To: FCC 47 CFR Part15.247 & IC RSS-210

Test Report Serial No.: TUVR107-A1 Rev A

TEST REPORT

Test of SpectraLink RCC400 Standard Base Station

To FCC 47 CFR Part15.247 & IC RSS-210

Test Report Serial No.: TUVR107-A1 Rev A

This report supersedes: None

Manufacturer: SpectraLink Corporation

5755 Central Avenue

Boulder

Colorado 80301, USA

Product Function: Wireless Telephone Base Station

Copy No: pdf Issue Date: 14th February '07

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc.

440 Boulder Court, Suite 200 Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304

Fax: +1 (925) 462-0306 www.micomlabs.com ACCREDITED OF THE PROPERTY OF

CERTIFICATE #2381.01

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 3 of 69

This page has been left intentionally blank

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A
Issue Date: 14th February '07
Page: 4 of 69

TABLE OF CONTENTS

CC	OVER PAGE	1
TIT	ΓLE PAGE	2
AC	CREDITATION & LISTINGS	5
1.	TEST RESULT CERTIFICATE	8
2.	REFERENCES AND MEASUREMENT UNCERTAINTY	9
2	Normative References Test and Uncertainty Procedures PRODUCT DETAILS AND TEST CONFIGURATIONS	9
3.		
	3.1. Technical Details	
	3.3. Equipment Model(s) and Serial Number(s)	
	3.4. Antenna Details	12
	3.5. Cabling and I/O Ports	
	Test Configurations	
	3.7. Equipment Modifications	
	3.9. Subcontracted Testing or Third Party Data	
4.	TEST SUMMARY	
5.	TEST RESULTS	16
	5.1. Device Characteristics	16
	5.1.1. 20 dB Bandwidth	
	5.1.2. Transmitter Channels - Channel Spacing	21
	5.1.3. Transmitter Channels	
	5.1.4. Output Power	
	5.1.6. Radiated Emissions	
	5.1.7. Radiated Spurious Emissions (30M-1 GHz)	
	5.1.8. AC Wireline Conducted Emissions (150 kHz – 30 MHz)	60
6.	PHOTOGRAPHS	63
	6.1. General Measurement Test Set-Up	63
	6.2. Radiated Emissions >1 GHz	
	6.3. Internal Photos of the EUT	65
7.	TEST FOUIPMENT DETAILS	68

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 5 of 69

ACCREDITATION & LISTINGS

MiCOM Labs, Inc. an accredited laboratory complies with the international standard BS EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org/scopepdf/2381-01.pdf schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-01.pdf

THE AMERICAN
ASSOCIATION
FOR LABORATORY
ACCREDITATION

ACCREDITED LABORATORY

A2LA has accredited

MICOM LABS Pleasanton, CA

for technical competence in the field of

Electrical Testing

The accreditation covers the specific tests and types of tests listed on the agreed scope of accreditation. This laboratory meets the requirements of ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration Laboratories" and any additional program requirements in the identified field of testing.

Presented this 14th day of September 2005.

President President Council Certificate Number 2381.01
Valid to: November 30, 2007

For tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 6 of 69

LISTINGS

MiCOM Labs test facilities are listed by the following organizations;

North America

United States of America

Federal Communications Commission (FCC) Listing #: 102167

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A
Issue Date: 14th February '07
Page: 7 of 69

DOCUMENT HISTORY

	Document History					
Revision	Date	Comments				
Draft						
Rev A	14 th February 2007	First issue.				

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 8 of 69

1. TEST RESULT CERTIFICATE

Manufacturer: SpectraLink Corporation Tested By: MiCOM Labs, Inc.

5755 Central Avenue 440 Boulder Court

Boulder Suite 200

Colorado 80301, USA Pleasanton

California, 94566, USA

EUT: Wireless Telephone Base Station Telephone: +1 925 462 0304

Model: RCC 400 Fax: +1 925 462 0306

S/N: 406190613, 406189298 &

406187301

Test Date(s): 4th - 7th January '07 Website: www.micomlabs.com

STANDARD(S)

TEST RESULTS

FCC 47 CFR Part15.247 & IC RSS-210

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.

3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

CERTIFICATE #2381.01

Graeme Grieve

Quality Manager MiCOM Labs,

Gordon Hurst

President & CEO MiCOM Labs, Inc.

