

Test Report According to the relevant standard 47 CFR Part 15 C- Intentional Radiator Measurement Procedure: ANSI C63.4- 2003 & RSS 210

FOR:

**Remote Keyless Entry Device** 

# **MODEL #: FOBIK**

Marquardt Switches 2917 Waterview Dr. Rochester Hills, Michigan 48309 U.S.A

Measurement of Radio-Noise Emissions From Low-Voltage Electrical and Electronic Equipment Technical characteristics and test methods for radio equipment In the frequency range 9 kHz to 40 GHz

TEST REPORT #: EMC\_MARQU\_001\_08001\_FOBIK\_FCC15.231\_rev4 DATE: 2008-12-18





Bluetooth Qualification Test Facility (BQTF)



FCC listed: A2LA accredited

IC recognized # 3462B

### **CETECOM** Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

Phone: + 1 (408) 586 6200 • Fax: + 1 (408) 586 6299 • E-mail: info@cetecomusa.com • <u>http://www.cetecom.com</u> *CETECOM* Inc. is a Delaware Corporation with Corporation number: 2113686 Board of Directors: Dr. Harald Ansorge, Dr. Klaus Matkey, Hans Peter May

V2: 2007-10-22



# **Table of Contents**

| 1 | ASSESSMENT                                                               | 4  |
|---|--------------------------------------------------------------------------|----|
|   | EMC & Radio                                                              | 4  |
|   | EMC & Radio                                                              | 4  |
| 2 | ADMINISTRATIVE DATA                                                      | 5  |
| _ | 2.1 IDENTIFICATION OF THE TESTING LABORATORY ISSUING THE EMC TEST REPORT |    |
|   | 2.1 IDENTIFICATION OF THE LESTING LABORATORY ISSUING THE ENCLIEST REPORT |    |
|   | 2.2 IDENTIFICATION OF THE CLIENT                                         |    |
| 2 |                                                                          |    |
| 3 |                                                                          |    |
|   | 3.1 SPECIFICATION OF THE EQUIPMENT UNDER TEST                            |    |
|   | 3.2 IDENTIFICATION OF THE EQUIPMENT UNDER TEST (EUT)                     | 6  |
| 4 | SUBJECT OF INVESTIGATION                                                 | 7  |
| 5 | MEASUREMENTS                                                             | Q  |
| J |                                                                          |    |
|   | 5.1 ANTENNA REQUIREMENT                                                  |    |
|   | 5.1.1 Regulation<br>5.1.2 Result                                         |    |
|   | 5.2 RADIATED EMISSIONS                                                   |    |
|   | 5.2.1 Regulation FCC15.231/RSS 210                                       |    |
|   | 5.2.2 Test Procedures                                                    |    |
|   | 5.2.3 Duty cycle                                                         |    |
|   | 5.2.4 Measuring the fundamental                                          |    |
|   | 5.3 PERIODIC OPERATION CHARACTERISTICS                                   |    |
|   | 5.3.1 Periodic operation                                                 |    |
|   | 5.3.1.1 Regulation                                                       |    |
|   | 5.3.1.2 Result<br>5.3.2 Manually operated transmitter deactivation       |    |
|   | 5.3.2.1 Regulation                                                       |    |
|   | 5.3.2.2 Result                                                           |    |
|   | 5.3.3 Automatically operated transmitter deactivation                    |    |
|   | 5.3.3.1 Regulation                                                       |    |
|   | 5.3.3.2 Result                                                           |    |
|   | 5.3.4 Prohibition of periodic transmission                               |    |
|   | 5.3.4.1 Regulation                                                       |    |
|   | 5.3.4.2 Result                                                           |    |
|   | 5.3.5.1 Regulation                                                       |    |
|   | 5.3.5.2 Result                                                           |    |
|   | 5.4 BANDWIDTH                                                            |    |
|   | 5.4.1 Regulation                                                         |    |
|   | 5.4.2 Calculation of the 20dB bandwidth limit                            |    |
|   | 5.4.3 Test procedure                                                     |    |
|   | 5.4.4 Test result                                                        |    |
|   | 5.5 RADIATED EMISSION                                                    |    |
|   | RECEIVER RADIATED EMISSIONS § 2.1053 / RSS-210                           | 44 |



|   | 5.5.1 | Receiver Radiated Emissions              |    |
|---|-------|------------------------------------------|----|
| 6 | TEST  | EQUIPMENT AND ANCILLARIES USED FOR TESTS | 49 |
| 7 | REFE  | RENCES                                   | 50 |
| 8 | BLOC  | K DIAGRAMS                               | 51 |
| 9 | REVIS | ION HISTORY                              | 53 |



## 1 Assessment

The following is in compliance with the applicable criteria specified in FCC rules Parts 15, of Title 47 of the Code of Federal Regulations and in compliance with the applicable criteria specified in Industry Canada rules RSS 210.

| Company            | Description                 | Model # |
|--------------------|-----------------------------|---------|
| Marquardt Switches | Remote Keyless Entry Device | FOBIK   |

Technical responsibility for area of testing:

|             |                             | Marc Douat             |           |  |  |
|-------------|-----------------------------|------------------------|-----------|--|--|
| 2008-12-18  | EMC & Radio                 | (EMC Project Engineer) |           |  |  |
| Date        | Section                     | Name                   | Signature |  |  |
| This report | This report is prepared by: |                        |           |  |  |
|             |                             | Satya Radhakrishna     |           |  |  |
| 2008-12-18  | EMC & Radio                 | (EMC Project Engineer) |           |  |  |
| Date        | Section                     | Name                   | Signature |  |  |

The test results of this test report relate exclusively to the test item specified in Identification of the Equipment under Test. The CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM Inc USA.



#### **Administrative Data** 2

#### Identification of the Testing Laboratory Issuing the EMC Test Report 2.1

| Company Name:                 | CETECOM Inc.                                           |
|-------------------------------|--------------------------------------------------------|
| Department:                   | ЕМС                                                    |
| Address:                      | 411 Dixon Landing Road<br>Milpitas, CA 95035<br>U.S.A. |
| Telephone:                    | +1 (408) 586 6200                                      |
| Fax:                          | +1 (408) 586 6299                                      |
| Responsible Test Lab Manager: | Lothar Schmidt                                         |
| Responsible Project Leader:   | Satya Radhakrishna                                     |
| Date of test:                 | 2008-04-14 to 2008-04-18                               |

Page 5 of 53

#### **Identification of the Client** 2.2

| Applicant's Name:   | Marquardt Switches              |
|---------------------|---------------------------------|
| Street Address:     | 2917 Waterview Dr.              |
| City/State/Zip Code | Rochester Hills, Michigan 48309 |
| Country             | U.S.A                           |
| Contact Person:     | Drake Boroja                    |
| Phone No.           | 248-293-7727                    |
| e-mail:             | Drake.Boroja@Marqswitch.com     |

#### **Identification of the Manufacturer** 2.3

Same as above client.



# 3 Equipment under Test (EUT)

## 3.1 Specification of the Equipment under Test

| Marketing Name:                  | FOBIK                       |
|----------------------------------|-----------------------------|
| Description:                     | Remote Keyless Entry device |
| Model No:                        | FOBIK                       |
| FCC ID:                          | IYZ-C01C                    |
| IC ID:                           | 2701A-C01C                  |
| Type(s) of Modulation:           | ASK, FSK                    |
| Number of Channels:              | 1                           |
| Antenna Type:                    | Loop Antenna                |
| Maximum measured field strength: | 85.93 dBµV/m                |

## 3.2 Identification of the Equipment Under Test (EUT)

| EUT # | ТҮРЕ                              | MANF.              | MODEL | SERIAL # |
|-------|-----------------------------------|--------------------|-------|----------|
| 1     | Remote<br>Keyless Entry<br>device | Marquardt Switches | FOBIK | Unknown  |



# 4 Subject of Investigation

All testing was performed on the EUT listed in Section 3. The EUT was maximized in the X, Y, Z positions, all data in this report shows the worst case between horizontal and vertical polarization for above 1GHz.

### All testing was performed on EUT with output power of -13 dBm.

The objective of the measurements done by Cetecom Inc. was to measure the performance of the EUT as specified by requirements listed in FCC rules Parts 15.209 and 15.231 of Title 47 of the Code of Federal Regulations and Industry Canada rules RSS 210, Issue 7, June 2007. The maximization of portable equipment is conducted in accordance with ANSI C63.4.



# 5 <u>Measurements</u>

| CFR       | Report  | Requirements Headline               | Test R | esults |      |
|-----------|---------|-------------------------------------|--------|--------|------|
| Section   | Chapter |                                     | OK     |        |      |
| 15.203    | 10.1    | Antenna Requirement                 | pass   | fail   | n.a. |
| 15.231(b) | 10.2    | Field strength limits(fundamental)  | pass   | fail   | n.a. |
| 15.205(b) | 10.2    | Radiated spurious emissions         | pass   | fail   | n.a. |
| 15.209    |         |                                     |        |        |      |
| 15.231(a) | 10.3    | Periodic operation characteristics  | pass   | fail   | n.a. |
| 15.231(c) | 10.4    | 20 dB bandwidth                     | pass   | fail   | n.a. |
| 15.201(a) | 10.5    | Equipment authorization requirement | pass   | fail   | n.a. |
| 15.209    |         |                                     |        |        |      |

| Test requirements kept | yes | no |
|------------------------|-----|----|



## 5.1 Antenna requirement

#### 5.1.1 <u>Regulation</u>

15.203 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

#### 5.1.2 <u>Result</u>

| The equipment meets the requirements | yes |
|--------------------------------------|-----|
|                                      |     |
| Test requirements kept               | yes |



## 5.2 Radiated Emissions

### 5.2.1 Regulation FCC15.231/RSS 210

Fundamental Field Strength of Field Strength of Frequency Fundamental Spurious Emissions (MHz) (microvolts/meter)

| Fundamental<br>Frequency<br>(MHz) | Field Strength of fundamental ( $\mu$ V/m) | Field Strength of Spurious emissions $(\mu V/m)$ |
|-----------------------------------|--------------------------------------------|--------------------------------------------------|
| 40.66 - 40.70                     | 2,250                                      | 225                                              |
| 70 - 130                          | 1,250                                      | 125                                              |
| 130 - 174                         | 1,250 to 3,750                             | 125 to 375                                       |
| 174 - 260                         | 3,750                                      | 375                                              |
| 260 - 470                         | 3,750 to 12,500                            | 375 to 1,250                                     |
| Above 470                         | 12,500                                     | 1,250                                            |

**\*\*** Linear interpolations

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz,  $\mu$ V/m at 3 meters = 56.81818(F) - 6136.3636; for the band 260-470 MHz,  $\mu$ V/m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

(1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.

(2) Intentional radiators operating under the provisions of this Section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in Section 15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of Section 15.205 shall be demonstrated using the measurement instrumentation specified in that section.

(3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in Section 15.209, whichever limit permits higher field strength.



#### Section 15.33 Frequency range of radiated measurements.

(a) Unless otherwise noted in the specific rule section under which the equipment operates for an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:

(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

#### 5.2.2 <u>Test Procedures</u>

The EUT and the peripheral device (when additional equipment exists) are placed on a turn table which is 0.8 m above the ground. The turn table would be allowed to rotate 360 degrees to determine the position of the maximum emission level. The test distance between the EUT and the receiving antenna are 3m. To find the maximum emission, the polarization of the receiving antenna are changed in horizontal and vertical polarization, the position of the EUT was changed in different orthogonal determinations. ANSI C63.4 1992 Section 8 "Radiated Emissions Testing"

\* According to Section 15.31 (f) (1): At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

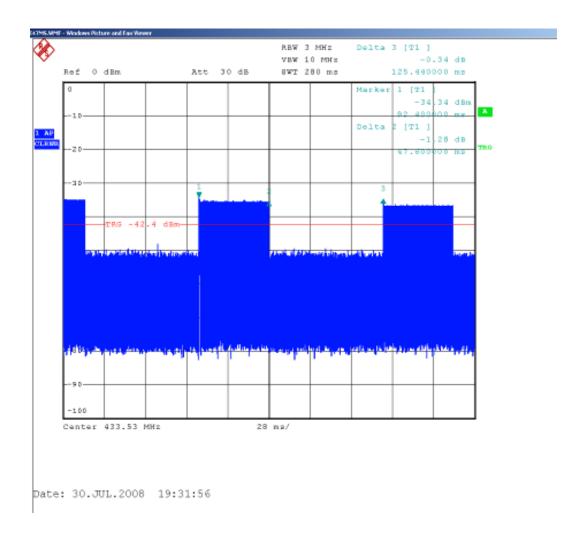


### 5.2.3 <u>Duty cycle</u>

#### FOBIK DUTY CYCLE MEASUREMENT PROCEDURE

1. There's a duty cycle in sending the data packets out. Duty cycle in this case means time relation between when RF information is sent and when RF information is not sent.

