605505	400001187	ev	-/-	-/-
10	Α	RF-Cable	Sucoflex 104	Huber & Suhner	147636/4	400001188	ev	-/-	-/-
11	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 699866	400001189	ev	-/-	-/-
12	Α	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 14844	400001190	ev	-/-	-/-
13	А	Signal Analyzer 30GHz	FSV30	R&S	103170	300004855	k	25.01.2016	25.01.2017

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

8 Measurement uncertainty

Measurement uncertainty				
Test case	Uncertainty			
Antenna gain	± 3 dB			
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative			
Maximum output power	± 1 dB			
Detailed conducted spurious emissions @ the band edge	± 1 dB			
Band edge compliance radiated	± 3 dB			
Spurious emissions conducted	± 3 dB			
Spurious emissions radiated below 30 MHz	± 3 dB			
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB			
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB			
Spurious emissions radiated above 12.75 GHz	± 4.5 dB			
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB			

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247. Issue 1	See table!	2016-11-21	-/-

Test specification clause	Test case	Guideline	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (4)	System gain	-/-	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.247(e) RSS - 247 / 5.2 (2)	Power spectral density	KDB 558074 DTS clause: 10.6	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.247(a)(2) RSS - 247 / 5.2 (1)	DTS bandwidth – 6 dB bandwidth	KDB 558074 DTS clause: 8.1	Nominal	Nominal	GFSK	\boxtimes				-/-
RSS Gen clause 4.6.1	Occupied bandwidth	-/-	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.247(b)(3) RSS - 247 / 5.4 (4)	Maximum output power	KDB 558074 DTS clause: 9.1.1	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	-/-	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	KDB 558074 DTS clause: 13.3.2	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	TX spurious emissions conducted	KDB 558074 DTS clause: 11.1 & 11.2 11.3	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	-/-	Nominal	Nominal	GFSK	\boxtimes				-/-
15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	-/-	Nominal	Nominal	-/-	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	-/-	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	-/-	Nominal	Nominal	GFSK			\boxtimes		-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

10 Additional comments

The Bluetooth® word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by Cetecom ICT Services GmbH is under license.

Reference documents:	None	
Special test descriptions:	None	
Configuration descriptions:	static RX/St	ets: were performed with LE packets (37 byte payload) and PRBS pattern. andby tests: BT enabled, TX Idle d frequencies: lowest: 2402 MHz middle: 2440 MHz highest: 2480 MHz
Test mode:		Bluetooth LE Test mode enabled (EUT is controlled over CBT)
	\boxtimes	Special software is used. EUT is transmitting pseudo random data by itself
Antennas and transmit operating modes:		Operating mode 1 (single antenna) - Equipment with 1 antenna, - Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, - Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
		Operating mode 2 (multiple antennas, no beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
		Operating mode 3 (multiple antennas, with beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be take into account when performing the measurements.

11 Measurement results

11.1 System gain

Measurement:

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	3 MHz			
Video bandwidth	10 MHz			
Span	5 MHz			
Trace mode	Max hold			
Test setup	See sub clause 6.2 B (radiated) See sub clause 6.4 A (conducted)			
Measurement uncertainty	See sub clause 8			

Limits:

FCC	IC
6 dBi / > 6 dBi output power and power density reduction required	

Results:

T _{nom}	V _{nom}	2402 MHz	2440 MHz	2480 MHz
Conducted power [dBm] Measured with GFSK modulation		-0.72	-1.13	-1.11
Radiated power [dBm] Measured with GFSK modulation		3.83	3.63	2.94
Gain [dBi] Calculated		4.55	4.76	4.05

11.2 Power spectral density

Description:

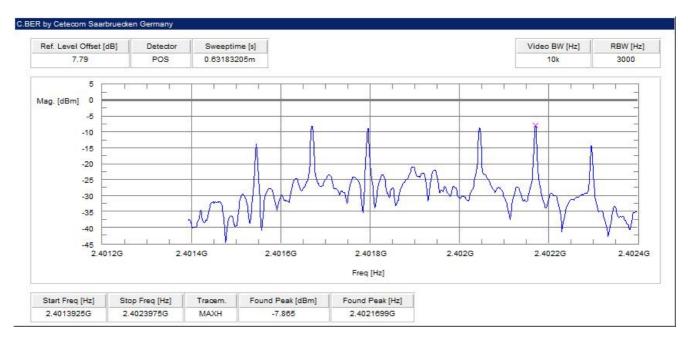
Measurement of the power spectral density of a digital modulated system.

Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	3 kHz			
Video bandwidth	10 kHz			
Span	≥ EBW			
Trace mode	Max hold			
Test setup	See sub clause 6.4 A			
Measurement uncertainty	See sub clause 8			

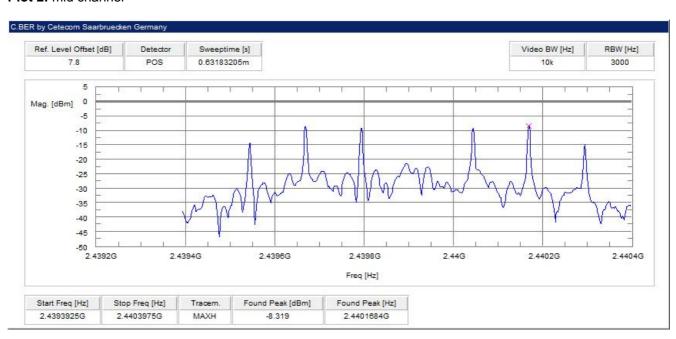
Limits:

FCC	IC	
Power spectral density		

For digitally modulated systems the transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0-second duration.

