

FCC 15.209, RSS 210 TEST REPORT

FOR:

Integrated Vehicular Receiver

MODEL #: WIN (Wireless Ignition Node)

Marquardt Switches 2917 Waterview Dr. Rochester Hills, Michigan 48309 U.S.A

TEST REPORT #: EMC_MARQU_001_08001_WIN_FCC15_rev3
DATE: 2008-11-18

Bluetooth Qualification Test Facility (BQTF)

FCC listed: A2LA accredited

IC recognized # 3462B

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

Table of Contents

1	1 ASSESSMENT	3
	EMC & RadioEMC & Radio	
2	2 ADMINISTRATIVE DATA	4
	 2.1 IDENTIFICATION OF THE TESTING LABORATORY ISSUING THE EMC TEST REPORT 2.2 IDENTIFICATION OF THE CLIENT 2.3 IDENTIFICATION OF THE MANUFACTURER 	4
3	3 EQUIPMENT UNDER TEST (EUT)	5
	3.1 SPECIFICATION OF THE EQUIPMENT UNDER TEST	5 5
4	4 SUBJECT OF INVESTIGATION	6
5	5 MEASUREMENTS	7
	 5.1 RADIATED EMISSION 5.2 RESULTS 5.3 RECEIVER RADIATED EMISSIONS § 2.1053 / RSS-210 5.3.1 Receiver Radiated Emissions 	8
6	6 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS	18
7	7 REFERENCES	19
8	8 BLOCK DIAGRAMS	20
9	9 REVISION HISTORY	21

EMC_MARQU_001_08001_WIN_FCC15_rev3 2008-11-18 Page 3 of 21

1 Assessment

The following is in compliance with the applicable criteria specified in FCC rules Parts 15, of Title 47 of the Code of Federal Regulations and in compliance with the applicable criteria specified in Industry Canada rules RSS210.

Company	Description	Model #
Marquardt Switches	Integrated Vehicular Receiver	WIN (Wireless Ignition Node)

Technical responsibility for area of testing:

2008-11-18	EMC & Radio	Marc Douat (EMC Project Engineer)	
Date	Section	Name	Signature
This report	is prepared by:		
		Satya Radhakrishna	
2008-11-18	EMC & Radio	(EMC Project Engineer)	
Date	Section	Name	Signature

The test results of this test report relate exclusively to the test item specified in Identification of the Equipment under Test. The CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM Inc USA.

Page 4 of 21

Administrative Data

Identification of the Testing Laboratory Issuing the EMC Test Report

Company Name:	CETECOM Inc.
Department:	EMC
Address:	411 Dixon Landing Road
	Milpitas, CA 95035
	U.S.A.
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
Responsible Test Lab Manager:	Lothar Schmidt
Responsible Project Leader:	Satya Radhakrishna

2.2 Identification of the Client

Applicant's Name:	Marquardt Switches
Street Address:	2917 Waterview Dr.
City/State/Zip Code	Rochester Hills, Michigan 48309
Country	U.S.A
Contact Person:	Drake Boroja
Phone No.	248-293-7727
e-mail:	Drake.Boroja@Marqswitch.com

Identification of the Manufacturer 2.3

Same as above client.

EMC_MARQU_001_08001_WIN_FCC15_rev3 2008-11-18

Page 5 of 21

Equipment under Test (EUT)

3.1 Specification of the Equipment under Test

Marketing Name:	WIN (Wireless Ignition Node)
Description:	Integrated Vehicular Receiver
Model No:	WIN (Wireless Ignition Node)
FCC ID:	IYZ-C01B
IC ID:	2701A-C01B
Type(s) of Modulation:	ASK
Number of Channels:	1
Antenna Type:	Wound coil
Field strength of the transmitter:	14.51 dBμV/m at 300 meters

3.2 <u>Identification of the Equipment Under Test (EUT)</u>

EUT#	TYPE	MANF.	MODEL	SERIAL#
1	Integrated Vehicular Receiver	Marquardt Switches	WIN (Wireless Ignition Node)	03336030103

EMC_MARQU_001_08001_WIN_FCC15_rev3 2008-11-18

Page 6 of 21

Subject of Investigation

All testing was performed on the EUT listed in Section 3. The EUT was maximized in the X,Y, Z positions, all data in this report shows the worst case between horizontal and vertical polarization for above 1GHz.