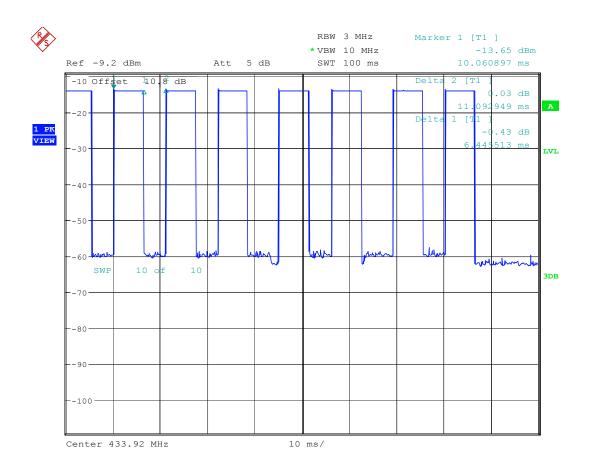
1a. The Duty Cycle for RKE is depending on the CS-XXXX 122806 Specification where the sending of the RKE is described. At the button press 2,4kBaud ASK modulated packets with a length of 48ms in a repeating time every 125ms are sent. The used ASK modulation is a complete on/ off modulation. The key itself has a diagnostic mode, where a constantly sending of the 2,4kBaud modulated ASK Signal can be set over button press (See Point 2 how to activate) to check the ASK Modulation itself.


1b. At the keyless communication which can be started over a door handle activation or a start stop button press, the key sends only a single 10 kBaud FSK modulated signal with a length of 6.45ms The theoretical repeating time is given by the time setting of the PEM, which is 300ms. So theoretical every 300ms the signal can be send.

2. The Duty cycles regarding the ASK and FSK modulated signal.

To measure directly the duty cycle of the ASK or FSK modulated signals, the key has an internal diagnostic mode, which can be activated over transponder communications. These measurements are also done at the EOL. (see the abstract from the diagnostic specifications). In this mode the key is continuously transmitting the set mode for 1 minute. So a continuously ASK or FSK modulated signal can be measured. The key can be set into diagnostic mode with the Fobik Tester: -> EEPROM Utility -> Diagnostic -> Set the "RF test bm" insert the key and press the "Write" button. Verify with the "Read" button, if diagnostic mode is activated. After that the diagnostic can be activated by pressing the lock button. A screen shot of the duty cycle measurement is provided in the next page.




### PLOT 5.2.3A FOBIK DUTY CYCLE- ASK MODULATION



Based on the plot the duty cycle measured is 47.8 ms and is approximated to 48ms throughout this report.



### PLOT 5.2.3B FOBIK DUTY CYCLE-FSK MODULATION



Date: 19.NOV.2008 10:43:23



#### 5.2.4 <u>Measuring the fundamental</u>

The fundamental of the unit is measured with the unit placed in horizontal, vertical and side orientations with the measuring antenna in horizontal and vertical polarizations. The orientation of the EUT and the antenna polarization at which the maximum is measured is used for the remainder of the radiated spurious measurements.

The measurements were made with a peak detector. They are converted into average values with this formula.

Average = Peak Value+20log((duty cycle/100))

The duty cycle of the EUT for ASK Modulation is 48 ms. The duty cycle of the EUT for FSK Modulation is 6.45 ms

| Antenna Polarization | EUT orientation | Average value (dBµV/m) |
|----------------------|-----------------|------------------------|
| V                    | V               | 79.55                  |
| V                    | Н               | 62.42                  |
| V                    | S               | 79.13                  |
| Н                    | V               | 70.98                  |
| Н                    | Н               | 69.68                  |
| Н                    | S               | 72.15                  |

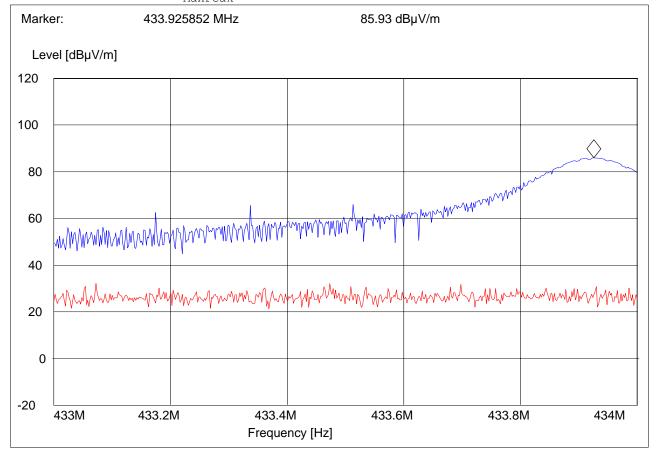
#### ASK MODULATION

According to FCC 15.231(b), Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 260-470 MHz,  $\mu$ V/m at 3 meters = 41.6667(F) - 7083.3333 is the limit. Since the fundamental frequency is 433.92 MHz, the limit is 41.6667(433.92) - 7083.3333=10996.68  $\mu$ V/m= **80.825 dBµV/m**. Based on the table above, the measured values are within the limit.

So the maximum value was measured with the EUT in Vertical position and the Antenna is vertical polarization.

#### **FSK MODULATION**

| Antenna Polarization | EUT orientation | Average value (dBµV/m) |
|----------------------|-----------------|------------------------|
| V                    | V               | 53.76                  |



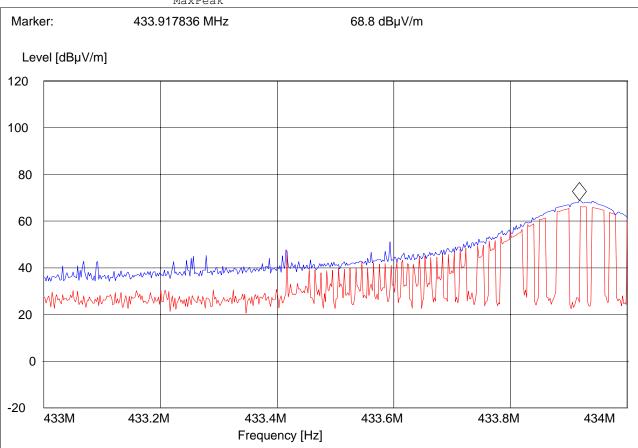

#### <u>PLOT 5.2.4A – ASK MODULATION</u> <u>ANTENNA: VERTICAL / EUT: VERTICAL</u>

EUT: FOBIK Customer:: MARQUARDT SWITCHES Test Mode: tx 433 MHz ANT Orientation: V EUT Orientation: V Test Engineer: SATYA Voltage: BATTERY Comments:: -13dBm o/p

#### SWEEP TABLE: "FCC15.231\_433M\_Ver"

|     | Stop<br>Frequency | Detector           | Meas.<br>Time | IF<br>Bandw. | Transducer      |
|-----|-------------------|--------------------|---------------|--------------|-----------------|
| 1 1 |                   | MaxPeak<br>MaxPeak | -             |              | 3141-#1186_Vert |





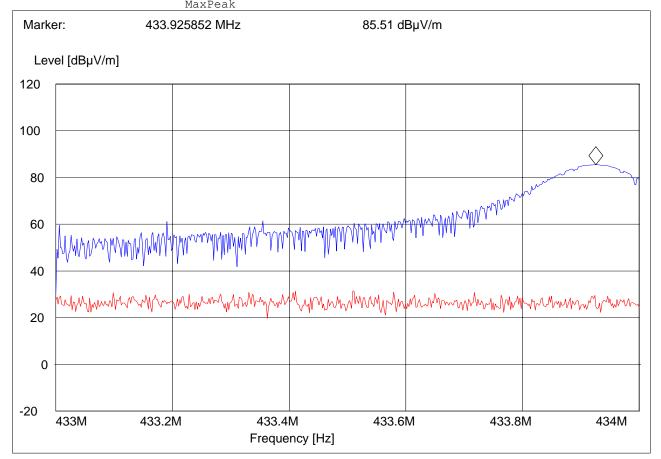

#### PLOT 5.2.4B - ASK MODULATION ANTENNA: VERTICAL / EUT: HORIZONTAL

EUT: FOBIK Customer:: MARQUARDT SWITCHES Test Mode: tx 433 MHz ANT Orientation: V EUT Orientation: H Test Engineer: SATYA Voltage: BATTERY Comments:: -13dBm o/p

#### SWEEP TABLE: "FCC15.231\_433M\_Ver"

StartStopDetectorMeas.IFTransducerFrequencyFrequencyTimeBandw.433.0 MHz434.0 MHzMaxPeakCoupled100 kHz3141-#1186\_Vert





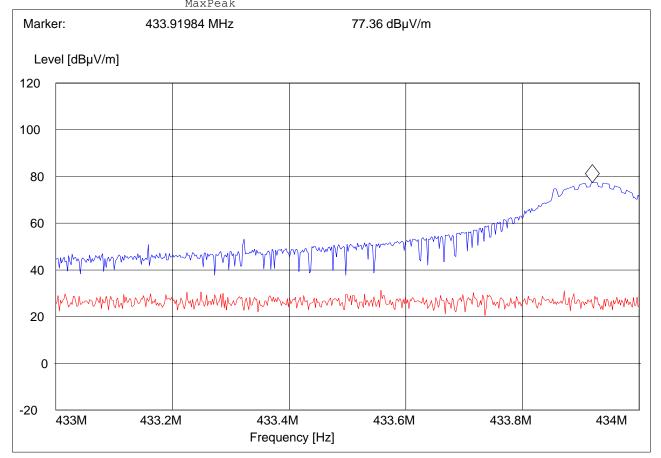

#### PLOT 5.2.4C -ASK MODULATION ANTENNA: VERTICAL / EUT: SIDE

EUT: FOBIK Customer:: MARQUARDT SWITCHES Test Mode: tx 433 MHz ANT Orientation: V EUT Orientation: SIDE Test Engineer: SATYA Voltage: BATTERY Comments:: -13dBm o/p

#### SWEEP TABLE: "FCC15.231\_433M\_Ver"

| Start | Stop<br>Frequency | Detector | Meas.<br>Time | IF<br>Bandw. | Transducer      |
|-------|-------------------|----------|---------------|--------------|-----------------|
|       |                   | MaxPeak  | -             |              | 3141-#1186_Vert |





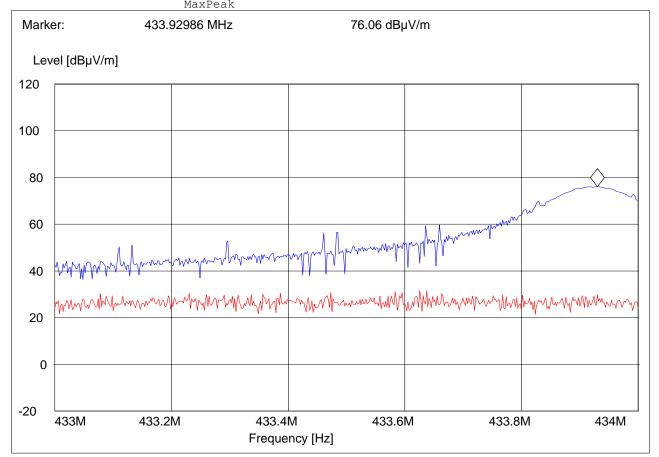

#### PLOT 5.2.4D- ASK MODULATION ANTENNA: HORIZONTAL / EUT: VERTICAL

EUT / Description: FOBIK Manufacturer: MARQUARDT SWITCHES Operation Mode: tx 433 MHz ANT Orientation: : H EUT Orientation:: V Test Engineer: SATYA Voltage: BATTERY Comments:: -13dBm o/p

#### SWEEP TABLE: "FCC15.231\_433M\_Hor"

| Start<br>Frequency | Stop<br>Frequency | Detector | Meas.<br>Time | IF<br>Bandw. | Transducer      |
|--------------------|-------------------|----------|---------------|--------------|-----------------|
| 433.0 MHz          | 434.0 MHz         | MaxPeak  | Coupled       | 100 kHz      | 3141-#1186_Horz |



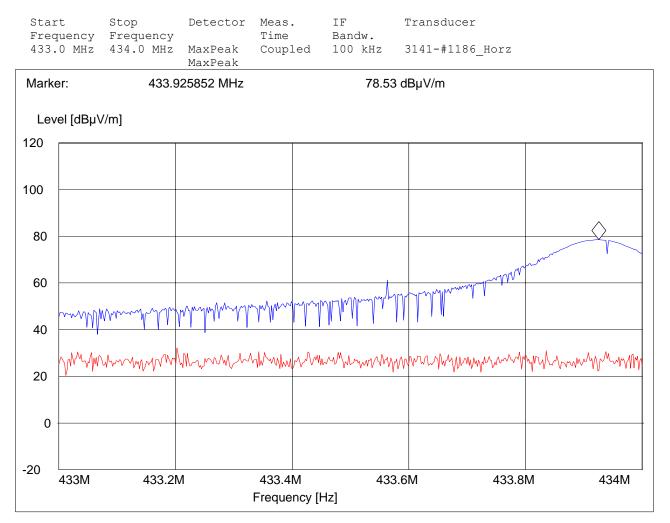



#### <u>PLOT 5.2.4E – ASK MODULATION</u> <u>ANTENNA: HORIZONTAL / EUT: HORIZONTAL</u>

EUT / Description: FOBIK Manufacturer: MARQUARDT SWITCHES Operation Mode: tx 433 MHz ANT Orientation: : H EUT Orientation:: H Test Engineer: SATYA Voltage: BATTERY Comments:: -13dBm o/p