Serial #: TUVR107-A1 Rev A

Page: 9 of 69

Issue Date: 14th February '07

2. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

2.1. Normative References

Ref.	Publication	Year	Title
(i)	FCC 47 CFR Part 15.247	Feb 2006	Code of Federal Regulations
(ii)	Industry Canada RSS-210	Issue 6 Sept. 2005	Low Power License-Exempt Radiocommunication Devices (All Frequency Bands)
(iii)	Industry Canada RSS-Gen	Issue 1 Sept. 2005	General Requirements and Information for the Certification of Radiocommunication Equipment.
(iv)	ANSI C63.4	2003	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(v)	CISPR 22/ EN 55022	1997 1998	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(vi)	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
(vii)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(viii)	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(ix)	A2LA	14 th September 2005	Reference to A2LA Accreditation Status – A2LA Advertising Policy

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

Serial #: TUVR107-A1 Rev A
Issue Date: 14th February '07

Page: 10 of 69

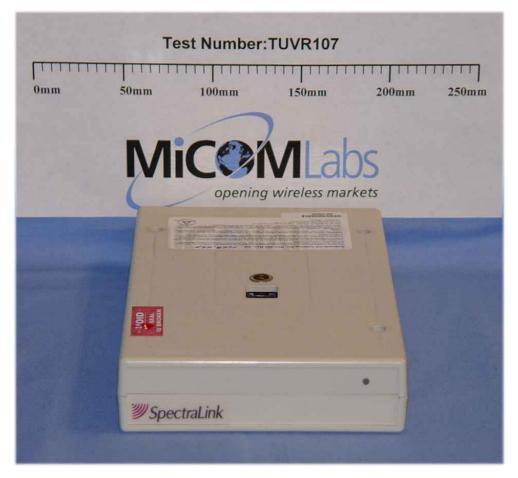
3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details

Details	Description	
Purpose:	Test of the SpectraLink RCC400 Standard Base Station	
	to FCC Part 15.247 and Industry Canada RSS-210	
	regulations	
Applicant:	As Manufacturer	
Manufacturer:	SpectraLink Corporation	
	5755 Central Avenue	
	Boulder	
	Colorado 80301, USA	
Laboratory performing the tests:	MiCOM Labs, Inc.	
	440 Boulder Court, Suite 200	
	Pleasanton, California 94566 USA	
Test report reference number:	TUVR107-A1 Rev A	
Date EUT received:	21st December '06	
Standard(s) applied:	FCC 47 CFR Part15.247 & IC RSS-210	
Dates of test (from - to):	4th - 7th January '07	
No of Units Tested:	Three	
	1) Connector - conducted testing	
	2) Integral antenna – radiated testing	
	Integral antenna – receiver testing	
Type of Equipment:	Base Station	
Manufacturers Trade Name:		
Model:	RCC 400	
Location for use:	Indoor	
Declared Frequency Range(s):	902 - 928 MHz	
Type of Modulation:	GFSK	
Declared Nominal Output Power:	+20 dBm	
EUT Modes of Operation:	FHSS	
Transmit/Receive Operation:	Time Division Duplex	
Rated Input Voltage and Current:	48Vdc	
Operating Temperature Range:	-10 to +50°C	
ITU Emission Designator:	323KF1E	
Microprocessor(s) Model:	Intel S87C196KC	
Clock/Oscillator(s):	` '	
Frequency Stability:		
Primary function of equipment:	Permits communication between wireless phone and	
	master controller which connects directly to the Public	
	System Telephone Line (PSTL)	

Serial #: TUVR107-A1 Rev A

Page: 11 of 69


Issue Date: 14th February '07

3.2. Scope of Test Program

The scope of the test program was to test the SpectraLink RCC 400 standard base station in the frequency ranges 902 - 928 MHz for compliance against FCC 47 CFR Part 15.247 and Industry Canada RSS-210 specifications.

SpectraLink Corporation

RCC400 Standard Base Station

Serial #: TUVR107-A1 Rev A
Issue Date: 14th February '07

Page: 12 of 69

3.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	Standard Base Station	SpectraLink	RCC400	406190613, 406189298, & 406187301

3.4. Antenna Details

1. 0 dBi integral antenna

3.5. Cabling and I/O Ports

Number and type of I/O ports

1. 10/100 Base T

3.6. Test Configurations

Telephone test configurations

Operating Channel	Frequencies (MHz)	
1	902.493	
26	914.75	
51	927.00	

Only worst case plots are provided for each test parameter are identified within this report. Plots not included are held on file by the test laboratory and available upon request with client permission.

Serial #: TUVR107-A1 Rev A

Page: 13 of 69

Issue Date: 14th February '07

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. None

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. None.