The objective of the measurements done by Cetecom Inc. was to measure the performance of the EUT as specified by requirements listed in FCC rules Parts15.209 of Title 47 of the Code of Federal Regulations and Industry Canada rules RSS210. Test methods for FCC 15.209 were based on the procedure mentioned in ANSI C63.4.

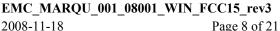
Page 7 of 21

5 Measurements

5.1 **Radiated emission**

(Measurement of the active transponder of the EUT)

Section 15.209 Radiated emission limits, general requirements.


(a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

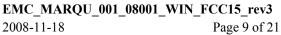
^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

- (b) In the emission table above, the tighter limit applies at the band edges.
- (c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other Sections within this Part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.
- (d) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

Test Report #: **EMC_MARQU_**Date of Report: 2008-11-18

- (e) The provisions in Sections 15.31, 15.33, and 15.35 for measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this Part.
- (f) In accordance with Section 15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in Section 15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in Section 15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit. Emissions which must be measured above the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator and which fall within the restricted bands shall comply with the general radiated emission limits in Section 15.109 that are applicable to the incorporated digital device.
- (g) Perimeter protection systems may operate in the 54-72 MHz and 76-88 MHz bands under the provisions of this section. The use of such perimeter protection systems is limited to industrial, business and commercial applications.

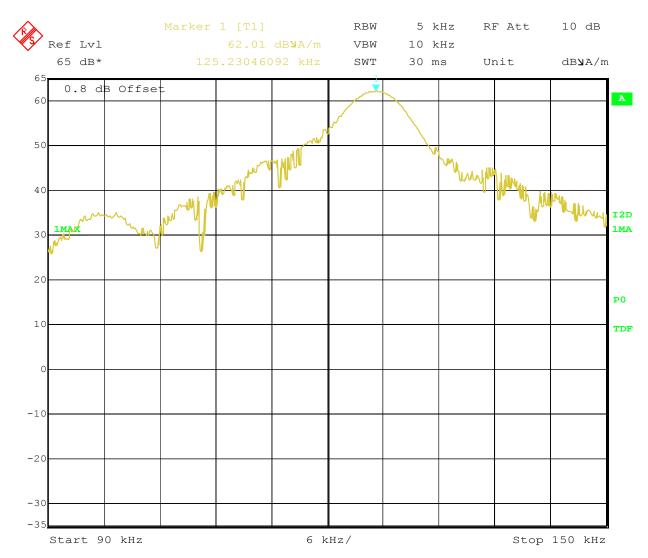
5.2 Results


Measurements were performed at 1m distance using loop antenna which was placed a height of 1m from the ground.

Measuring the fundamental: Please refer to Plot 1

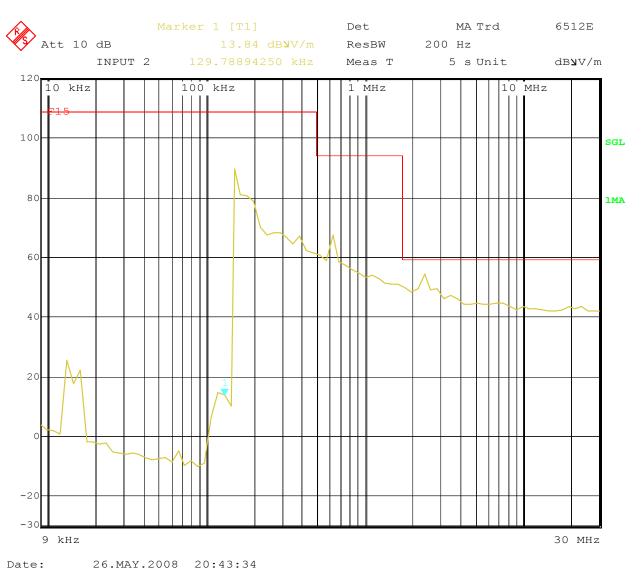
The fundamental has a level of $62.01 dB\mu A/m$. In order to convert to $dB\mu V/m$ add 51.5 dB. Electric field strength= Magnetic field strength + 51.5 dB = 113.51 dB $\mu V/m$. FCC 15.209 states that the field strength limits for the fundamental in the frequency range 0.009 - 0.490 MHz = 2400/F (kHz) for a given test distance of 300 meters. So the limit is 2400/125 kHz = $19.2\mu V/m$. In order to convert to dB $\mu V/m$, the formula used is $20 * log (19.2 \mu V/m) = 25.67$ dB $\mu V/m$ at 300 meters.