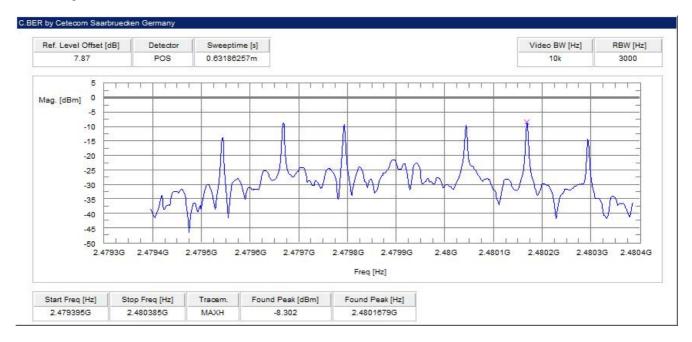

Results:

		Frequency			
	2402 MHz 2440 MHz 2480 MHz				
Power spectral density [dBm / 3kHz]	-7.87	-8.32	-8.30		



Plots:

Plot 1: lowest channel



Plot 2: mid channel

Plot 3: highest channel

11.3 DTS bandwidth - 6 dB bandwidth

Description:

Measurement of the 6 dB bandwidth of the modulated signal.

Measurement parameters			
According to DTS clause: 8.1			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	100 kHz		
Video bandwidth	300 kHz		
Span	5 MHz		
Measurement procedure	Using 3 marker (max + 2x-6dB)		
Trace mode	Max hold (allow trace to stabilize)		
Test setup	See sub clause 6.4 A		
Measurement uncertainty	See sub clause 8		

Limits:

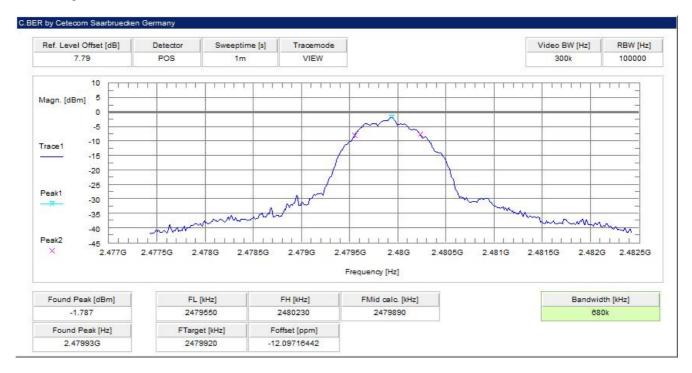
FCC	IC	
DTS bandwidth – 6 dB bandwidth		
Systems using digital modulation techniques may operate in the 2400–2483.5 MHz band. The minimum 6 dB bandwidth shall be at least 500 kHz.		

Results:

	Frequency		
	2402 MHz	2440 MHz	2480 MHz
6 dB bandwidth [kHz]	660	670	680

Plots:

Plot 1: lowest channel



Plot 2: mid channel

Plot 3: highest channel

11.4 Occupied bandwidth - 99% emission bandwidth

Description:

Measurement of the 99% bandwidth of the modulated signal acc. RSS-GEN.

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	30 kHz	
Video bandwidth	100 kHz	
Span	5 MHz	
Measurement procedure	Measurement of the 99% bandwidth using the integration function of the analyzer	
Trace mode	Max hold (allow trace to stabilize)	
Test setup	See sub clause 6.4 A	
Measurement uncertainty	See sub clause 8	

Usage:

-/-	IC	
Occupied bandwidth – 99% emission bandwidth		
OBW is necessary for emission designator		


Results:

	Frequency		
	2402 MHz	2440 MHz	2480 MHz
99% bandwidth [kHz]	1057	1077	1067

Plots:

Plot 1: lowest channel

Plot 2: mid channel

Plot 3: highest channel

11.5 Maximum output power

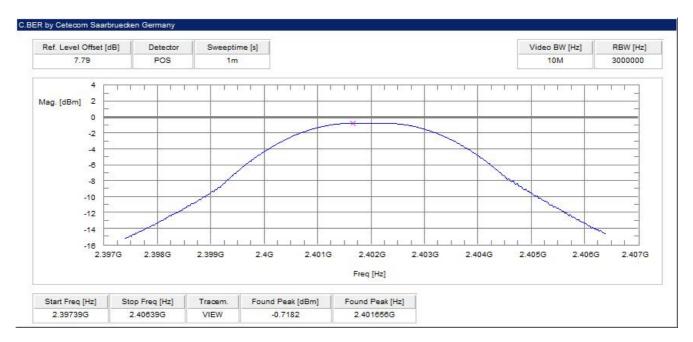
Description:

Measurement of the maximum output power conducted and radiated. EUT in single channel mode.

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	3 MHz	
Video bandwidth	10 MHz	
Span	10 MHz	
Trace mode	Max hold	
Test setup	See sub clause 6.4 A	
Measurement uncertainty	See sub clause 8	

Limits:

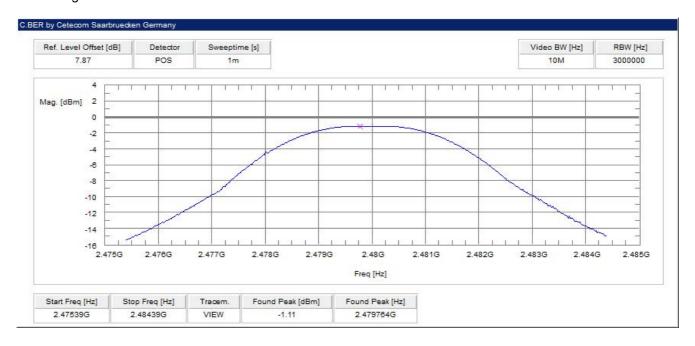
FCC	IC	
Maximum output power		
[Conducted: 0.125 W – antenna gain max. 6 dBi] Systems using more than 75 hopping channels: Conducted: 1.0 W – antenna gain max. 6 dBi		