3.9. Subcontracted Testing or Third Party Data

The following tests were performed by a MiCOM Labs approved test facility;-

1. None

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 14 of 69

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.247, Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(a)(1) A8.1	20 dB BW	20 dB BW	Conducted	Complies	5.1.1
15.247(a)(1) A8.1	Transmitter Channels	Channel Spacing	Conducted	Complies	5.1.2
15.247(a)(1) A8.1	Transmitter Channels	Number of Channels	Conducted	Complies	5.1.3.1
		Channel Occupancy	Conducted	Complies	5.1.3.2
15.247(b)(2) A8.4	Output Power	Transmit Power	Conducted	Complies	5.1.4
15.247(d) A8.5	Conducted Spurious Emissions	Band Edge	Conducted	Complies	5.1.5
		Spurious Emissions (1 to 10 GHz)	Conducted	Complies	

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 15 of 69

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.247, Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(d) 15.205 15.209 A8.5 2.2 2.6 4.7	Radiated Emissions above 1 GHz	Transmitter	Radiated	Complies	5.1.6.1
4.8, & 6		Receiver	Radiated	Complies	5.1.6.2
15.247(d) 15.205 15.209 A8.5 2.2 2.6	Radiated Emissions below 1 GHz		Radiated	Complies	5.1.7
15.207 7.2.2	Conducted	AC Wireline Conducted Emissions	Conducted	N/A (48Vdc)	5.1.8

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

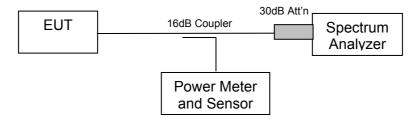
To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 16 of 69

5. TEST RESULTS

5.1. Device Characteristics


5.1.1. 20 dB Bandwidth

FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §A8.1

Test Procedure

The 20 dB bandwidth is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

Test Measurement Set up

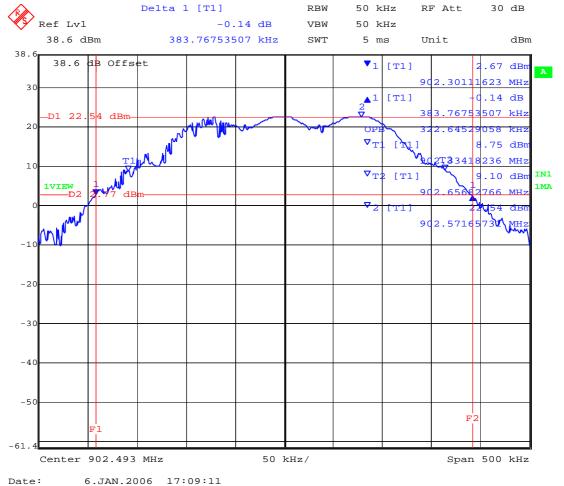
Measurement set up for 20 dB bandwidth test

To: FCC 47 CFR Part15.247 & IC RSS-210 Serial #: TUVR107-A1 Rev A

Page: 17 of 69

Issue Date: 14th February '07

Test Results for 20 dB Bandwidth


Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS -

Channel #	Center Frequency (MHz)	20 dB Bandwidth (kHz)	26 dB BW Specification (kHz)	99% Bandwidth (kHz)	Plot #
01	902.493	383.7675	<500	322.6453	01
26	914.750	367.7355	<500	318.6373	02
50	927.000	367.7535	<500	316.6333	03

Plot 01 CH 01 902.493 MHz 20 dB Bandwidth

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

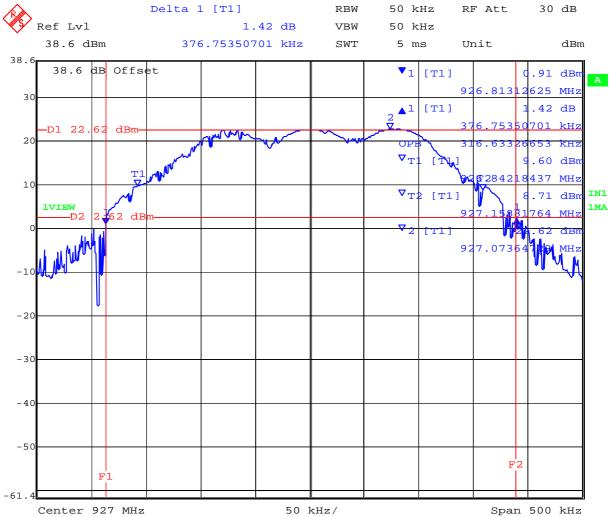


To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 18 of 69

Plot 02 CH 26 914.750 MHz 20 dB Bandwidth


Date: 6.JAN.2006 17:00:20

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A
Issue Date: 14th February '07
Page: 19 of 69