#### SWEEP TABLE: "FCC15.231\_433M\_Hor"

| Start<br>Frequency | Stop<br>Frequency | Detector | Meas.<br>Time | IF<br>Bandw. | Transducer      |
|--------------------|-------------------|----------|---------------|--------------|-----------------|
| 433.0 MHz          | 434.0 MHz         | MaxPeak  | Coupled       | 100 kHz      | 3141-#1186_Horz |






#### <u>PLOT 5.2.4F – ASK MODULATION</u> <u>ANTENNA: HORIZONTAL / EUT: SIDE</u>

EUT / Description: FOBIK Manufacturer: MARQUARDT SWITCHES Operation Mode: tx 433 MHz ANT Orientation: : H EUT Orientation:: SIDE Test Engineer: SATYA Voltage: BATTERY Comments:: -13dBm o/p

#### SWEEP TABLE: "FCC15.231\_433M\_Hor"





#### <u>PLOT 5.2.4G – FSK MODULATION</u> ANTENNA: VERTICAL / EUT: VERTICAL

EUT: FOBIK Customer:: MARQUARDT SWITCHES Test Mode: TX 433.92 MHz FSK Modulation ANT Orientation: V EUT Orientation: V Test Engineer: Satya Voltage: Battery Comments:

#### SWEEP TABLE: "FCC15.231\_433M\_Ver"

| Star<br>Frec | rt<br>quency | Stop<br>Frequency | Detector           | Meas.<br>Time | IF<br>Bandw. | Transducer                              |        |        |
|--------------|--------------|-------------------|--------------------|---------------|--------------|-----------------------------------------|--------|--------|
| 433.         | 0 MHz        | 434.0 MHz         | MaxPeak<br>MaxPeak | Coupled       | 100 kHz      | 3141-#1186_Vert                         |        |        |
| Marke        | er:          | 433.9             | 33868 MHz          |               | 77.64        | 4 dBµV/m                                |        |        |
| Lev          | vel [dBµ∖    | //m]              |                    |               |              |                                         |        |        |
| 120          |              |                   |                    |               |              |                                         |        |        |
| 100          |              |                   |                    |               |              |                                         |        |        |
| 100          |              |                   |                    |               |              |                                         |        |        |
| 80           |              |                   |                    |               |              |                                         |        | $\sum$ |
|              |              |                   |                    |               |              |                                         |        |        |
| 60           |              |                   |                    |               |              | 1 month allowed                         |        |        |
| 40           | Lindon       | V www.white       | montal             | www.          | Myhphry      | with                                    |        |        |
|              | mmm          | MMMM              | www.ww             | Mmmm          | mm           | Mar | hommon | my     |
| 20           |              |                   |                    |               |              |                                         |        |        |
| 0            |              |                   |                    |               |              |                                         |        |        |
|              |              |                   |                    |               |              |                                         |        |        |
| -20          | 433M         | 433.2N            | Л                  | 433.4M        | 433          | 3.6M 433.8                              | <br>8M | 434N   |
|              |              |                   |                    | Frequency [   | [Hz]         |                                         |        |        |



#### PLOT 5.2.4H :30 M-1G (Vertical)-ASK MODULATION

| EUT: | 1 3.2.411                   | .30 10 | FOBII  |        | uca    | 1 <b>]-</b> A |             |                       |         | <u> </u> |         |         |            |     |          |          |                  |                   |       |
|------|-----------------------------|--------|--------|--------|--------|---------------|-------------|-----------------------|---------|----------|---------|---------|------------|-----|----------|----------|------------------|-------------------|-------|
|      | omer::                      |        | MARO   |        | ነሞ     |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
|      | Mode:                       |        | TX 4   |        |        |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
|      | Orientat                    |        |        | JJ 14  | 1112   |               | ידוים       | T Orienta             | +ion.   | 77       |         |         |            |     |          |          |                  |                   |       |
| Volt |                             |        | BATTI  | FRV    |        |               | 10          | I OIIEnce             | 101011. | v        |         |         |            |     |          |          |                  |                   |       |
|      | aye.<br>ents:               |        |        |        | 1 200  |               | NTO Y       | limit ic              | fund    |          | + - 1 7 | agordi  | na         | + ~ | FCC      | 15 0     | ) <b>) )</b> 1 / | (h)               |       |
|      |                             |        |        |        |        |               |             | limit is<br>e formula |         |          |         |         |            |     |          |          |                  |                   |       |
|      |                             |        |        |        |        |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
|      |                             |        |        |        |        |               |             | follows:f             |         |          |         |         |            |     |          |          |                  |                   |       |
|      |                             |        |        |        |        |               |             | . Since t             |         |          |         |         |            |     |          |          | MHZ              | ι, τ              | .ne   |
|      |                             |        |        |        |        |               |             | 3=10996.0             |         |          |         |         |            |     |          |          |                  |                   |       |
|      |                             |        |        |        |        |               |             | s 20 dB k             |         |          |         |         |            |     |          |          |                  |                   |       |
|      |                             |        |        |        |        |               |             | unmarked<br>with a pe |         |          |         |         |            |     |          |          |                  |                   |       |
|      |                             |        |        |        |        |               |             | re averaç             |         |          |         |         |            |     |          |          |                  | ( da              | . +   |
|      |                             |        |        |        |        |               |             |                       |         |          |         |         |            |     |          |          |                  |                   | ιцу   |
|      |                             |        |        | //m.   | .T.116 | e na          | i r moi     | nic@ 867.             | .0130   | MHZ      | and 52  | 2.08 aB | μv,        | m 1 | s be     | TOM      | Lne              | ;                 |       |
|      | 25 dBµV/<br><b>P TABLE:</b> |        |        |        |        | 10.1          |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
|      |                             |        |        |        |        |               |             |                       |         |          | -       | ,       |            |     |          |          |                  |                   |       |
|      | art                         | Stop   |        |        | ete    | ctor          |             | eas.                  | IF      |          | Trans   | ducer   |            |     |          |          |                  |                   |       |
|      | equency                     |        |        |        |        | ,             |             | ime                   | Bandw   |          | 0141    | 11100   |            |     |          |          |                  |                   |       |
| 30   | .0 MHz                      | 1.0    | GHz    | M      | laxPe  | eak           | Co          | oupled                | 100 k   | Hz       | 3141-   | -#1186_ | Vei        | rt  |          |          |                  |                   |       |
| Ма   | rker:                       |        | 867    | .815   | 631    | MHz           |             |                       | Ę       | 52.68    | dBµV/ı  | n       |            |     |          |          |                  |                   |       |
|      |                             |        |        |        |        |               |             |                       |         |          | •       |         |            |     |          |          |                  |                   |       |
|      |                             |        |        |        |        |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
| Le   | vel [dBµV                   | /m]    |        |        |        |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
| 90   |                             |        |        |        |        |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
| 90   |                             |        |        |        |        |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
|      |                             |        |        |        |        |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
| 80   |                             |        |        |        |        |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
| 00   |                             |        |        |        |        |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
|      |                             |        |        |        |        |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
| 70   |                             |        |        | -+     |        |               |             |                       |         |          |         |         | -          |     |          |          |                  |                   |       |
|      |                             |        |        |        |        |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
|      |                             |        |        |        |        |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
| 60   |                             |        |        |        |        |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
|      |                             |        |        |        |        |               |             |                       |         |          |         |         |            |     |          |          |                  | $ \langle\rangle$ |       |
| 50   |                             |        |        |        |        |               |             |                       |         |          |         |         |            |     |          |          |                  | Ľľ                |       |
| 50   |                             |        |        |        |        |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
|      |                             |        |        |        |        | _             | _           |                       |         |          |         |         |            |     |          |          |                  |                   |       |
| 40   |                             |        |        |        |        |               | _           |                       |         |          |         |         |            |     |          |          | . 18-1           | Martin            | North |
|      |                             |        |        |        |        |               |             |                       |         |          |         |         | 11         |     | month    | market   | mp               | ľ.                |       |
|      |                             |        |        |        |        |               |             |                       |         |          |         |         | 1          | Mmm | www.uhmu |          |                  |                   |       |
| 30   |                             |        |        |        |        |               |             |                       |         |          | - M     | monthe  | Ψ <u>Ψ</u> |     |          |          |                  |                   |       |
|      |                             |        |        |        |        |               |             | 7                     | mo      | mm       | ~~~~    |         |            |     |          |          |                  |                   |       |
| ~~   |                             |        |        | $\sim$ |        | $\sim$        | $\neg \neg$ | ~~~~~~                |         | [        |         |         |            |     |          |          |                  |                   |       |
| 20   |                             | $\sim$ | $\sim$ |        |        |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
|      |                             |        |        |        |        |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
| 10   |                             |        |        |        |        |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
| 10   |                             |        |        |        |        |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
|      |                             |        |        |        |        |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
| 0    |                             |        |        |        |        |               |             |                       |         |          |         |         |            |     |          | <u> </u> |                  |                   |       |
| -    | 30M                         | 50     | Λ      | 70N    | N      | 10            | 0M          |                       | 200     | М        | 300     | М       |            | 500 | Μ        | 700      | М                | 1                 | G     |
|      |                             |        |        |        |        |               | Fre         | equency [H            | z]      |          |         |         |            |     |          |          |                  |                   |       |
|      |                             |        |        |        |        |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
| Peak | s less t                    |        |        | fro    | m tl   | he l          | .imi        | t line                |         |          |         |         |            |     |          |          |                  |                   |       |
| No.  | Freque                      | ncy(MH | Iz)    | Pea    | ık v   | alue          | e (dB       | uV/m)                 |         |          |         |         |            |     |          |          |                  |                   |       |
| 1    | 821.818                     | 816    |        | 41.    | , 2    |               |             |                       | 7       |          |         |         |            |     |          |          |                  |                   |       |
| 2    | 839.99                      | 96     |        | 41.    | . 2    |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
| 3    | 854.54                      |        |        | 41.    |        |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
| 4    | 863.63                      |        |        | 42     |        |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |
| 5    | 898.23                      |        |        | 42.    | 7      |               |             |                       | -       |          |         |         |            |     |          |          |                  |                   |       |
| 6    | 954.54                      | 54     |        | 42.    |        |               |             |                       | _       |          |         |         |            |     |          |          |                  |                   |       |
| J    | 204.04                      | J I    |        | 44.    | J      |               |             |                       |         |          |         |         |            |     |          |          |                  |                   |       |