Results:

	Frequency		
	2402 MHz	2440 MHz	2480 MHz
Maximum output power conducted [dBm]	-0.72	-1.13	-1.11

Plots:

Plot 1: lowest channel



Plot 2: mid channel

Plot 3: highest channel

11.6 Detailed spurious emissions @ the band edge - conducted

Description:

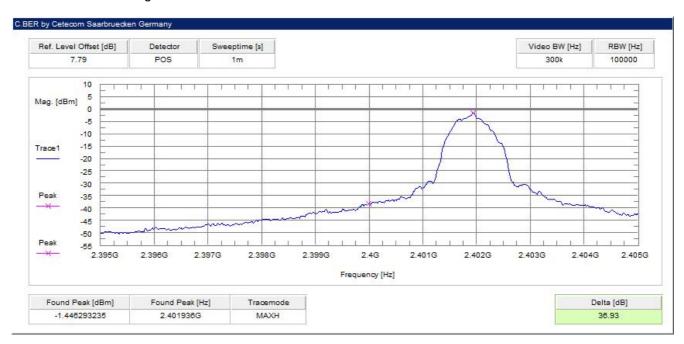
Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel.

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	300 kHz / 500 kHz	
Span	Lower Band Edge: 2395 – 2405 MHz higher Band Edge: 2478 – 2489 MHz	
Trace mode	Max hold	
Test setup	See sub clause 6.4 A	
Measurement uncertainty	See sub clause 8	

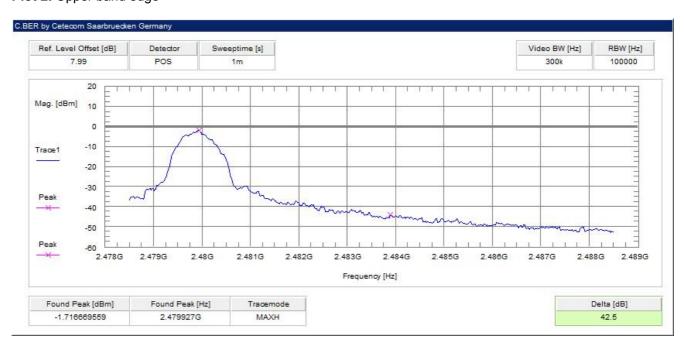
Limits:

ECC	IC
FCC	IC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.


Result:

Scenario	Spurious band edge conducted [dB]
Modulation	GFSK
Lower band edge – hopping off	> 20 dB
Upper band edge – hopping off	> 20 dB



Plots:

Plot 1: Lower band edge

Plot 2: Upper band edge

11.7 Band edge compliance radiated

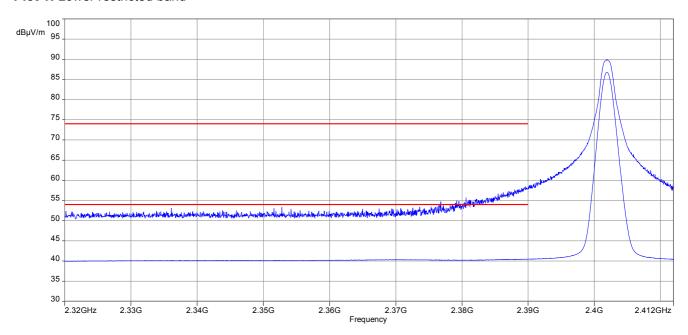
Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to single channel mode and the transmit frequency 2402 MHz for the lower restricted band and 2480 MHz for the upper restricted band. Measurement distance is 3m.

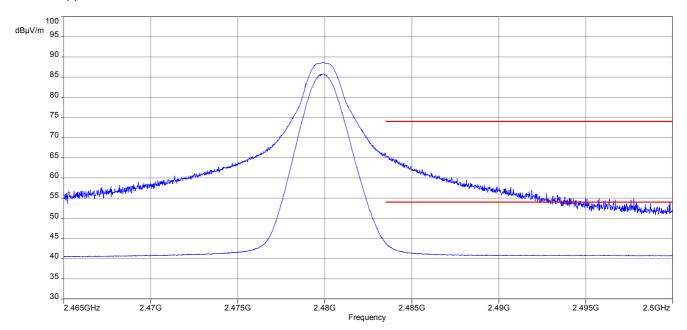
Measurement parameters		
Detector	Peak / RMS	
Sweep time	Auto	
Resolution bandwidth	1 MHz	
Video bandwidth	3 MHz	
Span	Lower Band: 2300 – 2400 MHz higher Band: 2480 – 2500 MHz	
Trace mode	Max hold	
Test setup	See sub clause 6.2 B	
Measurement uncertainty	See sub clause 8	

Limits:

FCC	IC			
Band edge compliance radiated				
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).				
54 dBμV/m AVG 74 dBμV/m Peak				


Result:

Scenario	Band edge compliance radiated [dBμV/m]		
Modulation	GFSK		
Lower restricted band	< 54 AVG / < 74 PP		
Upper restricted band	< 54 AVG / < 74 PP		



Plots:

Plot 1: Lower restricted band

Plot 2: Upper restricted band

11.8 TX spurious emissions conducted

Description:

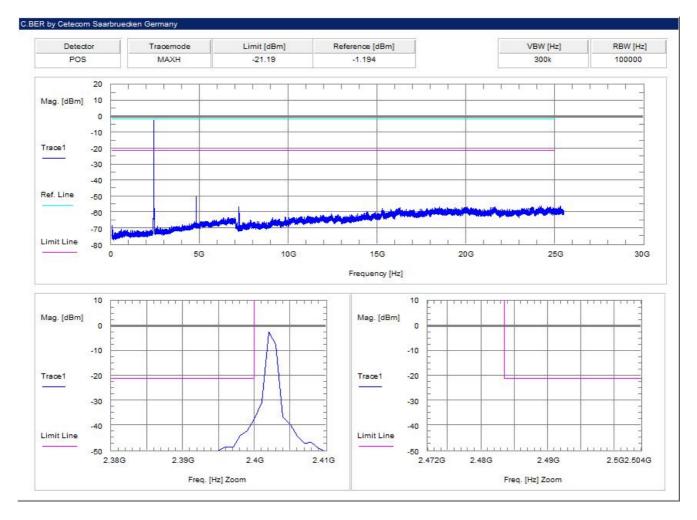
Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit frequencies are 2402 MHz, 2440 MHz and 2480 MHz.

Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	100 kHz			
Video bandwidth	300 kHz or 500 kHz			
Span	9 kHz to 25 GHz			
Trace mode	Max hold			
Test setup	See sub clause 6.4 A			
Measurement uncertainty	See sub clause 8			

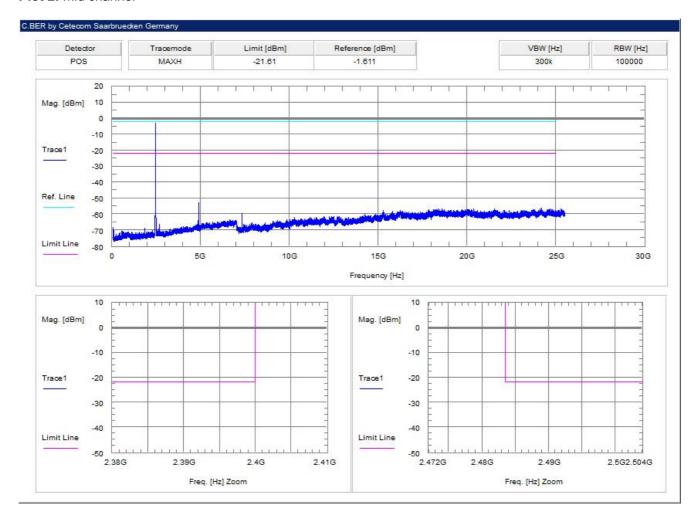
Limits:

FCC	IC			
TX spurious emissions conducted				

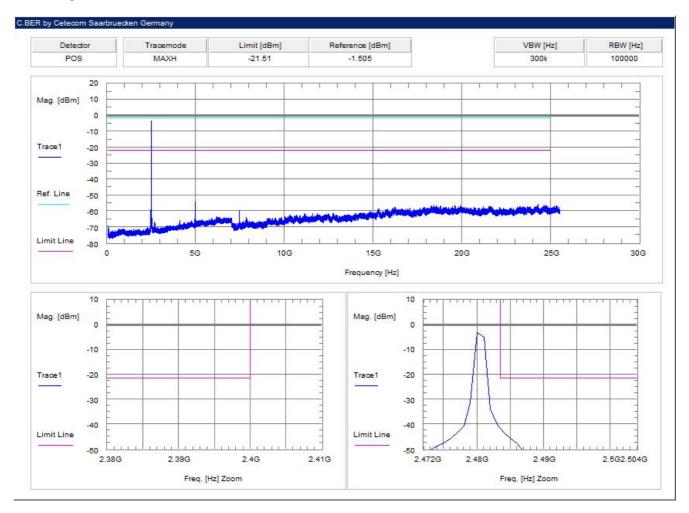
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required


Results:

TX spurious emissions conducted					
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
2402		-1.19	30 dBm		Operating frequency
All detected e	missions are com dBc limit!	pliant with the -20	-20 dBc		compliant
2440		-1.61	30 dBm		Operating frequency
All detected emissions are compliant with the -20 dBc limit!		-20 dBc		compliant	
2480	_	-1.51	30 dBm		Operating frequency
All detected emissions are compliant with the -20 dBc limit!		20 40-		compliant	
			-20 dBc		


Plots:

Plot 1: lowest channel



Plot 2: mid channel

Plot 3: highest channel

11.9 Spurious emissions radiated below 30 MHz

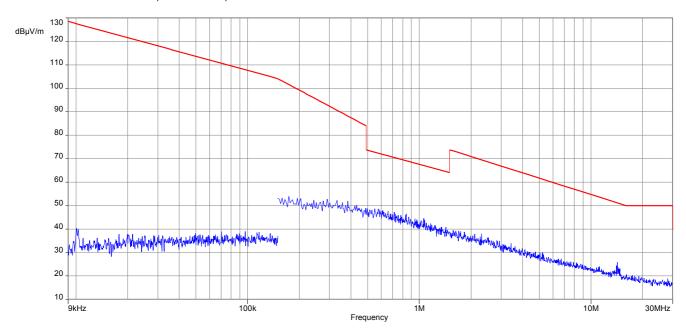
Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit frequencies are 2402 MHz, 2440 MHz and 2480 MHz. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

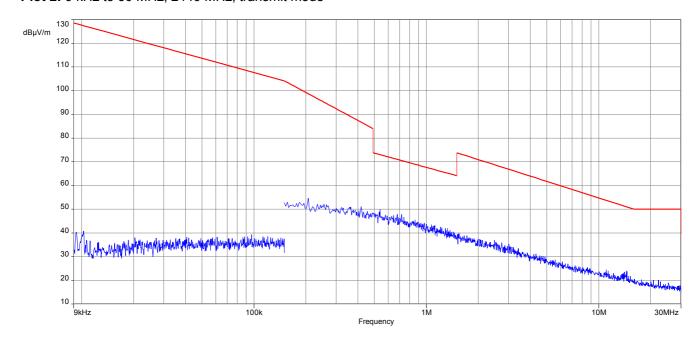
Measurement parameters							
Detector	Peak / Quasi peak						
Sweep time	Auto						
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz						
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 30 kHz						
Span	9 kHz to 30 MHz						
Trace mode	Max hold						
Test setup	See sub clause 6.2 C						
Measurement uncertainty	See sub clause 8						