Plot 03 CH 50 927.000 MHz 20 dB Bandwidth

Date: 6.JAN.2006 17:12:47

Serial #: TUVR107-A1 Rev A
Issue Date: 14th February '07

Page: 20 of 69

Specification

Limits

FCC §15.247 (a)(1) Industry Canada RSS-210 §8.1

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Laboratory Measurement Uncertainty for Spectrum Measurement

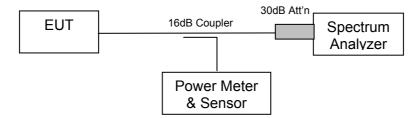
Measurement uncertainty	±2.81 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117
instruction WI-03 'Measurement of RF	
Spectrum Mask'	

Serial #: TUVR107-A1 Rev A
Issue Date: 14th February '07

Page: 21 of 69


5.1.2. <u>Transmitter Channels - Channel Spacing</u>

FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §8.1(2)

Test Procedure

The channel spacing is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

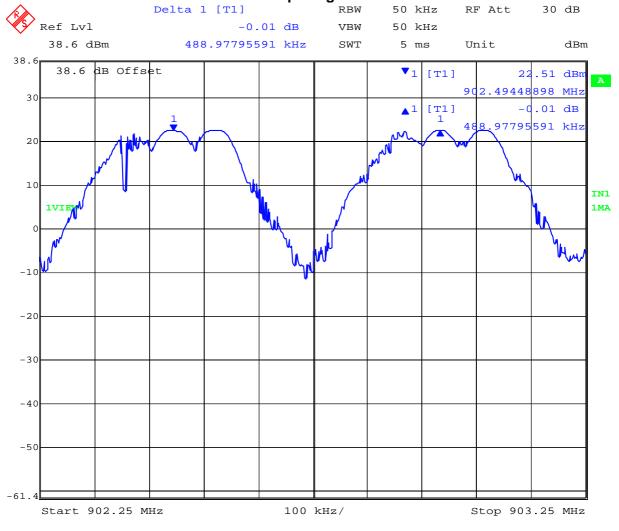
Test Measurement Set up

Measurement set up for Channel Spacing Test

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 22 of 69


Ambient conditions.

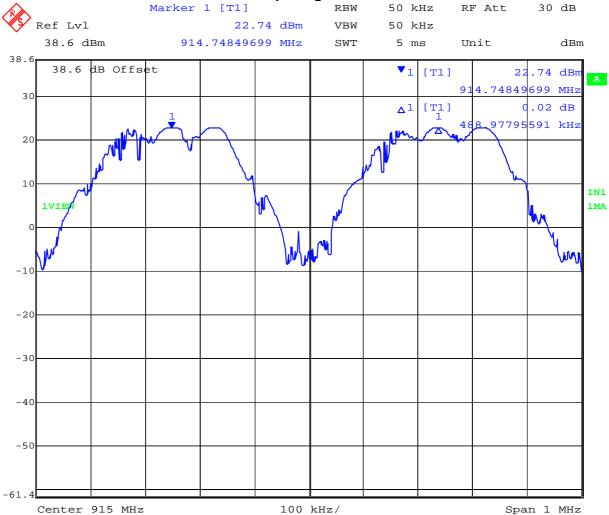
Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS -

Channel #	Channel Spacing (MHz)	Plot #
1-2	0.489978	04
25-26	0.488978	05
49-50	0.489978	06

Plot 04 Channel Spacing for CH 1-2

Date: 6.JAN.2006 17:25:35



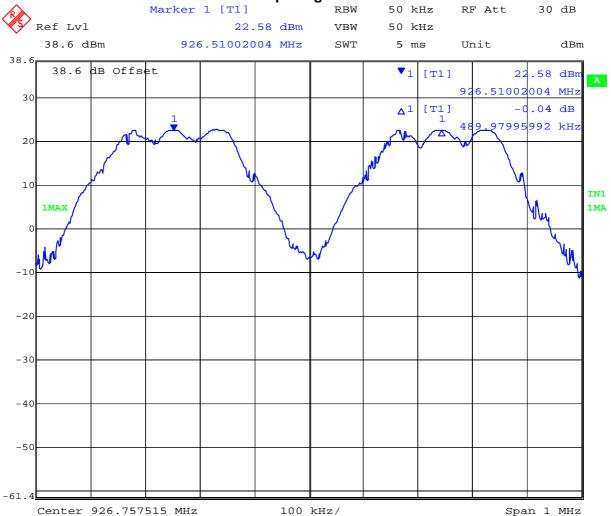
To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 23 of 69

Plot 05 Channel Spacing for CH 25-26

Date: 6.JAN.2006 16:42:13



To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 24 of 69

Plot 06 Channel Spacing for CH 49-50

Date: 6.JAN.2006 16:38:11

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 25 of 69

Specification for Channel Spacing

Limits

FCC §15.247 (a)(1)

Industry Canada RSS-210 §A8.1(2)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Laboratory Uncertainty for Frequency Measurements

Measurement uncertainty	±0.86ppm

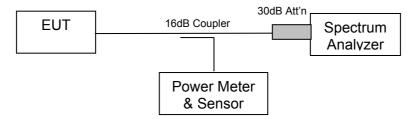
Traceability

Method	Test Equipment Used
Measurements were made per work	0078, 0134, 0158, 0184, 0193, 0250,0252
instruction WI-02 'Frequency Measurement"	0310, 0312.