# PLOT 5.2.4I

| <b>1-3G</b> | -ASK MODULAT      | ION         |                      |          |                                           |                 |         |
|-------------|-------------------|-------------|----------------------|----------|-------------------------------------------|-----------------|---------|
| EUT:        | FOBIK             |             |                      |          |                                           |                 |         |
|             | 1                 | t Switches  |                      |          |                                           |                 |         |
|             | Mode: Tx@ 433     | .92         |                      |          |                                           |                 |         |
|             | )rientation: V    |             |                      |          |                                           |                 |         |
|             | )rientation: V    | -           |                      |          |                                           |                 |         |
| Volta       | Engineer: Saty    |             |                      |          |                                           |                 |         |
|             |                   | -           | 15 231 (b) fo        | n tho h  | and 260-470 MHz                           | . 1177/m a+ 3 m | otors - |
|             | 567(F) - 7083.333 |             |                      |          |                                           |                 |         |
| limit       |                   |             |                      |          | μV/m= 80.825                              |                 | ce the  |
|             | rement was made   |             |                      |          |                                           |                 |         |
|             | ng a factor of 9. |             |                      |          |                                           |                 |         |
|             | maximum permitte  |             |                      |          |                                           |                 |         |
| funda       | amental level. So | > the limit | t is <b>70.325 d</b> | ḋΒµV/m.  | So the emissio:                           | n at 61.99 dB   | µV/m is |
| below       | the limit.        |             |                      |          |                                           |                 |         |
| SWEEL       | P TABLE: "FCC15.2 | 47_1-3G"    |                      |          |                                           |                 |         |
| Sta         | art Stop          | Detector    | r Meas.              | IF       | Transducer                                |                 |         |
|             | equency Frequenc  |             |                      | Bandw.   |                                           |                 |         |
| 1.0         | ) GHz 3.0 GHz     | MaxPeak     | Coupled              | 1 MHz    | #326horn_AF_v                             | vert            | 1       |
| Mar         | ker: 1.30         | 0601202 GH  | 7                    | 61.9     | 9 dBµV/m                                  |                 |         |
|             |                   |             | _                    |          | p                                         |                 |         |
| .           |                   |             |                      |          |                                           |                 |         |
| Le          | evel [dBµV/m]     |             |                      |          |                                           |                 |         |
| 110         |                   |             |                      |          |                                           | 1               |         |
| 1.0         |                   |             |                      |          |                                           |                 |         |
|             |                   |             |                      |          |                                           |                 |         |
| 100         |                   |             |                      |          |                                           |                 |         |
|             |                   |             |                      |          |                                           |                 |         |
|             |                   |             |                      |          |                                           |                 |         |
| 90          |                   |             |                      |          |                                           |                 |         |
|             |                   |             |                      |          |                                           |                 |         |
|             |                   |             |                      |          |                                           |                 |         |
| 80          |                   |             |                      |          |                                           |                 |         |
|             |                   |             |                      |          |                                           |                 |         |
|             |                   |             |                      |          |                                           |                 |         |
| 70          |                   |             |                      |          |                                           |                 |         |
|             | $\land$           |             |                      |          |                                           |                 |         |
| 60          | Y                 |             |                      |          |                                           |                 |         |
| 00          |                   |             | 1                    |          |                                           |                 |         |
|             |                   |             |                      |          |                                           |                 |         |
| 50          |                   |             |                      |          |                                           |                 |         |
|             |                   |             |                      |          |                                           | man             | mm      |
|             |                   |             | mm                   | mpm      | - Mar | μ- ·            |         |
| 40          | Mannalla          |             | -                    |          |                                           |                 |         |
|             | Y                 |             |                      |          |                                           |                 |         |
|             |                   |             |                      |          |                                           |                 |         |
| 30          |                   |             |                      |          |                                           | 2               |         |
|             | 1G                | 1.5G        |                      | 2G       | 2.5                                       | 5               | 3G      |
|             |                   |             | Frequency [Hz        | :]       |                                           |                 |         |
| Peaks       | less than 20 dB   | from the    | limit line           |          |                                           |                 |         |
| No.         | Frequency (MHz)   | Peak value  |                      |          |                                           |                 |         |
| 1           | 1737.705          |             | missions limi        | t is 70  | 325 dBuV/m 900                            | e comments]     |         |
| 2           | 2225.6            | 46.0869     | TTILL                | C 10 /0. | 525 abµv/m. 566                           | commences j     |         |
| 3           | 2603.615          | 50.21562    |                      |          |                                           |                 |         |
| 4           | 2670.66           | 47.82625    |                      |          |                                           |                 |         |
| 5           | 2743.8            | 48.261      |                      |          |                                           |                 |         |
| 6           | 2916.898          | 48.4349     |                      |          |                                           |                 |         |
| U           | 2JIU.090          | 70.7349     |                      |          |                                           |                 |         |



# <u>PLOT 5.2.4J</u>

| 3-18 C- ASK MODULATION     RUT:   FORK     Customer::   MARQUARDT SWITCHES     Teat Mode:   IX 433 MHz     ANT Orientation: V   V     Teat Mode:   Start     Start   Stop   Detector     Marker:   17.519038076 GHz   46.91 dBµV/m     Level [dBµV/m]   V   V     0   Image:   Image:   Image:     0   Image:   Image:   V     0   Image:   V   V     10.0 GHz   18.0 GHz   Marker:   17.519038076 GHz   46.91 dBµV/m     Level [dBµV/m]   Image:   Image:   V   V     0   Image:   Image:   Image:   Image:   Image:     0   Image:   <                                                                                                                                                                                                                                                                                                                             |       | <u>1 5.2.4j</u><br>C- ASK | MODULA   | TION         |                                                                                                   |        |             |       |    |                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------|----------|--------------|---------------------------------------------------------------------------------------------------|--------|-------------|-------|----|-----------------------|
| Customer:: MARQUARDT SWITCHES<br>Test Mode: tx 433 MHz<br>ANT Orientation: V<br>EVT Orientation: V<br>SWEEP TRAINER: FYCCIS.247.3-180'<br>Start Stop Detector Meas. IF Transducer<br>Frequency Trequency Time Bandw.<br>3.0 GHz 18.0 GHz MaxPeak Coupled 1 MHz 4326horn AF_vert<br>Marker: 17.519038076 GHz 46.91 dBµV/m<br>Level [dBµV/m]<br>80<br>70<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | U- ASK                    |          |              |                                                                                                   |        |             |       |    |                       |
| Test Mode:   tx 433 Miz     ANT Orientation: V     EUT Orientation: V     Star:   Battery     SWEPT TABLE:   "Percels.247_3-R86"     Star:   Story     Star:   Story     Transducer   SATVA     Voltage:   Battery     Star:   Story     Star:   Story     Transducer   Time     J.O GHZ   HARAK     Star:   17.519038076 GHz     46.91 dBµV/m     Level (dBµV/m)     80     70   Image: Stary     60                                                                                                                                                                                                                                                                                                                                                                                               |       | omer••                    |          |              | HES                                                                                               |        |             |       |    |                       |
| ANT Orientation: V<br>EUT Orientation: V<br>Test Engineer: SATA<br>Voltage: Battery<br>SWEEP TABLE: "PCCI3.247_3-180"<br>Start Stop Detector Meas. IF Transducer<br>Frequency Frequency Time Bandw.<br>3.0 GHz 18.0 GHz MaxPeak Coupled 1 MHz #326horn AF vert<br>Marker: 17.519038076 GHz 46.91 dBµV/m<br>Level[dBµV/m]<br>80<br>70<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                           |          |              | .110                                                                                              |        |             |       |    |                       |
| EUT Orientation: V<br>Test Engineer: SATYA<br>Voltage: Battery<br>SWEET TABLE: "FOCI5.247_3-180"<br>Start Stop Detector Meas. IF Transducer<br>Frequency Frequency Time Bandw.<br>3.0 GHz 18.0 GHz MaxPeak Coupled 1 MHz 326horn_AF_vert<br>Marker: 17.519038076 GHz 46.91 dBµV/m<br>Level [dBµV/m]<br>80<br>70<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                           |          | 00 1112      |                                                                                                   |        |             |       |    |                       |
| Test Engineer:   SATYA     Voltage:   Battery     SWEEP TABLE:   "PCC15.247_3-180"     Start   Stop   Detector Meas.   IF   Transducer     Frequency   Frequency   Time   Bandw.     3.0 GHz   18.0 GHz   MaxPeak   Coupled   1 MHz   #326horn_AF_vert     Marker:   17.519038076 GHz   46.91 dBµV/m     Level [dBµV/m]   0   0   0   0   0     60   0   0   0   0   0   0     60   0   0   0   0   0   0     60   0   0   0   0   0   0   0     60   0   0   0   0   0   0   0     60   0   0   0   0   0   0   0   0     60   0   0   0   0   0   0   0   0     20   3G   6G   8G   10G   12G   14G   16G   18G     20   3G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                           |          |              |                                                                                                   |        |             |       |    |                       |
| Voltage: Battery<br>SWEEP TABLE: Stop Detector Meas. IF Transducer<br>Frequency Frequency Trequency Trequency I 1042 #326horn AF vert<br>Marker: 17.519038076 GHz 46.91 dBµV/m<br>Level [dBµV/m]<br>80<br>70<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                           |          | A            |                                                                                                   |        |             |       |    |                       |
| SWEEP TABLE: "PCC15.247_3-18G"       Start     Stop     Detector     Meas.     IF     Transducer       3.0 GHz     18.0 GHz     MaxPeak     Coupled     1 MHz     #326horn AF vert       Marker:     17.519038076 GHz     46.91 dBµV/m       Level [dBµV/m]     80     Image: Coupled     46.91 dBµV/m       80     Image: Coupled     Image: Coupled     Image: Coupled     46.91 dBµV/m       80     Image: Coupled     Image: Coupled     Image: Coupled     Image: Coupled     Image: Coupled       60     Image: Coupled     Image: Coupled |       | -                         |          |              |                                                                                                   |        |             |       |    |                       |
| Start     Stop     Detector     Meas.     IF     Transducer       Bandw.     3.0 GHz     18.0 GHz     MaxPeak     Coupled     1 MHz     #326horn AF vert       Marker:     17.519038076 GHz     46.91 dBµV/m       Level [dBµV/m]     60     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0                                                                                                                                                                                                                                                                                                                                                                                      |       |                           |          |              |                                                                                                   |        |             |       |    |                       |
| 3.0 GHz 18.0 GHz MaxPeak Coupled 1 MHz #326horn AF vert<br>Marker: 17.519038076 GHz 46.91 dBµV/m<br>Level [dBµV/m]<br>80<br>70<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                           |          |              | Meas.                                                                                             | IF     | Transducer  |       |    |                       |
| Marker:   17.519038076 GHz   46.91 dBµV/m     Level [dBµV/m]   80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fre   | equency                   | Frequenc | У            | Time                                                                                              | Bandw. |             |       |    |                       |
| Level [dBµV/m]<br>80<br>70<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.    | 0 GHz                     | 18.0 GHz | MaxPeak      | Coupled                                                                                           | 1 MHz  | #326horn_AF | _vert |    |                       |
| Level [dBµV/m]<br>80<br>70<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mai   | rkor:                     | 17 5     | 10038076 CH- | ,                                                                                                 | 46.01  | dBu\//m     |       |    |                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IVIAI | KEI.                      | 17.5     | 19030070 GHZ | -                                                                                                 | 40.91  | ubμv/m      |       |    |                       |
| 80<br>70<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                           |          |              |                                                                                                   |        |             |       |    |                       |
| $\begin{bmatrix} 70 & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Le    | vel [dBµ∖                 | //m]     |              |                                                                                                   |        |             |       |    |                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0   |                           |          |              |                                                                                                   |        |             |       |    |                       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80    |                           |          |              |                                                                                                   |        |             |       |    |                       |
| 60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                           |          |              |                                                                                                   |        |             |       |    |                       |
| 60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                           |          |              |                                                                                                   |        |             |       |    |                       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70    |                           |          |              |                                                                                                   |        |             |       |    |                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70    |                           |          |              |                                                                                                   |        |             |       |    |                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                           |          |              |                                                                                                   |        |             |       |    |                       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                           |          |              |                                                                                                   |        |             |       |    |                       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60    |                           |          |              |                                                                                                   |        |             |       |    |                       |
| 40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60    |                           |          |              |                                                                                                   |        |             |       |    |                       |
| 40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                           |          |              |                                                                                                   |        |             |       |    |                       |
| 40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                           |          |              |                                                                                                   |        |             |       |    |                       |
| 40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50    |                           |          |              |                                                                                                   |        |             |       |    |                       |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30    |                           |          |              |                                                                                                   |        |             |       |    | $\langle \rangle    $ |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                           |          |              |                                                                                                   |        |             |       |    | mm                    |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                           |          | Am           |                                                                                                   | I. Mar | mont        | month | mm | , I                   |
| 30<br>30<br>20<br>3G<br>3G<br>3G<br>3G<br>3G<br>3G<br>3G<br>3G<br>3G<br>3G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40    |                           | M        | V VV         |                                                                                                   | mm     | VV - 1      | · ~ ~ |    |                       |
| 30<br>20<br>3G<br>3G<br>3G<br>3G<br>3G<br>3G<br>3G<br>4G<br>4G<br>3G<br>3G<br>3G<br>3G<br>3G<br>3G<br>3G<br>3G<br>3G<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                           |          | an w         | $\sim \sim $ |        |             |       |    |                       |
| 30<br>20<br>3G<br>3G<br>3G<br>3G<br>3G<br>3G<br>3G<br>4G<br>4G<br>3G<br>3G<br>3G<br>3G<br>3G<br>3G<br>3G<br>3G<br>3G<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | al and W                  |          |              |                                                                                                   |        |             |       |    |                       |
| 20<br>3G<br>6G<br>8G<br>10G<br>12G<br>14G<br>16G<br>18G<br>Frequency [Hz]<br>Peaks less than 20 dB from the limit<br>No. Frequency (MHz)<br>1 7519.038076<br>46.91<br>2 17316.36364<br>46.57<br>3 17226.362<br>4 6.45162<br>4 17386.3624<br>4 6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | mm.                       |          |              |                                                                                                   |        |             |       |    |                       |
| 20<br>3G<br>6G<br>8G<br>10G<br>12G<br>14G<br>16G<br>18G<br>Frequency [Hz]<br>Peaks less than 20 dB from the limit<br>No. Frequency (MHz)<br>1 7519.038076<br>46.91<br>2 17316.36364<br>46.57<br>3 17226.362<br>4 6.45162<br>4 17386.3624<br>4 6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30    |                           |          |              |                                                                                                   |        |             |       |    |                       |
| 3G   6G   8G   10G   12G   14G   16G   18G     Frequency [Hz]     Peaks Less than 20 dB from the limit     No.   Frequency (MHz)   Peak value (dBµV/m)     1   17519.038076   46.91     2   17316.36364   46.57     3   17226.362   46.45162     4   17386.3624   46.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                           |          |              |                                                                                                   |        |             |       |    |                       |
| 3G   6G   8G   10G   12G   14G   16G   18G     Frequency [Hz]     Peaks less than 20 dB from the limit     No.   Frequency (MHz)   Peak value (dBµV/m)     1   17519.038076   46.91     2   17316.36364   46.57     3   17226.362   46.45162     4   17386.3624   46.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                           |          |              |                                                                                                   |        |             |       |    |                       |
| 3G   6G   8G   10G   12G   14G   16G   18G     Frequency [Hz]     Peaks less than 20 dB from the limit     No.   Frequency (MHz)   Peak value (dBµV/m)     1   17519.038076   46.91     2   17316.36364   46.57     3   17226.362   46.45162     4   17386.3624   46.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                           |          |              |                                                                                                   |        |             |       |    |                       |
| 3G   6G   8G   10G   12G   14G   16G   18G     Frequency [Hz]     Peaks less than 20 dB from the limit     No.   Frequency (MHz)   Peak value (dBµV/m)     1   17519.038076   46.91     2   17316.36364   46.57     3   17226.362   46.45162     4   17386.3624   46.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20    |                           |          |              |                                                                                                   |        |             |       |    |                       |
| Peaks     less     than     20     dB     from     the     limit       No.     Frequency(MHz)     Peak     value(dBµV/m)     1     17519.038076     46.91     2     17316.36364     46.57     3     17226.362     46.45162     4     17386.3624     46.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _     | 3G                        | 60       | G 8G         | G 10                                                                                              | G 12   | 2G 14       | G 16  | G  | 18G                   |
| Peaks   less   than   20   dB   from   the   limit     No.   Frequency(MHz)   Peak   value(dBµV/m)     1   17519.038076   46.91     2   17316.36364   46.57     3   17226.362   46.45162     4   17386.3624   46.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                           |          |              | Frequency []                                                                                      | -Iz]   |             |       |    |                       |
| No.     Frequency(MHz)     Peak value(dBµV/m)       1     17519.038076     46.91       2     17316.36364     46.57       3     17226.362     46.45162       4     17386.3624     46.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                           |          |              |                                                                                                   | 1      |             |       |    |                       |
| 1   17519.038076   46.91     2   17316.36364   46.57     3   17226.362   46.45162     4   17386.3624   46.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                           |          |              |                                                                                                   |        |             |       |    |                       |
| 2   17316.36364   46.57     3   17226.362   46.45162     4   17386.3624   46.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                           |          |              | (dBµV/m)                                                                                          |        |             |       |    |                       |
| 3 17226.362 46.45162   4 17386.3624 46.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                           |          |              |                                                                                                   |        |             |       |    |                       |
| 4 17386.3624 46.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                           |          |              |                                                                                                   |        |             |       |    |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                           |          |              |                                                                                                   |        |             |       |    |                       |
| 5 17680 90759 45 80646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                           |          |              |                                                                                                   |        |             |       |    |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5     |                           |          | 45.80646     |                                                                                                   |        |             |       |    |                       |
| 6 18099.99813 45.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6     | 18099.                    | 99813    | 45.8         |                                                                                                   |        |             |       |    |                       |