Limits:

FCC			IC			
TX spurious emissions radiated below 30 MHz						
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance			
0.009 – 0.490	2400/F(kHz)		300			
0.490 – 1.705	24000/F(kHz)		30			
1.705 – 30.0	30		30			

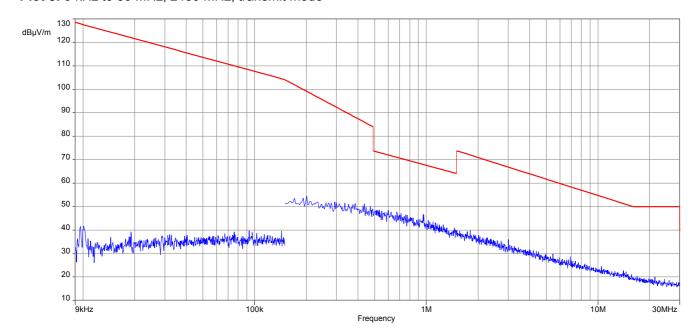

Results:

TX spurious emissions radiated below 30 MHz [dBμV/m]								
F [MHz] Detector Level [dBµV/m]								
All detected emissions are more than 20 dB below the limit.								



Plots:

Plot 1: 9 kHz to 30 MHz, 2402 MHz, transmit mode



Plot 2: 9 kHz to 30 MHz, 2440 MHz, transmit mode

Plot 3: 9 kHz to 30 MHz, 2480 MHz, transmit mode

11.10 Spurious emissions radiated 30 MHz to 1 GHz

Description:

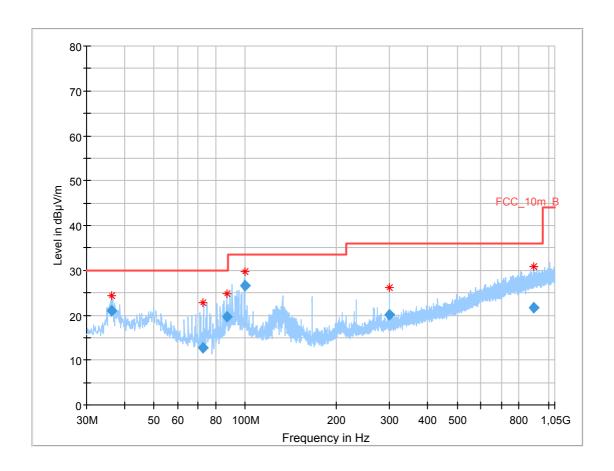
Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit frequencies are 2402 MHz, 2440 MHz and 2480 MHz. The measurement is performed in the mode with the highest output power.

Measurement parameters						
Detector	Peak / Quasi Peak					
Sweep time	Auto					
Resolution bandwidth	120 kHz					
Video bandwidth	3 x RBW					
Span	30 MHz to 1 GHz					
Trace mode	Max hold					
Measured modulation	GFSK					
Test setup	See sub clause 6.1 A					
Measurement uncertainty	See sub clause 8					

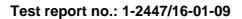
The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

FCC	IC					
TX spurious emissions radiated						
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional						

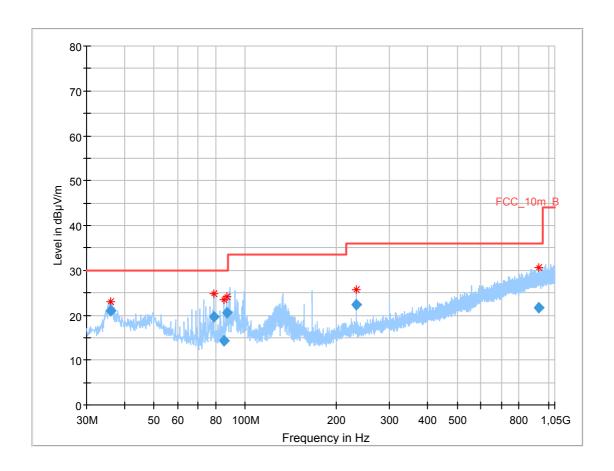

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

§15.209							
Frequency (MHz)	Field strength (dBµV/m)	Measurement distance					
30 - 88	30.0	10					
88 – 216	33.5	10					
216 – 960	36.0	10					
Above 960	54.0	3					

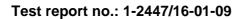


Plots: Transmit mode

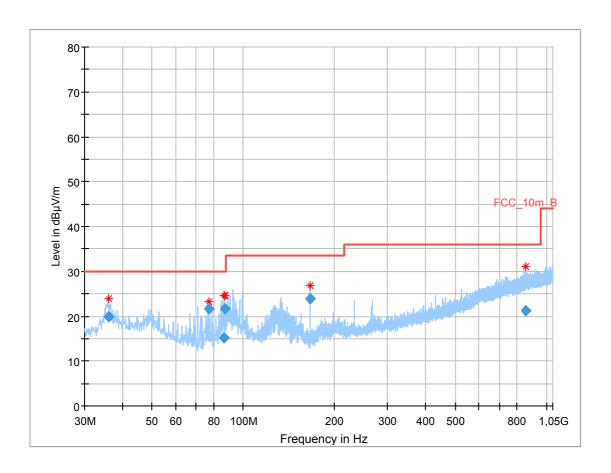
Plot 1: 30 MHz to 1 GHz, TX mode, 2402 MHz, vertical & horizontal polarization