Serial #: TUVR107-A1 Rev A
Issue Date: 14th February '07

Page: 26 of 69

5.1.3. Transmitter Channels


5.1.3.1. Number of Channels

FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §A8.1

Test Procedure

The number of channels and channel occupancy is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

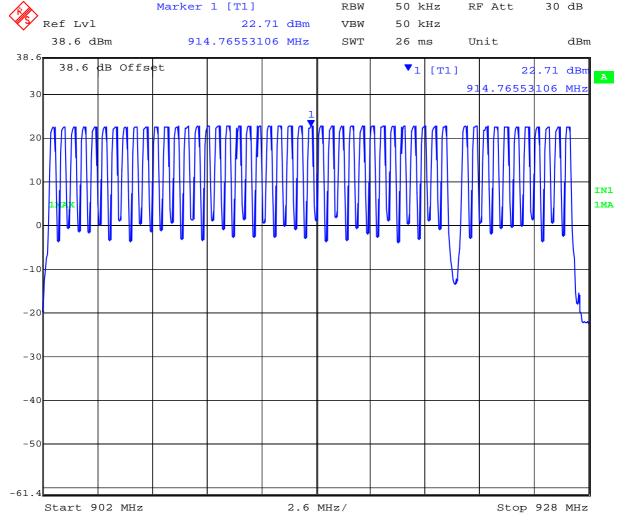
Test Measurement Set up

Test set up to measure the number of channels and channel occupancy

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 27 of 69


Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS -

Number of Channels	Specification	Plot #
50	>= 25 Channels for a 20 dB Bandwidth > 250 kHz	07

Plot 07 Number of Channels

Date: 6.JAN.2006 17:35:00

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 28 of 69

5.1.3.2. Channel Occupancy FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §A8.1

Ambient conditions.

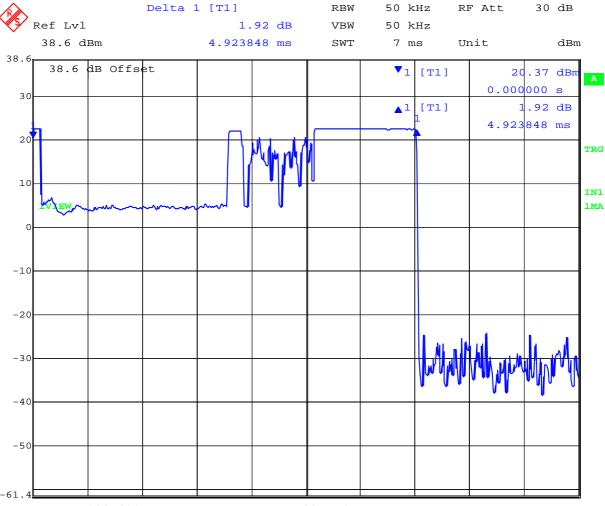
Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Channel Occupancy = # times channel is visited in 10 sec period * dwell time

Channel Dwell Time

TABLE OF RESULTS -

Channel #	Center Frequency (MHz)	Channel Dwell Time (mSeconds)	Plot #
1	902.493	4.924	08
25	914.750	4.924	09
50	927.000	4.924	10



To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 29 of 69

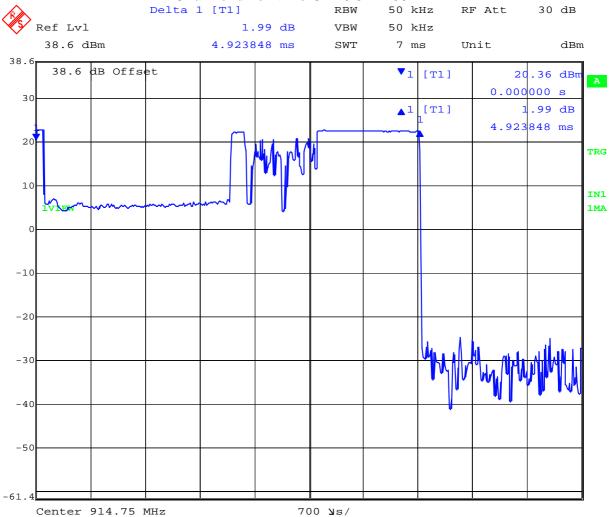
Plot 08 Channel dwell time Ch 1 902.493 MHz