| Test Report #:  | EMC_MARQU_001_08001_FOBI | K_FCC15.231_rev4 | CET     |
|-----------------|--------------------------|------------------|---------|
| Date of Report: | 2008-12-18               | Page 26 of 53    | and the |



#### PLOT 5.2.4K **30MHz -1GHz FSK MODULATION**

| UT:                                                           | Hz FSK N<br>FOBI                                        |                                                |                      |                     |            |          |               |      |               |               |          |                |
|---------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------|----------------------|---------------------|------------|----------|---------------|------|---------------|---------------|----------|----------------|
| ustomer::                                                     |                                                         | UARDT S                                        | SWIT                 | THES                |            |          |               |      |               |               |          |                |
| est Mode:                                                     |                                                         | -                                              |                      | K MODULATIC         | N          |          |               |      |               |               |          |                |
| NT Orientat                                                   |                                                         |                                                |                      |                     |            |          |               |      |               |               |          |                |
| UT Orientat                                                   | cion: V                                                 |                                                |                      |                     |            |          |               |      |               |               |          |                |
| est Enginee                                                   | er: SATY                                                | A                                              |                      |                     |            |          |               |      |               |               |          |                |
| oltage:                                                       | BATTERY                                                 | r<br>-                                         |                      |                     |            |          |               |      |               |               |          |                |
| omments: M                                                    | 4arker pla                                              | iced on                                        | fun                  | damental. A         | ccording t | o FCC 15 | .231(b)       | , Wh | lere F        | 'is t         | he       |                |
| requency ir                                                   |                                                         |                                                |                      |                     |            |          |               |      |               |               |          | Ld             |
| trengths ar                                                   |                                                         |                                                |                      |                     |            |          |               |      |               |               |          |                |
| 083.3333 is                                                   |                                                         |                                                |                      |                     |            |          | 33.92 M       | Hz,  | the 1         | .imit         | is       |                |
| 1.6667(433.                                                   |                                                         |                                                |                      |                     | 80.825 dB  | µV/m     |               |      |               |               |          |                |
| WEEP TABLE:                                                   |                                                         |                                                |                      |                     | TD         |          |               |      |               |               |          |                |
| Start                                                         | Stop                                                    |                                                | ecto                 |                     | IF         | Transd   | ucer          |      |               |               |          |                |
| Frequency<br>30.0 MHz                                         | -                                                       | -                                              | Peak                 | Time                | Bandw.     | 21/1 #   | 1186 Ve       | ~+   |               |               |          |                |
| SU.U MHZ                                                      | 1.0 GHz                                                 | Maxi                                           | reak                 | Coupled             | 100 kHz    | 3141-#   | 1100_ve       | ΓL   |               |               |          |                |
| Marker:                                                       | 434                                                     | 4.328657                                       | 7 MHz                | <u>z</u>            | 74.7       | 4 dBµV/m |               |      |               |               |          |                |
|                                                               |                                                         |                                                |                      |                     |            |          |               |      |               |               |          |                |
| Level [dBµV                                                   | /m]                                                     |                                                |                      |                     |            |          |               |      |               |               |          |                |
|                                                               | /11]                                                    |                                                |                      |                     |            |          |               |      |               |               |          |                |
| 80                                                            |                                                         |                                                |                      |                     |            |          |               | ^    |               |               |          | _              |
|                                                               |                                                         |                                                |                      |                     |            |          | <             | >    |               |               |          |                |
|                                                               |                                                         |                                                |                      |                     |            |          |               |      |               |               |          |                |
| 70                                                            |                                                         |                                                | +                    |                     |            |          |               |      |               |               |          | F              |
|                                                               |                                                         |                                                |                      |                     |            |          |               |      |               |               |          |                |
|                                                               |                                                         |                                                |                      |                     |            |          |               |      |               |               |          |                |
| 60                                                            |                                                         |                                                |                      |                     |            |          |               |      |               |               | _        |                |
|                                                               |                                                         |                                                |                      |                     |            |          |               |      |               |               |          |                |
|                                                               |                                                         |                                                |                      |                     |            |          |               |      |               |               |          |                |
| 50                                                            |                                                         |                                                |                      |                     |            |          |               |      |               |               |          |                |
|                                                               |                                                         |                                                |                      |                     |            |          |               |      |               |               |          | H              |
| 40                                                            |                                                         |                                                |                      |                     |            |          |               |      |               |               |          |                |
| 40                                                            |                                                         |                                                |                      |                     |            |          |               |      |               |               |          |                |
|                                                               |                                                         |                                                |                      |                     |            |          | i             |      |               |               |          |                |
| 30                                                            |                                                         |                                                |                      |                     |            |          |               |      |               |               | WW       | <b>ul</b> tuft |
| 50                                                            |                                                         |                                                |                      |                     | o M        |          |               |      | المرور المحمد | hand a galant | VM-      |                |
|                                                               |                                                         |                                                |                      |                     | ~~ mm      |          |               | m    | Moun our half |               |          |                |
| 20                                                            | $\checkmark$                                            |                                                | $\downarrow$         |                     | <u> </u>   |          | - And And And | VV . |               |               |          |                |
|                                                               | ľ Mal                                                   |                                                |                      | $\Lambda$ $\Lambda$ | \ <b>∧</b> | mm       |               |      |               |               |          |                |
|                                                               |                                                         | h                                              | $ \sim $             | × N ₩               |            |          |               |      |               |               |          |                |
| $\sim$                                                        |                                                         |                                                |                      | ~                   |            |          |               |      |               |               | _        | -              |
| 10                                                            |                                                         |                                                | + +                  |                     |            |          |               |      |               |               |          |                |
| 10                                                            |                                                         |                                                |                      |                     |            |          |               |      |               |               |          | 1              |
| 10                                                            |                                                         |                                                |                      |                     |            |          |               |      |               |               |          | Į –            |
| 0                                                             |                                                         | 7014                                           |                      |                     |            |          |               | 500  |               | 70014         |          |                |
|                                                               | 50M                                                     | 70M                                            | 1(                   | 00M                 | 200M       | 300M     |               | 500  | M             | 700M          |          | IG             |
| 0                                                             | 50M                                                     | 70M                                            | 1(                   | 00M<br>Frequency    |            | 300M     |               | 500  | M             | 700M          |          | IG             |
| 0 30M                                                         |                                                         |                                                |                      | Frequency           |            | 300M     |               | 500  | M             | 700M          |          | IG             |
| 0<br>30M<br>eaks less t                                       | than 20 dB                                              | 3 from                                         | the .                | Frequency<br>limit  |            | 300M     |               | 500  | M             | 700M          |          | <br> G         |
| 0 30M<br>eaks less t                                          | t <b>han 20 dB</b><br>ncy(MHz)                          | <b>from</b><br>Peak                            | <b>the</b> :<br>valu | Frequency           |            | 300M     |               | 500  | M             | 700M          | ,        | IG             |
| 0 30M<br>eaks less t<br>o. Freque<br>535.41                   | <b>than 20 dB</b><br>ncy(MHz)<br>082                    | <b>from</b><br>Peak<br>37.04                   | <b>the</b> 1<br>valu | Frequency<br>limit  |            | 300M     |               | 500  | M             | 700M          |          | <br> G         |
| 0 30M<br>eaks less t<br>o. Freque<br>535.41<br>688.97         | <b>than 20 dB</b><br>ncy(MHz)<br>082<br>79              | <b>From</b><br>Peak<br>37.04<br>38.32          | <b>the</b> :<br>valu | Frequency<br>limit  |            | 300M     |               | 500  | M             | 700M          | <i>.</i> | 1G             |
| 30M<br>eaks less t<br>o. Freque<br>535.41<br>688.97<br>799.77 | <b>than 20 dB</b><br>ncy(MHz)<br>082<br>79<br>9         | <b>from</b><br>Peak<br>37.04<br>38.32<br>40.50 | <b>the</b> 1<br>valu | Frequency<br>limit  |            | 300M     |               | 500  | M             | 700M          | <i>,</i> | 1G             |
| 0 30M<br>eaks less t<br>o. Freque<br>535.41<br>688.97         | <b>than 20 dB</b><br>ncy(MHz)<br>082<br>79<br>9<br>7876 | <b>From</b><br>Peak<br>37.04<br>38.32          | <b>the</b><br>valu   | Frequency<br>limit  |            | 300M     |               | 500  | M             | 700M          |          | 1G             |