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
36.327300	20.97	30.00	9.03	1000.0	120.000	101.0	V	353.0	12.1
72.395400	12.73	30.00	17.27	1000.0	120.000	185.0	٧	201.0	8.3
86.926200	19.60	30.00	10.40	1000.0	120.000	98.0	٧	133.0	9.7
99.755100	26.61	33.50	6.89	1000.0	120.000	98.0	٧	341.0	12.1
298.767150	20.15	36.00	15.85	1000.0	120.000	100.0	٧	72.0	14.4
893.622750	21.61	36.00	14.39	1000.0	120.000	185.0	٧	322.0	24.0

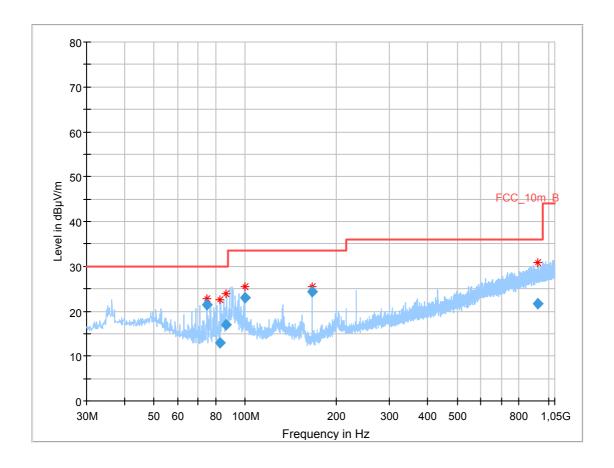


Plot 2: 30 MHz to 1 GHz, TX mode, 2440 MHz, vertical & horizontal polarization



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
35.980050	20.98	30.00	9.02	1000.0	120.000	100.0	٧	0.0	12.0
78.848850	19.67	30.00	10.33	1000.0	120.000	101.0	٧	0.0	8.1
85.335900	14.37	30.00	15.63	1000.0	120.000	101.0	٧	220.0	9.4
86.816250	20.67	30.00	9.33	1000.0	120.000	101.0	٧	220.0	9.7
232.337250	22.35	36.00	13.65	1000.0	120.000	98.0	٧	168.0	12.8
930.131700	21.65	36.00	14.35	1000.0	120.000	185.0	Н	249.0	24.2

Plot 3: 30 MHz to 1 GHz, TX mode, 2480 MHz, vertical & horizontal polarization



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
35.982450	19.85	30.00	10.15	1000.0	120.000	185.0	V	163.0	12.0
76.867650	21.71	30.00	8.29	1000.0	120.000	185.0	V	133.0	8.2
86.346600	15.26	30.00	14.74	1000.0	120.000	98.0	V	308.0	9.6
86.843700	21.64	30.00	8.36	1000.0	120.000	101.0	V	243.0	9.7
166.275750	23.96	33.50	9.54	1000.0	120.000	98.0	٧	70.0	9.5
856.567650	21.28	36.00	14.72	1000.0	120.000	185.0	٧	70.0	23.5

Plots: Receiver mode

Plot 1: 30 MHz to 1 GHz, RX / idle – mode, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
74.857800	21.49	30.00	8.51	1000.0	120.000	185.0	V	0.0	8.3
82.386450	13.01	30.00	16.99	1000.0	120.000	101.0	V	251.0	8.7
86.346300	17.09	30.00	12.91	1000.0	120.000	98.0	V	139.0	9.6
99.761250	23.12	33.50	10.38	1000.0	120.000	100.0	V	177.0	12.1
166.276950	24.34	33.50	9.16	1000.0	120.000	98.0	٧	195.0	9.5
924.976800	21.67	36.00	14.33	1000.0	120.000	185.0	٧	28.0	24.2

11.11 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit frequencies are 2402 MHz, 2440 MHz and 2480 MHz. The measurement is performed in the mode with the highest output power.

Measurement parameters							
Detector	Peak / RMS						
Sweep time	Auto						
Resolution bandwidth	1 MHz						
Video bandwidth	3 x RBW						
Span	1 GHz to 26 GHz						
Trace mode	Max hold						
Measured modulation	GFSK						
Test setup	See sub clause 6.2 A (1 GHz - 18 GHz) See sub clause 6.3 A (18 GHz - 26 GHz)						
Measurement uncertainty	See sub clause 9						

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

FCC			IC					
TX spurious emissions radiated								
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).								
Frequency (MHz)	§15.209 Frequency (MHz) Field strength (dBμV/m) Measurement distance							
Above 960 54.0 (Average) 3								
Above 960 74.0 (Peak) 3								

Results: Transmitter mode

TX spurious emissions radiated [dBμV/m]								
2402 MHz			2440 MHz			2480 MHz		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
4804	Peak	49.7	-/-	Peak	-/-	4960	Peak	49.9
4004	AVG	-/-	-/-	AVG	-/-		AVG	-/-
-/-	Peak	-/-	-/-	Peak	-/-	-/-	Peak	-/-
	AVG	-/-		AVG	-/-		AVG	-/-
-/-	Peak	-/-	-/-	Peak	-/-	-/-	Peak	-/-
	AVG	-/-		AVG	-/-		AVG	-/-

For radiated spurious emission the limits of 15.209 apply for all frequencies mentioned in 15.205. According to FCC Public Notice DA 00-705 (ANSI C63.10) the average emission shall be determined by using Video averaging (VBW = 10 Hz). If the dwell time of the hopping signal is less than 100 ms (per channel), the VBW=10 Hz reading may be adjusted by a factor:

F = 20 * log (dwell time* / 100 ms)

*with TXon time as dwell time!