Center 902.493 MHz

700 **½**s/

Date:

6.JAN.2006 17:46:35



To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 30 of 69

Plot 09 Channel dwell time Ch 25 914.750 MHz

Date: 6.JAN.2006 17:47:04

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

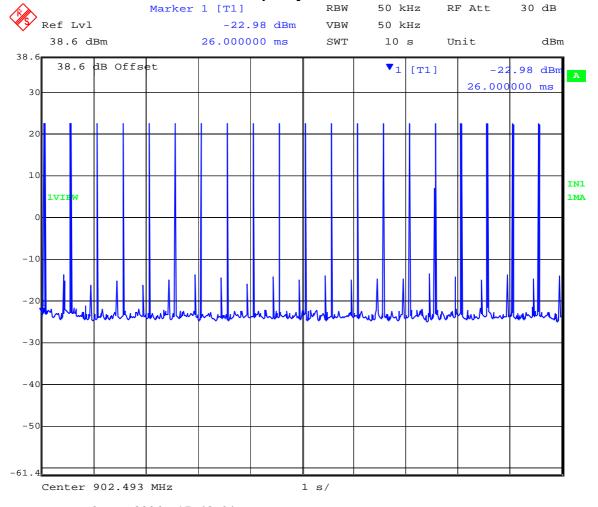
Page: 31 of 69

Plot 10 Channel dwell time Ch 50 927.000 MHz

Date: 6.JAN.2006 17:47:29

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 32 of 69


Channel Occupancy/

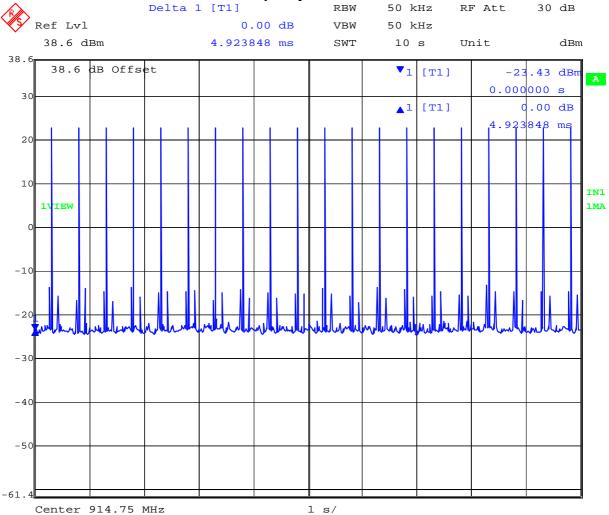
Channel Occupancy = # times channel is visited in 10 sec period * dwell time

TABLE OF RESULTS -

Channel #	Center Frequency (MHz)	# times visited	Channel Occupancy In 10 Second Period (mSeconds)	Plot #
01	902.493	20	98.48	11
26	914.750	20	98.48	12
51	927.000	20	98.48	13

Plot 11 Channel Occupancy Ch 1 902.493 MHz

Date: 6.JAN.2006 17:42:04



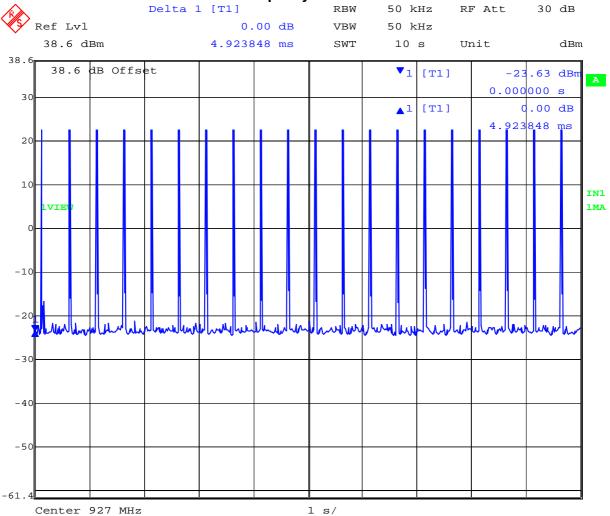
To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 33 of 69

Plot 12 Channel Occupancy Ch 25 914.750 MHz

Date: 6.JAN.2006 17:49:50



To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 34 of 69

Plot 13 Channel Occupancy Ch 1 927.000 MHz

Date: 6.JAN.2006 17:49:13

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 35 of 69

Specification for Number of Channels and Channel Occupancy

Limits

FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §A8.1

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Laboratory Uncertainty for Frequency Measurements

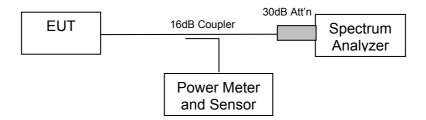
Measurement uncertainty	±0.86ppm
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work	0078, 0134, 0158, 0184, 0193, 0250,
instruction WI-02 'Frequency Measurement"	0252 0310, 0312.