The measured value at 1 meter distance is $113.51 dB\mu V/m$. To extrapolate to 300 meters use the formula, 40 * log (1/300) = -99 dB. [Note: a 40dB/decade can be used below 30 MHz per FCC 15.31 (b)(2). 20dB/decade is to be used above 30 MHz per FCC 15.31(b)(1))]


Extrapolation result will be 113.51 dB μ V/m - 99 dB = 14.51 dB μ V/m at 300 meters.

PLOT 1

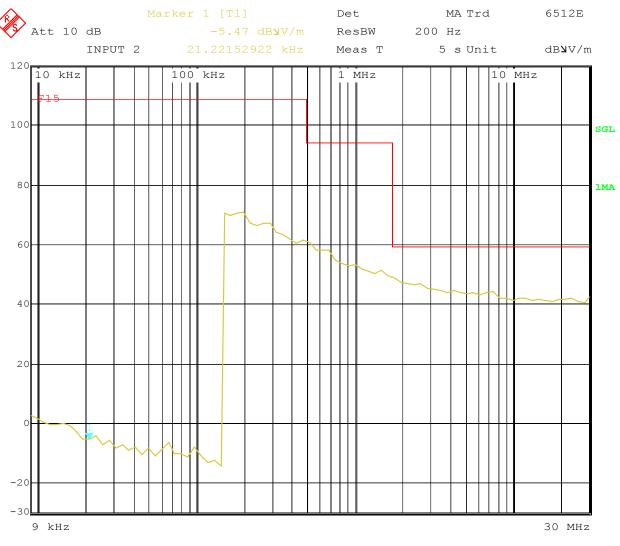
Field strength of fundamental



Page 10 of 21

PLOT 2

9 kHz- 30 MHz Tx mode


Noise Floor at 30 MHz: 41.33 dBµV/m

Page 11 of 21

PLOT 3

9 kHz- 30 MHz Rx mode

26.MAY.2008 20:33:27 Date:

Noise Floor at 30 MHz: $41.33 \ dB\mu V/m$

EMC_MARQU_001_08001_WIN_FCC15_rev3

2008-11-18 Page 12 of 21

5.3 RECEIVER RADIATED EMISSIONS

§ 2.1053 / RSS-210

NOTE:

1. The radiated emissions were done with different settings, using the relevant pre-amplifiers for the relevant frequency ranges. This is the reason that the graphs show different noise levels. In the range between 3GHz and 26.5GHz very short cable connections to the antenna was used to minimize the noise level.

Limits

SUBCLAUSE § RSS-210

Frequency (MHz)	Field strength (μV/m)	Measurement distance (m)
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

5.3.1 **Receiver Radiated Emissions**

PLOT 4

EUT in Idle Mode: 30MHz - 1GHz

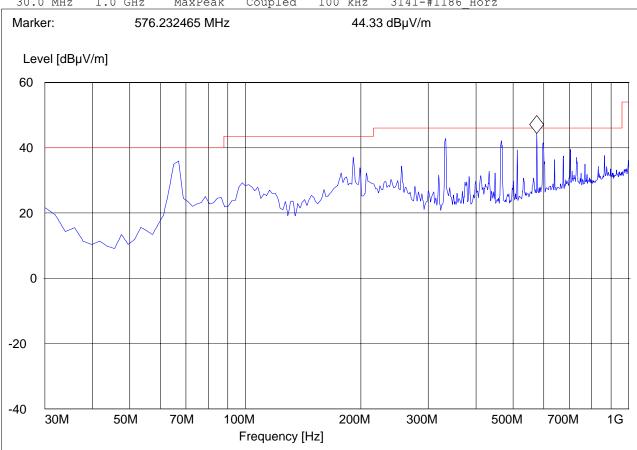
Antenna: horizontal

Note: Peak Reading Vs. Quasi-Peak Limit.