Bluetooth LE connected mode: Duty Cycle correction Scenarios

TX payload bytes	TX dwell time [ms]	TXon time [ms]	RX dwell time min [ms]	No of TX within 100 ms 100ms/(TxDwell +RxDwell)	min no of hopping channels (AFH)	max TX time [ms]/chan nel within 100ms	DC correction F [dB]	Scenario
37	0.625	0.376	0.625	80.0	2	0.15	-16.46	TX Packet. Rx =ACK
224	1.875	1.875	0.625	40.0	2	0.38	-8.52	TX Packet. Rx =ACK (worst case)
255	2.500	2.120	0.625	32.0	2	0.34	-9.39	TX Packet. Rx =ACK
37	0.625	0.376	0.625	80.0	2	0.15	-16.46	TX Packet = RX Packet
255	2.500	2.120	2.500	20.0	2	0.21	-13.47	TX Packet = RX Packet

Note: For BT LE the dwell time is a multiple of 0.625ms

Bluetooth LE Advertising mode:

Advertising is always in none Hopping mode.

A Bluetooth LE packet in advertising mode consists of:

Preamble (1 Byte)

Access Address (4 Bytes):always: 0x8E89BED6

PDU Header (2 Bytes)

PDU MAC address (6 Bytes)

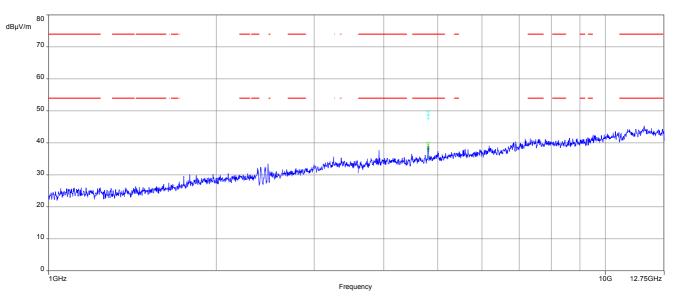
PDU Data (0-31 Bytes) (connected undirected advertising (ADV IND)

CRC (3 Bytes)

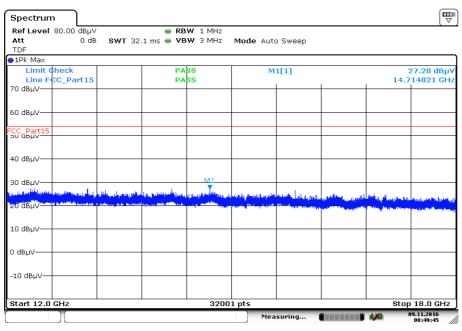
The maximum size of a complete advertising packet is 47 Bytes (376us) Minimum possible advertising interval (per advertising channel): 20 ms Duty cycle within 100ms: 5*0.376ms /100ms = 0.0188 =1.88% Correction factor for average calculation:

F = 20 * log (0.0188) = -34.51dB

Results: Receiver mode

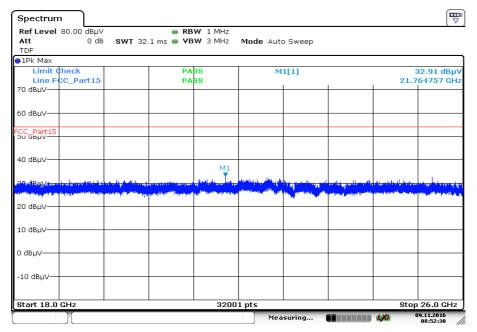

RX spurious emissions radiated [dBµV/m]					
F [MHz]	Detector	Level [dBµV/m]			
All detected emissions are more than 20 dB below the limit.					
,	Peak	-/-			
-/-	AVG	-/-			

Note: The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)

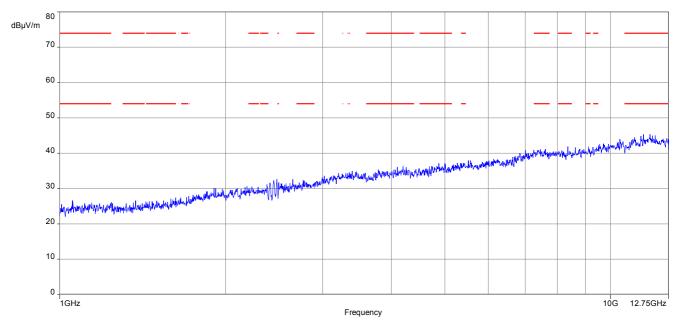

Plots: Transmitter mode

Plot 1: 1 GHz to 12.75 GHz, TX mode, 2402 MHz, vertical & horizontal polarization

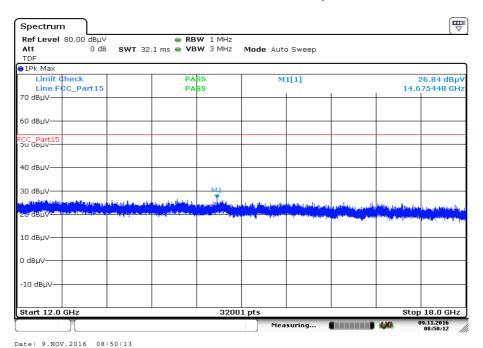
The carrier signal is notched with a 2.4 GHz band rejection filter.