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 36 of 69


5.1.4. Output Power

FCC, Part 15 Subpart C §15.247(b)(2) Industry Canada RSS-210 §A8.4

Test Procedure

The transmitter terminal of EUT was connected to the input of the spectrum analyzer set to measure power. The resolution filter bandwidth was set to 6 dB, peak detector selected and the analyzer built-in power function was used to measure power over the 99 % bandwidth.

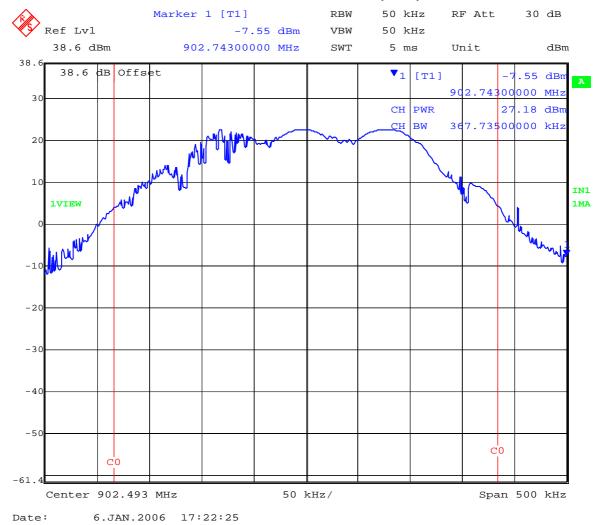
Test Measurement Set up

Measurement set up for Transmitter Output Power

Serial #: TUVR107-A1 Rev A
Issue Date: 14th February '07

Page: 37 of 69

Measurement Results for Output Power


Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS -

Channel #	nnel # Center Frequency Power (MHz) (dBm)		Plot #
01	902.493	+27.18	14
25	914.750	+27.53	15
50	927.000	+27.62	16

Plot 14 CH 01 902.493 MHz Power (dBm)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Serial #: TUVR107-A1 Rev A
Issue Date: 14th February '07

Page: 38 of 69

Plot 15 CH 25 914.750 MHz Power (dBm)

Date: 6.JAN.2006 17:19:06

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 39 of 69

Plot 16 CH 50 927.000 MHz Power (dBm)

Date: 6.JAN.2006 17:15:24

Serial #: TUVR107-A1 Rev A
Issue Date: 14th February '07

Page: 40 of 69

Specification

Limits

FCC, Part 15 Subpart C §15.247 (b)(2) The maximum output power of the intentional radiator shall not exceed the following:

(2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Industry Canada RSS-210 §A8.4

For frequency hopping systems operating in the 902 - 928 MHz band, the maximum peak conducted power output power is not to succeed 1.0 W if the hopset uses 50 or more hopping channels and 0.25 W if the hopset uses less than 50 hopping channels.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117

To: FCC 47 CFR Part15.247 & IC RSS-210 Serial #: TUVR107-A1 Rev A

Issue Date: 14th February '07

Page: 41 of 69


5.1.5. Conducted Spurious Emissions

FCC, Part 15 Subpart C §15.247(d) Industry Canada RSS-210 §A8.5

Test Procedure

Conducted emissions were measured at a limit of 20 dB below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Emissions at the band edge were measured and recorded. Measurements were made while EUT was operating in transmit mode of operation at the appropriate center frequency.

Test Measurement Set up

Band-edge measurement test configuration

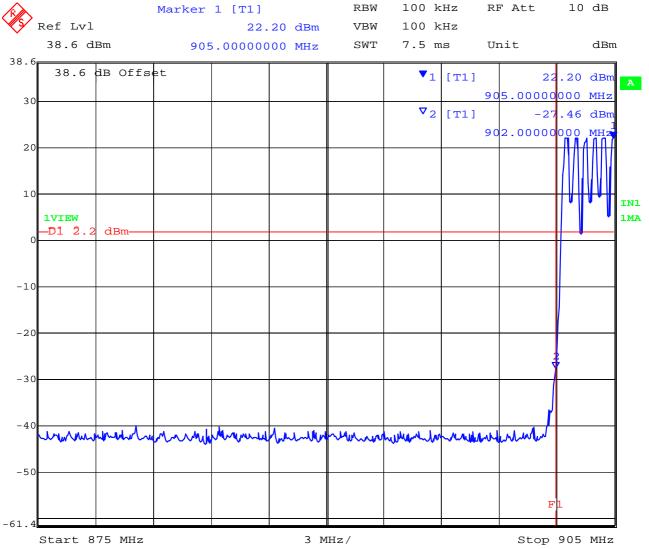
Measurement Results of Conducted Spurious Emissions