CETECOM Inc., 411 Dixon Landing Road, Milpitas CA 95035, USA

Customer:: MARQUARDT SWITCHES

Test Mode: Rx mode


ANT Orientation: H EUT Orientation: V Test Engineer: Chris Voltage: car battery

SWEEP TABLE: "CANDA RE_30M-1G_Hor"

Stop Start Detector Meas. ΙF Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186 Horz

Peaks	s less than 20 dB	from the limit
No.	Frequency	Peak value
1	334.375 MHz	42.85dBμV/m
2	470 MHz	41.7597 dBµV/m
3	513.27 MHz	39.23 dBµV/m
4	599.78 MHz	41.173 dBµV/m
5	702.56 MHz	39.57 dBμV/m
6	862 MHz	37.64 dBuV/m

EMC_MARQU_001_08001_WIN_FCC15_rev3

Date of Report: 2008-11-18 Page 14 of 21

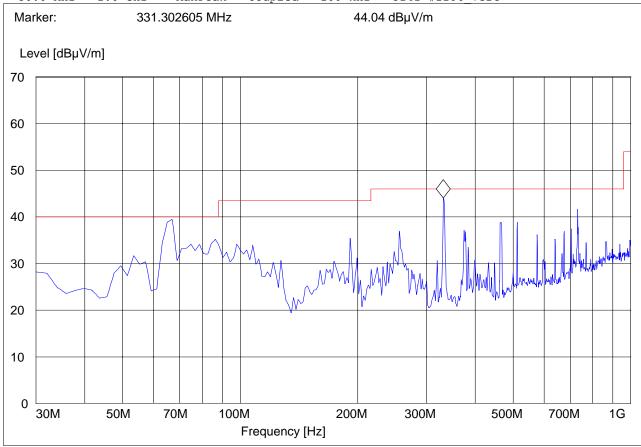
PLOT 5

Test Report #:

EUT in Idle Mode: 30MHz – 1GHz Antenna: vertical

EUT: WIN

Customer:: MARQUARDT SWITCHES


Test Mode: Rx mode

ANT Orientation: V
EUT Orientation: V
Test Engineer: Chris
Voltage: car battery

SWEEP TABLE: "CANADA RE_30M-1G_Ver"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

Peaks	Peaks less than 20 dB from the limit				
No.	Frequency(MHz)	Peak value(dBµV/m)			
1	67.1419	39.21			
2	380.769	37.6			
3	467	38.7			
4	512.5	38.8			
5	702	37.6			
6	733.33	41.68			

PLOT 6

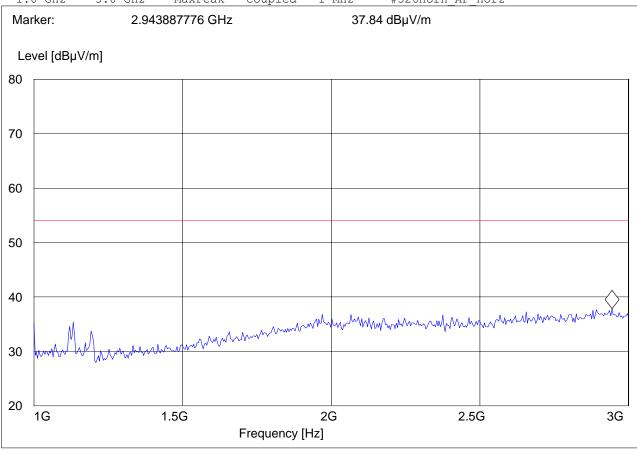
RECEIVER RADIATED EMISSIONS

EUT in Idle Mode: 1GHz – 3GHz

Note: Peak Reading Vs. Average Limit. This plot is valid for Horizontal and Vertical polarization (worst-case plot)