PLOT 5.2.4L 1-3 GHz FSK MODULATION

|       | JIIZ FSK I                             |         |            | <u> </u> |              |           |              |              |              |
|-------|----------------------------------------|---------|------------|----------|--------------|-----------|--------------|--------------|--------------|
| EUT:  |                                        | FOBI    |            |          | ~            |           |              |              |              |
|       | omer::<br>Mode:                        | TX F    | UARDT SV   | NITCHE:  | 5            |           |              |              |              |
|       | Mode:<br>Drientatio                    |         | SN         |          |              |           |              |              |              |
|       | Drientatio                             |         |            |          |              |           |              |              |              |
|       | Engineer:                              |         | 2          |          |              |           |              |              |              |
| Volta | -                                      | -       |            |          |              |           |              |              |              |
|       |                                        | Batte   |            | for +1   | a hand       | 260 470 N | ur uv/m ot   | 2 motore -   | 41.6667(F) - |
|       |                                        |         |            |          |              |           |              |              | the limit is |
|       |                                        |         |            |          |              |           |              |              | surement was |
|       |                                        |         |            |          |              |           |              |              | ing a factor |
|       |                                        |         |            |          |              |           |              |              | The maximum  |
|       |                                        |         |            |          |              |           |              |              | fundamental  |
|       |                                        |         |            |          |              |           |              |              | s below the  |
| limit |                                        | TTULC   | 15 /0.3    | ,25 abj  | μν/          |           | 551011 at 00 | .00 abµv/m 1 | .5 DEIOW CHE |
|       | P TABLE: "                             | FCC15 2 | 47 1-30    | "        |              |           |              |              |              |
|       |                                        | top     | Deteo      |          | Meas.        | IF        | Transduce    | r            |              |
|       | equency F                              | -       |            |          | Time         | Bandw.    | TTansauce    | T            |              |
|       |                                        | .0 GHz  | y<br>MaxPe |          | Coupled      |           | #326horn     | AE wort      |              |
|       | J GHZ J                                | .U GHZ  | Maxre      | sak (    | coupred      |           |              | Ar_veit      | ]            |
| Mar   | ker:                                   | 1.737   | 747495 Gł  | Ηz       |              | 66.06 d   | BµV/m        |              |              |
|       |                                        |         |            |          |              |           |              |              |              |
|       | vel [dBµV/m]                           | 1       |            |          |              |           |              |              |              |
|       |                                        | 1       |            |          |              |           |              |              |              |
| 110   |                                        |         |            |          |              |           |              |              |              |
|       |                                        |         |            |          |              |           |              |              |              |
| 100   |                                        |         |            |          |              |           |              |              |              |
| 100   |                                        |         |            |          |              |           |              |              |              |
|       |                                        |         |            |          |              |           |              |              |              |
|       |                                        |         |            |          |              |           |              |              |              |
|       |                                        |         |            |          |              |           |              |              |              |
| 80    |                                        |         |            |          |              |           |              |              |              |
|       |                                        |         |            |          |              |           |              |              |              |
|       |                                        |         |            | /        |              |           |              |              |              |
|       |                                        |         |            | <        | $\checkmark$ |           |              |              |              |
| 00    |                                        |         |            |          |              |           |              |              |              |
| 60    |                                        |         |            |          |              |           |              |              |              |
|       |                                        |         |            |          |              |           |              |              |              |
|       |                                        |         |            |          |              |           |              |              |              |
|       |                                        |         |            |          |              |           |              | 1            |              |
| 40    |                                        |         |            |          |              |           |              |              |              |
|       |                                        |         |            |          |              | mmm       | Immun        | monthingham  | month        |
|       |                                        |         | N.M. man   | mm       | mm           |           |              |              |              |
|       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | mum     | /          |          |              |           |              |              |              |
|       |                                        |         |            |          |              |           |              |              |              |
| 20    |                                        |         |            |          |              |           |              |              |              |
|       |                                        |         |            |          |              |           |              |              |              |
| 10    |                                        |         |            |          |              |           |              |              |              |
| .0    | 1G                                     |         | 1.5G       |          |              | 2G        | 2.           | 5G           | 3G           |
|       |                                        |         |            | Fre      | quency [ł    | Hz]       |              |              |              |
|       |                                        |         |            |          |              | ·1        |              |              |              |
| Peaks | s less tha                             |         |            |          |              |           |              |              |              |
| No.   | Frequency                              | (MHz)   | Peak va    | alue(dI  | BµV/m)       |           |              |              |              |
| 1     | 1300.6                                 |         | 44.18      |          |              |           |              |              |              |
| 2     | 2170.34                                |         | 38.92      |          |              |           |              |              |              |
| 3     | 2603.2064                              | 1       | 45.47      |          |              | 1         |              |              |              |
| 4     | 2691.3827                              |         | 38.20      |          |              | 1         |              |              |              |
| 5     | 2935.87                                |         | 38.09      |          |              |           |              |              |              |
| 6     | 2955.9118                              | 32.4    | 37.81      |          |              |           |              |              |              |
| -     |                                        |         |            |          |              | 1         |              |              |              |



### PLOT 5.2.4M

|      | GHz FS     | K MODU                     |              |              |                      |                         |       |       |
|------|------------|----------------------------|--------------|--------------|----------------------|-------------------------|-------|-------|
| EUT: |            | FOBI                       |              |              |                      |                         |       |       |
|      | omer::     |                            | JARDT SWITCH | IES          |                      |                         |       |       |
|      | Mode:      | TX F:                      | SK           |              |                      |                         |       |       |
|      | Orientat   |                            |              |              |                      |                         |       |       |
|      | Orientat.  |                            |              |              |                      |                         |       |       |
|      | Enginee    | -                          |              |              |                      |                         |       |       |
| Volt | 2          | Batte<br><b>"FCC15.2</b> 4 |              |              |                      |                         |       |       |
|      | art        | Stop                       | Detector     | Meas.        | IF                   | Transducer              |       |       |
|      | equency    | -                          |              | Time         | Bandw.               | 11011000001             |       |       |
|      | 0 GHz      | 18.0 GHz                   | MaxPeak      | Coupled      | 1 MHz                | #326horn AF             | 'vert |       |
| Ма   | rker:      | 17.33                      | 38677355 GHz |              | 46.55                | dBµV/m                  | _     |       |
|      |            |                            |              |              |                      |                         |       |       |
| Le   | vel [dBµV/ | m]                         |              |              |                      |                         |       |       |
| 80   |            |                            |              |              |                      |                         |       |       |
|      |            |                            |              |              |                      |                         |       |       |
|      |            |                            |              |              |                      |                         |       |       |
| 70   |            |                            |              |              |                      |                         |       |       |
|      |            |                            |              |              |                      |                         |       |       |
|      |            |                            |              |              |                      |                         |       |       |
| 60   |            |                            |              |              |                      |                         |       |       |
|      |            |                            |              |              |                      |                         |       |       |
|      |            |                            |              |              |                      |                         |       |       |
| 50   |            |                            |              |              |                      |                         |       |       |
|      |            |                            |              |              |                      |                         |       |       |
|      |            |                            | mulu         |              |                      | mmmmm                   | mm    | month |
| 40   |            | - And March                | hMark        | mm           | frage and the second | NV <sup>1</sup> · · · · |       |       |
|      | mm         | $\sqrt{1}$                 |              | ~ 0.         |                      |                         |       |       |
|      | m          |                            |              |              |                      |                         |       |       |
| 30   |            |                            |              |              |                      |                         |       |       |
|      |            |                            |              |              |                      |                         |       |       |
|      |            |                            |              |              |                      |                         |       |       |
| 20   |            |                            | 1            |              |                      |                         |       |       |
| 20   |            |                            |              |              |                      |                         |       |       |
|      |            |                            |              |              |                      |                         |       |       |
| 10   |            |                            |              |              |                      |                         |       |       |
| 10   | 3G         | 60                         | 80           | G 10         | G 1                  | 2G 14                   | G 16  | G 18G |
|      |            |                            |              | Frequency [l |                      |                         |       |       |
| Peak | s less t   | han 20 dB                  | from the li  |              | -                    |                         |       |       |
| No.  | Frequen    |                            | Peak value   |              |                      |                         |       |       |
| 1    | 14573.1    |                            | 44.11        |              |                      |                         |       |       |
| 2    | 15685.3    |                            | 43.88        |              |                      |                         |       |       |
| 3    | 16857.7    |                            | 44.77        |              |                      |                         |       |       |
| 4    | 17248.4    |                            | 45.69        |              |                      |                         |       |       |
| 5    | 17698.1    | 9639                       | 45.42        |              |                      |                         |       |       |
| 6    | 17879.7    |                            | 45.06        |              |                      |                         |       |       |
|      |            |                            |              |              |                      |                         |       |       |



### 5.3 <u>Periodic operation characteristics</u>

#### 5.3.1 <u>Periodic operation</u>

#### 5.3.1.1 Regulation

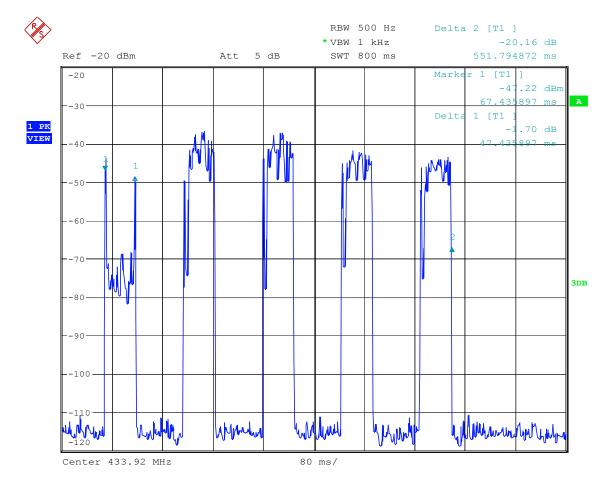
15.231 (a) The provisions of this Section are restricted to periodic operation within the band 40.66-40.70 MHz and above 70 MHz. Except as shown in paragraph (e) of this Section, the intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Continuous transmissions, voice, video and the radio control of toys are not permitted. Data is permitted to be sent with a control signal.

#### 5.3.1.2 Result

| The equipment meets the requirements |     |  |  |
|--------------------------------------|-----|--|--|
| Further test results are attached    | n a |  |  |

#### 5.3.2 Manually operated transmitter deactivation

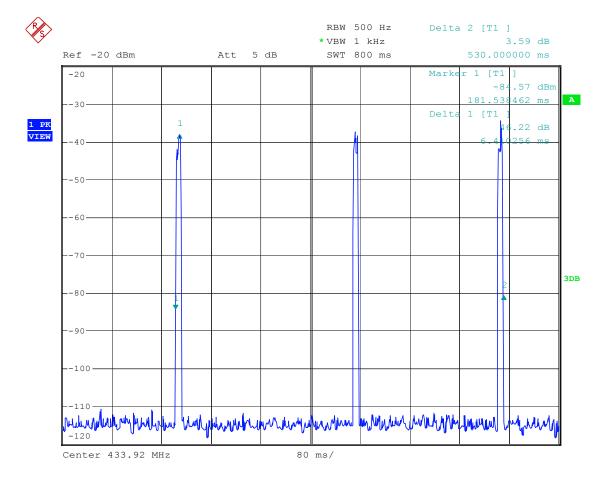
#### 5.3.2.1 Regulation


15.231 (a1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

#### 5.3.2.2 Result

| The equipment meets the requirements |     |  |  |
|--------------------------------------|-----|--|--|
|                                      |     |  |  |
| Further test results are attached    | Yes |  |  |




### PLOT 5.3.2.2A – ASK MODULATION



Date: 18.DEC.2008 19:08:29



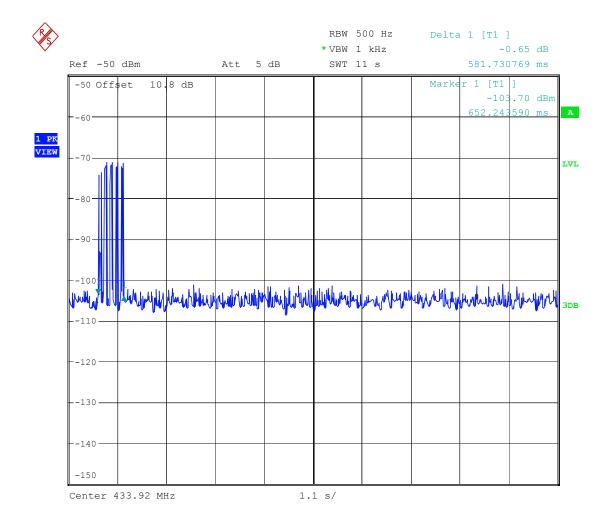
### PLOT 5.3.2.2C-FSK MODULATION



Date: 18.DEC.2008 19:07:00



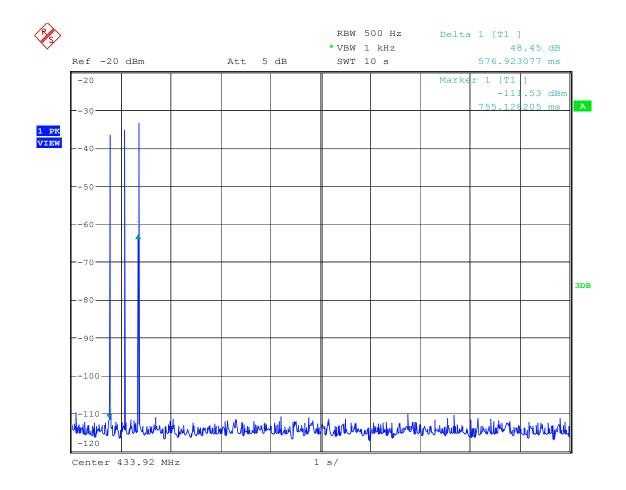
#### 5.3.3 <u>Automatically operated transmitter deactivation</u>


#### 5.3.3.1 Regulation

15.231 (a2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

#### 5.3.3.2 Result

| The equipment meets the requirements | yes |
|--------------------------------------|-----|
| Further test results are attached    | yes |


#### PLOT 5.3.3.1A-ASK MODULATION



Date: 18.DEC.2008 18:17:02



### PLOT 5.3.3.2B-FSK MODULATION



Date: 18.DEC.2008 19:04:09



#### 5.3.4 **Prohibition of periodic transmission**

#### 5.3.4.1 Regulation

15.231(a3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.