Plot 2: 12 GHz to 18 GHz, TX mode, 2402 MHz, vertical & horizontal polarization

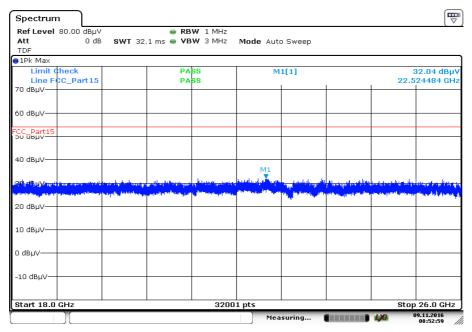
Date: 9.NOV.2016 08:49:45


Plot 3: 18 GHz to 26 GHz, TX mode, 2402 MHz, vertical & horizontal polarization

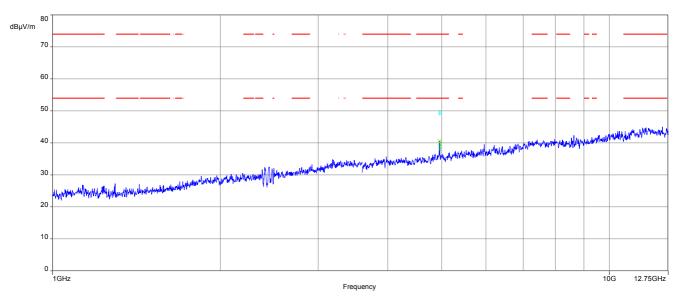
Date: 9.NOV.2016 08:52:31



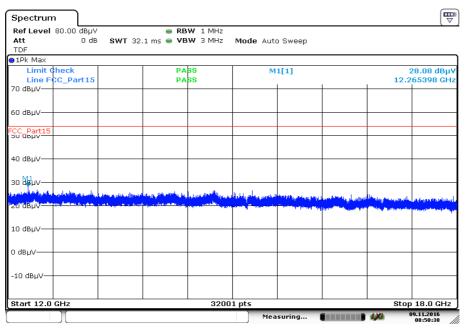
Plot 4: 1 GHz to 12.75 GHz, TX mode, 2440 MHz, vertical & horizontal polarization


The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 5: 12 GHz to 18 GHz, TX mode, 2440 MHz, vertical & horizontal polarization

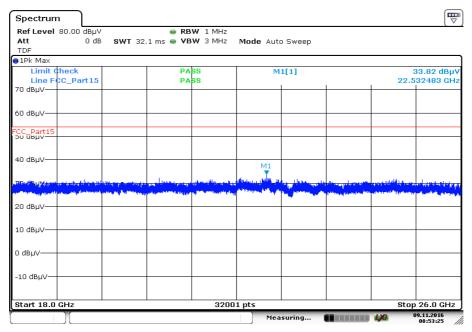

Plot 6: 18 GHz to 26 GHz, TX mode, 2440 MHz, vertical & horizontal polarization

Date: 9.NOV.2016 08:53:00



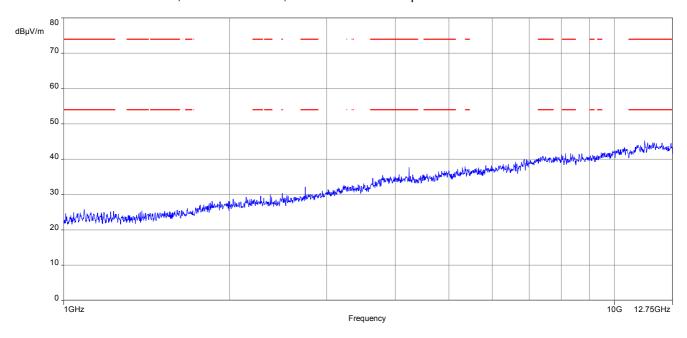
Plot 7: 1 GHz to 12.75 GHz, TX mode, 2480 MHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

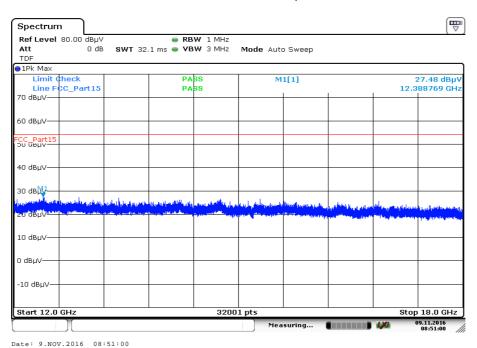

Plot 8: 12 GHz to 18 GHz, TX mode, 2480 MHz, vertical & horizontal polarization

Date: 9.NOV.2016 08:50:38

Plot 9: 18 GHz to 26 GHz, TX mode, 2480 MHz, vertical & horizontal polarization

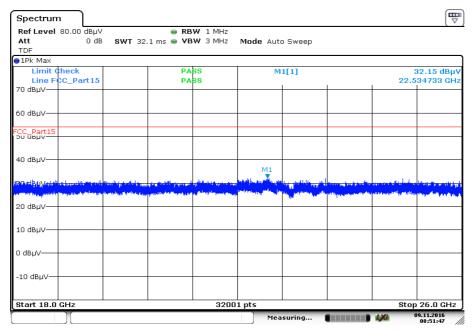


Date: 9.NOV.2016 08:53:26



Plots: Receiver mode

Plot 1: 1 GHz to 12.75 GHz, RX / idle - mode, vertical & horizontal polarization



Plot 2: 12 GHz to 18 GHz, RX / idle – mode, vertical & horizontal polarization

Plot 3: 18 GHz to 26 GHz, RX / idle – mode, vertical & horizontal polarization

Date: 9.NOV.2016 08:51:48

12 Observations

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2016-11-18

Annex B Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard
EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware

IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number
SW - Software

PMN - Product marketing name HMN - Host marketing name

HVIN - Hardware version identification number FVIN - Firmware version identification number

OBW Occupied Bandwidth OC Operating Channel

OCW Operating Channel Bandwidth

OOB Out Of Band

Annex C Accreditation Certificate

Front side of certificate

Back side of certificate

Note:

The current certificate including annex can be received from CETECOM ICT Services GmbH on request.