EUT: WIN

Customer:: MARQUARDT SWITCHES


Test Mode: Rx mode

ANT Orientation: H
EUT Orientation: V
Test Engineer: Chris
Voltage: car battery
SWEEP TABLE: "CANADA RE_1-3G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.0 GHz 3.0 GHz MaxPeak Coupled 1 MHz #326horn AF horz

Peaks	s less than 20 dB	from the limit
No.	Frequency(MHz)	Peak value(dBµV/m)
1	1974.359	37.05
2	2064.102	36.90
3	2371.79	36.67
4	2656.25	37.33
5	2884.61	37.42
6	2897.436	37.50

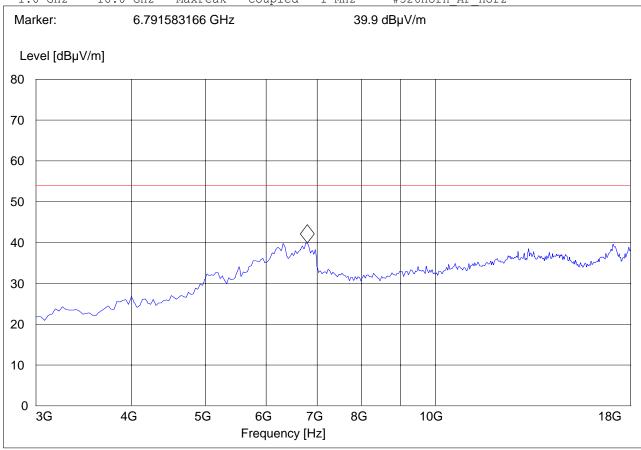
PLOT 7

RECEIVER RADIATED EMISSIONS **EUT in Idle Mode: 3GHz – 18GHz**

Note: Peak Reading Vs. Average Limit. This plot is valid for Horizontal and Vertical polarization (worst-case plot)

ÈUT: WIN

Customer:: MARQUARDT SWITCHES


Test Mode: Rx mode

ANT Orientation: H EUT Orientation: V Test Engineer: Chris Voltage: car battery SWEEP TABLE: "CANADA RE_3-18G"

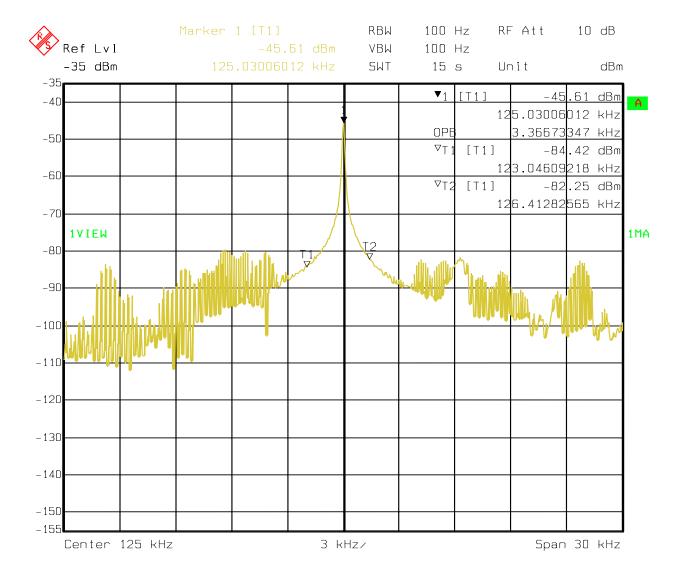
Stop Start Meas. ΙF Transducer Detector

Frequency Frequency Time Bandw.

1.0 GHz 18.0 GHz MaxPeak Coupled 1 MHz #326horn AF horz

Peaks	s less than 20 dB	from the limit		
No.	Frequency(MHz)	Peak value(dBµV/m)		
1	5543.75	34.12		
2	6333.33	39.78		
3	13419.548	38.095		
4	13843.07	38.57		
5	17372.42	39.048		
6	17922.33	38.6		