#### 5.3.4.2 Result

| The equipment meets the requirements | n. a. |
|--------------------------------------|-------|
|                                      |       |

Further test results are attachedn. a.

#### 5.3.5 <u>Continuous transmission during an alarm condition</u>

#### 5.3.5.1 Regulation

15.231 (a4) Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition

#### 5.3.5.2 Result

| The equipment meets the requirements n. | n. a. |
|-----------------------------------------|-------|
|-----------------------------------------|-------|

| Further test results are attached | n. a. |  |
|-----------------------------------|-------|--|
|-----------------------------------|-------|--|



## 5.4 Bandwidth

### 5.4.1 <u>Regulation</u>

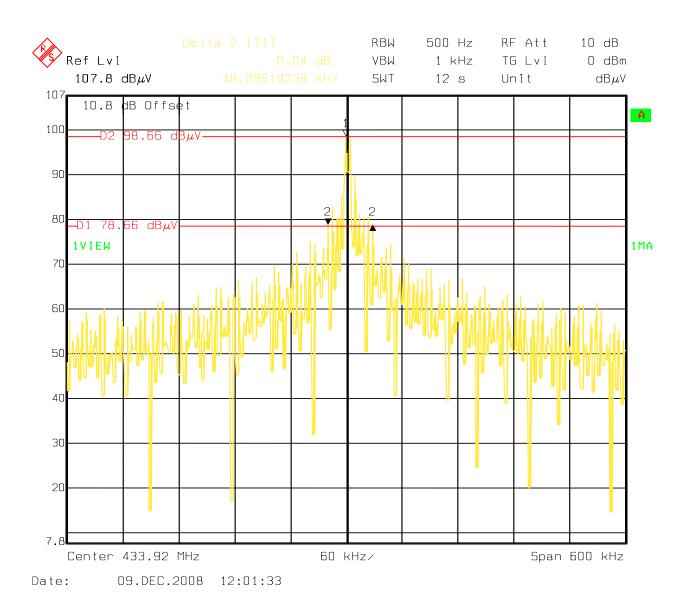
15. 231 (c) The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

#### 5.4.2 Calculation of the 20dB bandwidth limit

The 20dB bandwidth limit=0.0025\* 433.92 MHz = 1.0848 MHz

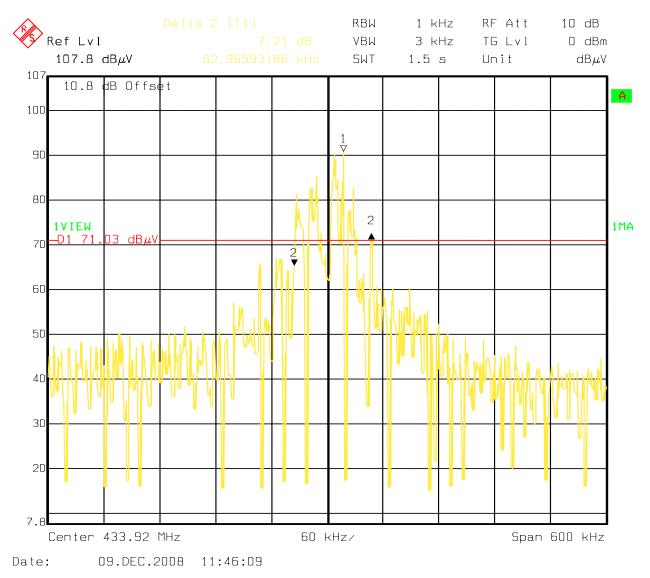
### 5.4.3 <u>Test procedure</u>

ANSI C63.4 Section 13.1.7


The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or the first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. Once the reference level is established, the equipment is conditioned with typical modulating signals to produce the worst-case (i.e., the widest) bandwidth. If no bandwidth requirement is specified by the procuring or regulatory agency, measure the bandwidth at -26 dB with respect to the reference level. In order to measure the modulated signal properly, a resolution bandwidth that is small compared with the bandwidth required by the procuring or regulatory agency shall be used on the measuring instrument. However, the resolution bandwidth of the measuring instrument shall be set to a value greater than 5% of the bandwidth requirements.

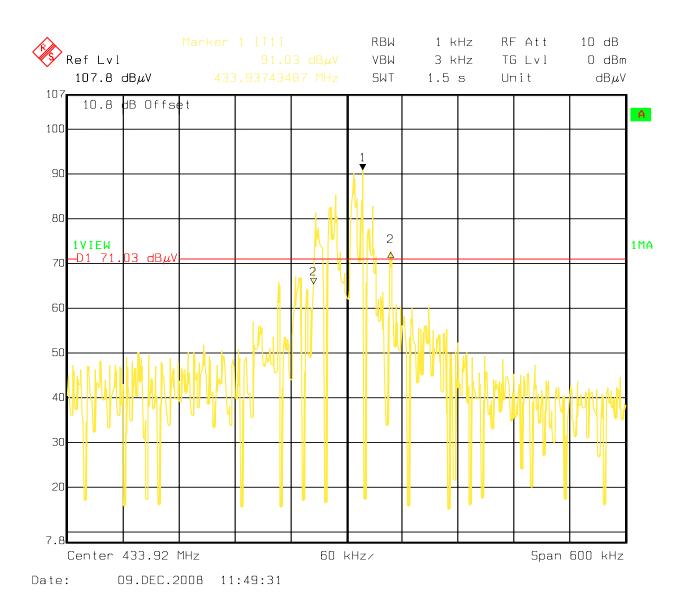
#### 5.4.4 <u>Test result</u>

| Value of measured 20 dB bandwidth ASK Modulation | 48.0 | 48.096 kHz |       |  |
|--------------------------------------------------|------|------------|-------|--|
| Value of measured 20 dB bandwidth FSK Modulation | 82.9 | 82.97 kHz  |       |  |
|                                                  |      | -          |       |  |
| The equipment meets the requirements             | yes  | no         | n. a. |  |
|                                                  |      |            |       |  |
| Further test results are attached                | yes  | no         | n. a. |  |




#### PLOT 5.4.4 A -20 dB BANDWIDTH ASK MODULATION






### PLOT 5.4.4 B-20 dB BANDWIDTH FSK MODULATION





# PLOT 5.4.4 C-20 dB BANDWIDTH: ILLUSTRATION OF PEAK AT 91.03 dBµV





# 5.5 <u>Radiated emission</u>

(Measurement of the active transponder of the EUT)

Section 15.209 Radiated emission limits, general requirements. (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency<br>(MHz) | Field Strength<br>(microvolts/meter) | Measurement Distance<br>(meters) |
|--------------------|--------------------------------------|----------------------------------|
| 0.009 - 0.490      | 2400/F(kHz)                          | 300                              |
| 0.490 - 1.705      | 24000/F(kHz)                         | 30                               |
| 1.705 - 30.0       | 30                                   | 30                               |
| 30 - 88            | 100 **                               | 3                                |
| 88 - 216           | 150 **                               | 3                                |
| 216 - 960          | 200 **                               | 3                                |
| Above 960          | 500                                  | 3                                |

\*\* Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

(b) In the emission table above, the tighter limit applies at the band edges.

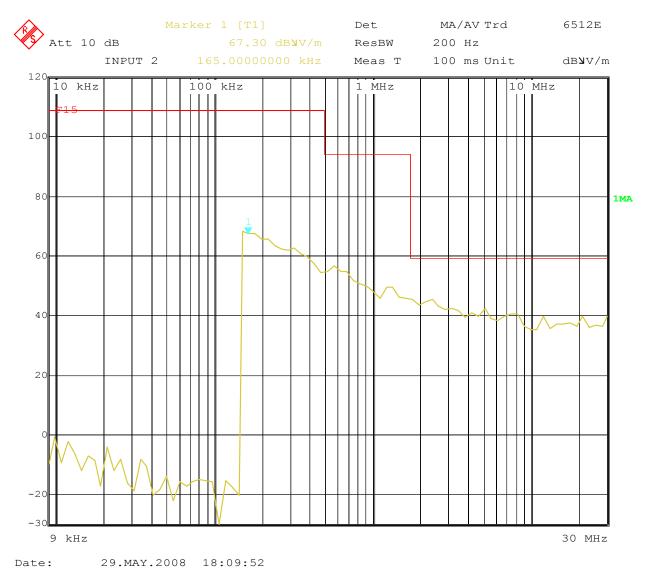
(c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other Sections within this Part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.

(d) The emission limits shown in the above table are based on measurements employing a CISPR quasipeak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

(e) The provisions in Sections 15.31, 15.33, and 15.35 for measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this Part.

(f) In accordance with Section 15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in Section 15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in Section 15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit. Emissions which must be measured above the tenth




harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator and which fall within the restricted bands shall comply with the general radiated emission limits in Section 15.109 that are applicable to the incorporated digital device.

(g) Perimeter protection systems may operate in the 54-72 MHz and 76-88 MHz bands under the provisions of this section. The use of such perimeter protection systems is limited to industrial, business and commercial applications.



## **PLOT 5.5 A-ASK MODULATION**

### 9 kHz- 30 MHz



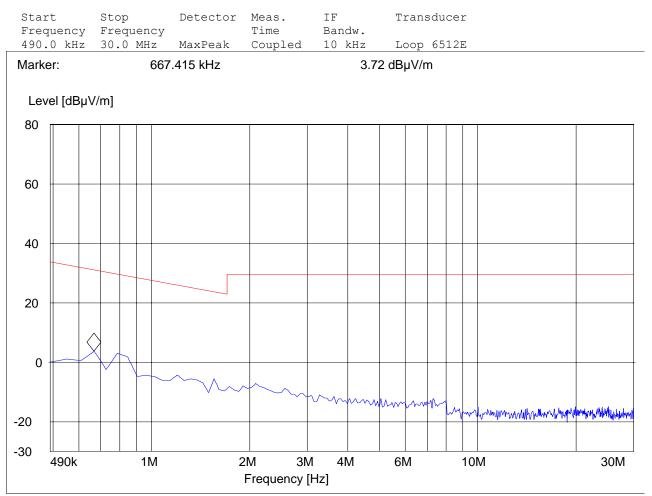


### PLOT 5.5B FSK MODULATION (9kHz - 490kHz)

| EUT:             | FOBIK              |
|------------------|--------------------|
| Customer::       | MARQUARDT SWITCHES |
| Test Mode:       | TX FSK             |
| ANT Orientation: | V                  |
| EUT Orientation: | V                  |
| Test Engineer:   | Satya              |
| Voltage:         | Battery            |
| Comments:        |                    |
|                  | a1 E 200 x 4001- T |

#### SWEEP TABLE: "FCC15.209<490k\_Loop"

| Start     | Stop      | Detector | Meas.   | IF     | Transducer |
|-----------|-----------|----------|---------|--------|------------|
| Frequency | Frequency |          | Time    | Bandw. |            |
| 9.0 kHz   | 490.0 kHz | MaxPeak  | Coupled | 200 Hz | Loop 6512E |






#### PLOT 5.5C FSK MODULATION (490kHz - 30MHz)

| EUT:                               | FOBIK              |  |  |  |
|------------------------------------|--------------------|--|--|--|
| Customer::                         | MARQUARDT SWITCHES |  |  |  |
| Test Mode:                         | TX FSK             |  |  |  |
| ANT Orientation:                   | V                  |  |  |  |
| EUT Orientation:                   | V                  |  |  |  |
| Test Engineer:                     | Satya              |  |  |  |
| Voltage:                           | Battery            |  |  |  |
| SWEEP TABLE: "FCC15.209>490k_Loop" |                    |  |  |  |
|                                    |                    |  |  |  |

-





# **RECEIVER RADIATED EMISSIONS**

## § 2.1053 / RSS-210

### NOTE:

1. The radiated emissions were done with different settings, using the relevant pre-amplifiers for the relevant frequency ranges. This is the reason that the graphs show different noise levels. In the range between 3GHz and 26.5GHz very short cable connections to the antenna was used to minimize the noise level.