EMC_MARQU_001_08001_WIN_FCC15_rev3


2008-11-18 Page 17 of 21

99% BANDWIDTH

PLOT 8

99% BANDWIDTH MEASURED IS 3.36673347 kHz

EMC_MARQU_001_08001_WIN_FCC15_rev3 2008-11-18

Page 18 of 21

TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

No	Instrument/Ancillary	Type	Manufacturer	Serial No.	Cal Due	Interval
01	Spectrum Analyzer	ESIB 40	Rohde & Schwarz	100107	May 2009	1 year
02	Spectrum Analyzer	FSEM 30	Rohde & Schwarz	100017	May 2009	1 year
03	Signal Generator	SMY02	Rohde & Schwarz	836878/011	May 2009	1 year
04	Power-Meter	NRVD	Rohde & Schwarz	0857.8008.02	May 2009	1 year
05	Biconilog Antenna	3141	EMCO	0005-1186	June 2009	1 year
06	Horn Antenna (1- 18GHz)	SAS- 200/571	AH Systems	325	June 2009	1 year
07	Horn Antenna (18- 26.5GHz)	3160-09	EMCO	1240	June 2009	1 year
08	Power Splitter	11667B	Hewlett Packard	645348	n/a	n/a
09	Climatic Chamber	VT4004	Voltsch	G1115	May 2009	1 year
10	High Pass Filter	5HC2700	Trilithic Inc.	9926013	n/a	n/a
11	High Pass Filter	4HC1600	Trilithic Inc.	9922307	n/a	n/a
12	Pre-Amplifier	JS4- 00102600	Miteq	00616	May 2009	1 year
13	Power Sensor	URV5-Z2	Rohde & Schwarz	DE30807	May 2009	1 year
14	Digital Radio Comm. Tester	CMD-55	Rohde & Schwarz	847958/008	May 2009	1 year
15	Universal Radio Comm. Tester	CMU 200	Rohde & Schwarz	832221/06	May 2009	1 year
16	LISN	ESH3-Z5	Rohde & Schwarz	836679/003	July 2010	2 years
17	Loop Antenna	6512	EMCO	00049838	May 2009	1 year

EMC_MARQU_001_08001_WIN_FCC15_rev3

2008-11-18 Page 19 of 21

7 References

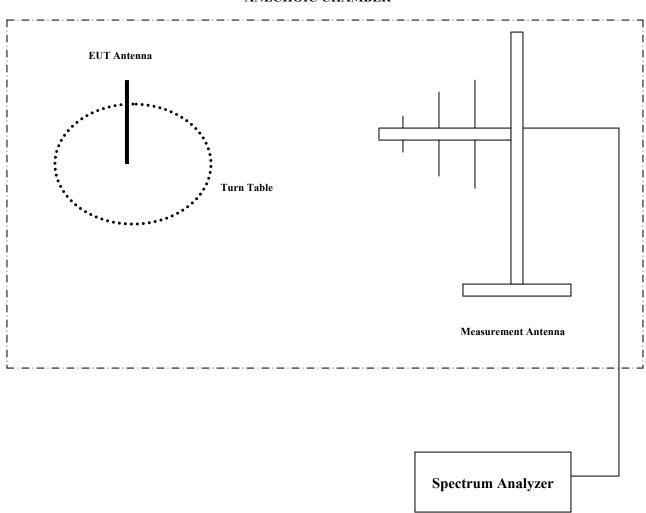
Title 47—Telecommunication, CHAPTER I--FEDERAL COMMUNICATIONS COMMISSION,

PART 15 RADIO FREQUENCY DEVICES September 20, 2007.

ANSI C63.4: American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz 30th January, 2004

.

RSS-210 Low-power Licence-exempt Radio communication Devices (All Frequency Bands): Category I Equipment


2008-11-18 Page 20 of 21

8 BLOCK DIAGRAMS

Radiated Testing

ANECHOIC CHAMBER

Test Report #: EMC MARQU 001 08001 WIN FCC15 rev3 Date of Report:

2008-11-18 Page 21 of 21

Revision History

2008-06-12- EMC MARQU 001 08001 WIN FCC15- Original report

2008-07-11- EMC_ MARQU_001_08001 _WIN_FCC15_rev1- Field strength measurement included

2008-11-04- EMC_ MARQU_001_08001 _WIN_FCC15_rev2- Field strength measurement result changed and tables listing peaks included.

2008-11-18- EMC_MARQU_001_08001_WIN_FCC15_rev3- Calibration dates in the test equipment table updated.