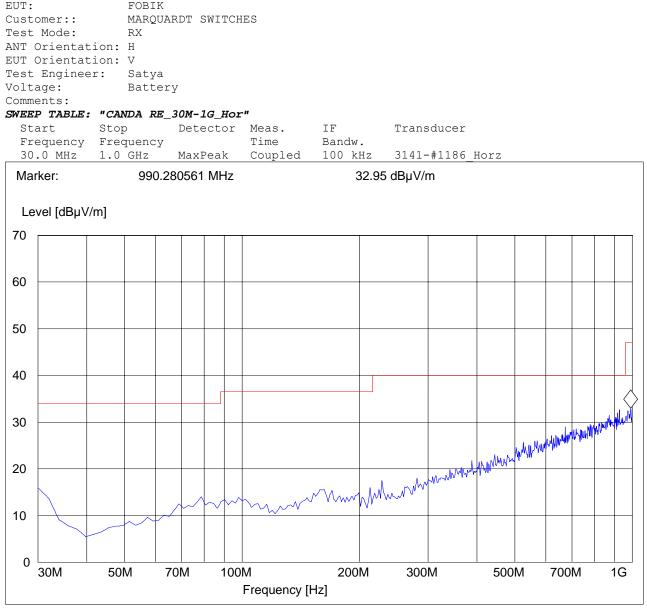
| Limits          |                       | SUBCLAUSE § RSS-210      |
|-----------------|-----------------------|--------------------------|
| Frequency (MHz) | Field strength (µV/m) | Measurement distance (m) |
| 0.009 - 0.490   | 2400/F (kHz)          | 300                      |
| 0.490 - 1.705   | 24000/F (kHz)         | 30                       |
| 1.705 - 30.0    | 30                    | 30                       |
| 30 - 88         | 100                   | 3                        |
| 88 - 216        | 150                   | 3                        |
| 216 - 960       | 200                   | 3                        |
| Above 960       | 500                   | 3                        |



#### 5.5.1 **<u>Receiver Radiated Emissions</u>**

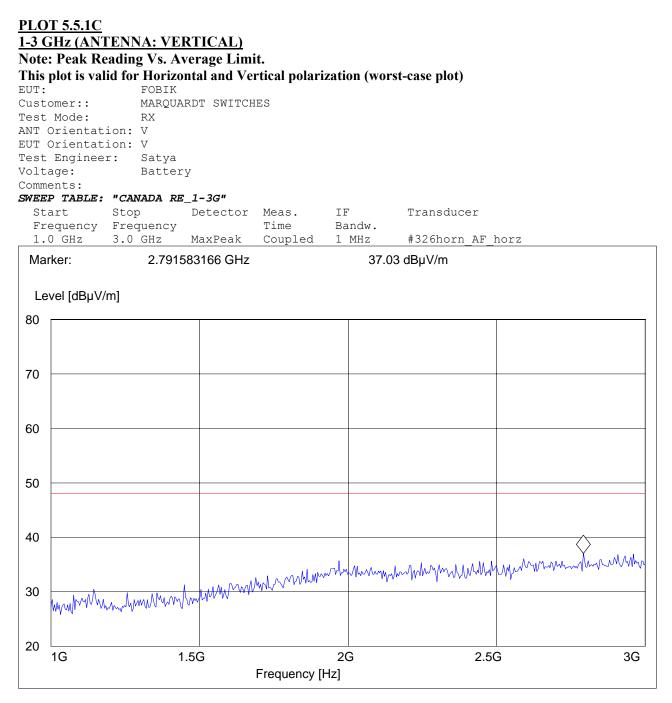
#### **PLOT 5.5.1A** 30MHz-1GHz (ANTENNA: VERTICAL) EUT: FOBIK

| 100111              |
|---------------------|
| MARQUARDT SWITCHES  |
| RX                  |
| V                   |
| V                   |
| Satya               |
| Battery             |
| NADA RE_30M-1G_Ver" |
|                     |


| MaxPeak  | Coupled | 100 kHz | 3141-#1186_Vert |                 |
|----------|---------|---------|-----------------|-----------------|
| су       | Time    | Bandw.  |                 |                 |
| Detector | Meas.   | IF      | Transducer      |                 |
|          | ncy     |         | ncy Time Bandw. | ncy Time Bandw. |

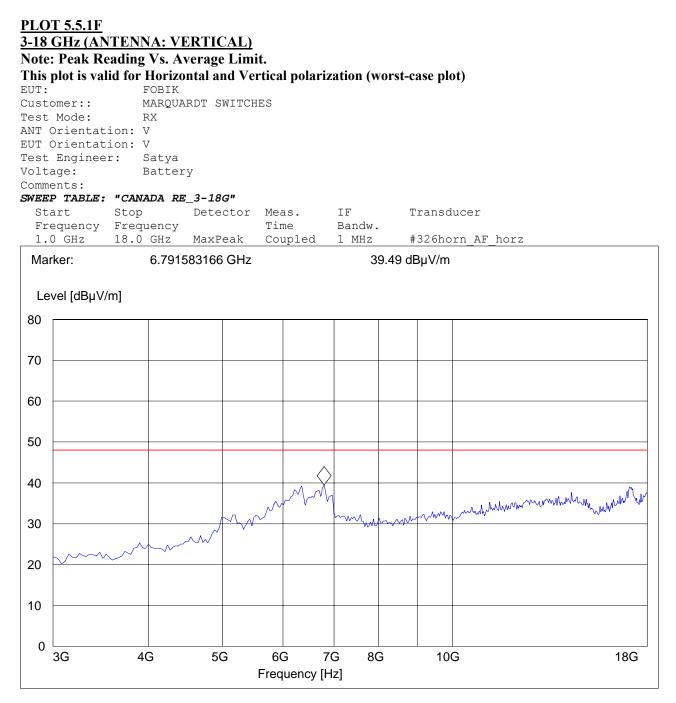


| Peaks | s less than 20 dB | from the limit     |
|-------|-------------------|--------------------|
| No.   | Frequency(MHz)    | Peak value(dBµV/m) |
| 1     | 893.086172        | 31.77              |
| 2     | 920.300601        | 31.18              |
| 3     | 931.963928        | 30.91              |
| 4     | 941.683367        | 30.73              |
| 5     | 961.122244        | 31.23              |
| 6     | 968.897796        | 31.42              |




# **PLOT 5.5.1B 30MHz-1GHz (ANTENNA: HORIZONTAL)**




| Peaks | s less than 20 dB | from the limit     |
|-------|-------------------|--------------------|
| No.   | Frequency(MHz)    | Peak value(dBµV/m) |
| 1     | 620.941884        | 27.08              |
| 2     | 673.426854        | 28.99              |
| 3     | 865.871743        | 30.80              |
| 4     | 873.647295        | 31.44              |
| 5     | 916.412826        | 31.96              |
| 6     | 928.076152        | 32.62              |





| Peaks | s less than 20 dB | from the limit     |
|-------|-------------------|--------------------|
| No.   | Frequency(MHz)    | Peak value(dBµV/m) |
| 1     | 2807.61523        | 35.69              |
| 2     | 2847.695391       | 35.88              |
| 3     | 2895.791583       | 36.29              |
| 4     | 2907.8156         | 36.84              |
| 5     | 2931.863727       | 36.58              |
| 6     | 2959.91984        | 36.89              |





| Peaks | s less than 20 dB | from the limit     |
|-------|-------------------|--------------------|
| No.   | Frequency(MHz)    | Peak value(dBµV/m) |
| 1     | 6348.69739        | 39.25              |
| 2     | 6212.424850       | 38.25              |
| 3     | 6961.923848       | 36.99              |
| 4     | 14320.641283      | 37.71              |
| 5     | 17659.318637      | 37.26              |
| 6     | 17216.432866      | 38.58              |



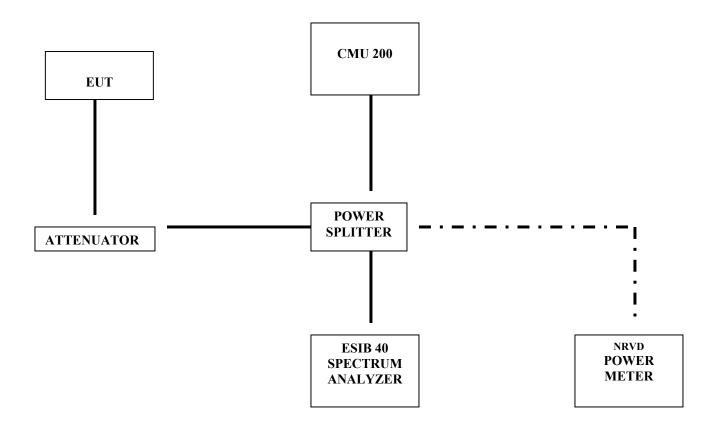
# 6 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

| No | Instrument/Ancillary            | Туре             | Manufacturer    | Serial No.   | Cal Due   | Interval |
|----|---------------------------------|------------------|-----------------|--------------|-----------|----------|
| 01 | Spectrum Analyzer               | ESIB 40          | Rohde & Schwarz | 100107       | May 2009  | 1 year   |
| 02 | Spectrum Analyzer               | FSEM 30          | Rohde & Schwarz | 100017       | May 2009  | 1 year   |
| 03 | Signal Generator                | SMY02            | Rohde & Schwarz | 836878/011   | May 2009  | 1 year   |
| 04 | Power-Meter                     | NRVD             | Rohde & Schwarz | 0857.8008.02 | May 2009  | 1 year   |
| 05 | Biconilog Antenna               | 3141             | EMCO            | 0005-1186    | June 2009 | 1 year   |
| 06 | Horn Antenna (1-<br>18GHz)      | SAS-<br>200/571  | AH Systems      | 325          | June 2009 | 1 year   |
| 07 | Horn Antenna (18-<br>26.5GHz)   | 3160-09          | EMCO            | 1240         | June 2009 | 1 year   |
| 08 | Power Splitter                  | 11667B           | Hewlett Packard | 645348       | n/a       | n/a      |
| 09 | Climatic Chamber                | VT4004           | Voltsch         | G1115        | May 2009  | 1 year   |
| 10 | High Pass Filter                | 5HC2700          | Trilithic Inc.  | 9926013      | n/a       | n/a      |
| 11 | High Pass Filter                | 4HC1600          | Trilithic Inc.  | 9922307      | n/a       | n/a      |
| 12 | Pre-Amplifier                   | JS4-<br>00102600 | Miteq           | 00616        | May 2009  | 1 year   |
| 13 | Power Sensor                    | URV5-Z2          | Rohde & Schwarz | DE30807      | May 2009  | 1 year   |
| 14 | Digital Radio Comm.<br>Tester   | CMD-55           | Rohde & Schwarz | 847958/008   | May 2009  | 1 year   |
| 15 | Universal Radio<br>Comm. Tester | CMU 200          | Rohde & Schwarz | 832221/06    | May 2009  | 1 year   |
| 16 | LISN                            | ESH3-Z5          | Rohde & Schwarz | 836679/003   | July 2010 | 2 years  |
| 17 | Loop Antenna                    | 6512             | EMCO            | 00049838     | May 2009  | 1 year   |



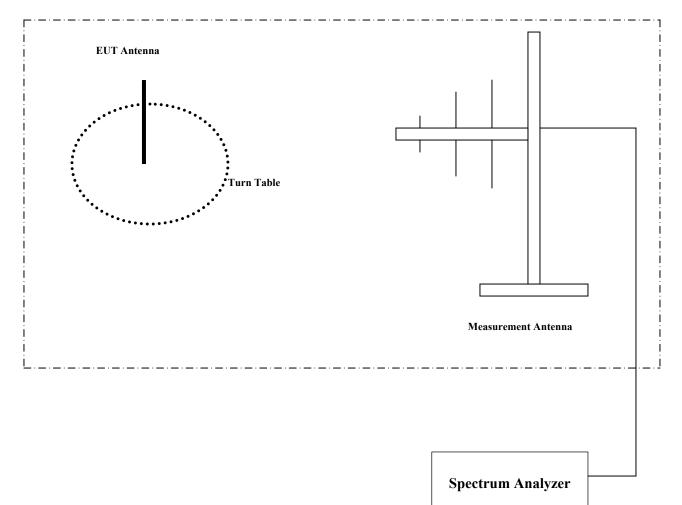
# 7 <u>References</u>

Title 47—Telecommunication, CHAPTER I--FEDERAL COMMUNICATIONS COMMISSION, PART 15--RADIO FREQUENCY DEVICES September 20, 2007.


ANSI C63.4: American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz 30<sup>th</sup> January, 2004

RSS-210 Low-power License-exempt Radio communication Devices (All Frequency Bands): Category I Equipment




# 8 BLOCK DIAGRAMS

**Conducted Testing** 





# **Radiated Testing**



**ANECHOIC CHAMBER** 



# 9 Revision History

| Date       | Report name                              | Revisions                                                          |
|------------|------------------------------------------|--------------------------------------------------------------------|
| 2008-6-13  | EMC_MARQU_001_08001_FOBIK_FCC15.231      | Original report                                                    |
| 2008-7-11  | EMC_MARQU_001_08001 FOBIK_FCC15.231_rev1 | Field strength<br>measurement included in<br>section 3.1 table.    |
|            |                                          | Plot 17 removed.                                                   |
| 2008-8-18  | EMC_MARQU_001_08001_FOBIK_FCC15.231_rev2 | a. Duty cycle 47.8 ms<br>rounded up to 48 ms<br>instead of 47ms.   |
|            |                                          | b. Duty cycle<br>measurement procedure<br>and plot included.       |
|            |                                          | c. Worst case plot<br>comment added to plot15<br>and plot 16.      |
| 2008-11-20 | EMC_MARQU_001_08001_FOBIK_FCC15.231_rev3 | FSK modulation results added.                                      |
| 2008-12-18 | EMC_MARQU_001_08001_FOBIK_FCC15.231_rev4 | OBW plots changed and<br>transmitter deactivation<br>plots changed |