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07


Page: 42 of 69

Conducted Band-Edge Results

TABLE OF RESULTS - 802.11b

Channel #	Center Frequency (MHz)	Band edge Frequency (MHz)	Limit (dBm)	Amplitude @ Band edge (dBm)	Plot #	Margin (dB)
1	902.493	902.0	+2.20	-27.46	17	-29.66
50	927.000	928.0	+2.28	-32.58	18	-34.86

Plot 17
Conducted Spurious Emissions at the 902 MHz Lower Band Edge

Date: 6.JAN.2006 18:06:27

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 43 of 69

Plot 18
Conducted Spurious Emissions at the 928 MHz Upper Band Edge

Date: 6.JAN.2006 18:08:56

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 44 of 69

Spurious Emissions (1-10 GHz)

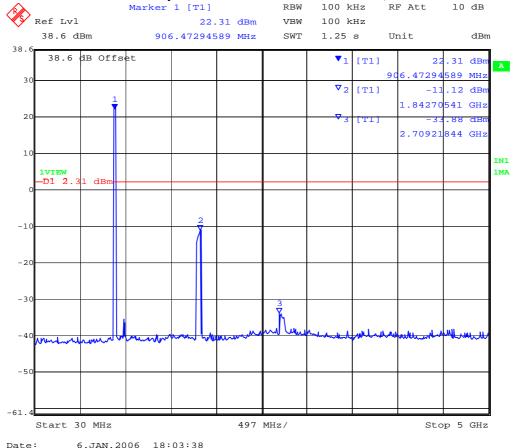

Conducted spurious emissions (1-10 GHz) are provided indicated by the following matrix. Measurements were performed with the transmitter tuned to the channel closest to the bandedge being measured. All emissions were maximized during measurement. Limits which were derived from the band-edge measurements provided below are drawn on each plot.

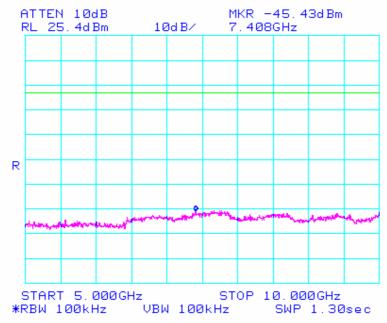
TABLE OF RESULTS -

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Plot #	Margin (dB)
914.750	30	5,000	-11.12	+2.31	19	-13.43
914.750	5,000	10,000	-45.43	+2.31	20	-47.74

The emission breaking the limit line is the carrier.

Plot 19 Conducted Spurious Emissions 30 MHz to 5,000 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 45 of 69

Plot 20 Conducted Spurious Emissions 5,000 MHz to 10,000 MHz

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 46 of 69

Specification

Limits Band-Edge

Lower Limit Band-edge	Upper Limit Band-edge	Limit below highest level of desired power
902 MHz	928 MHz	≥ 20 dB

FCC, Part 15 Subpart C §15.247(d)

Industry Canada RSS-210 §A.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

Measurement uncertainty	±2.37 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-05 'Measurement of Spurious Emissions'	0088, 0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117.

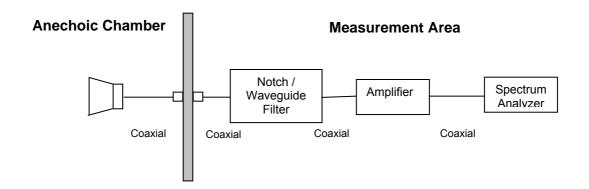
To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 47 of 69

5.1.6. Radiated Emissions

5.1.6.1. Transmitter Radiated Spurious Emissions (above 1 GHz)


FCC, Part 15 Subpart C §15.247(d) Industry Canada RSS-210 §A8.5

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Test Measurement Set up

Measurement set up for Radiated Emission Test

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 48 of 69

For example:

Given receiver input reading of 51.5 dB $_{\mu}$ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m

FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

> Page: 49 of 69

Radiated Spurious Emissions above 1 GHz

Ambient conditions.

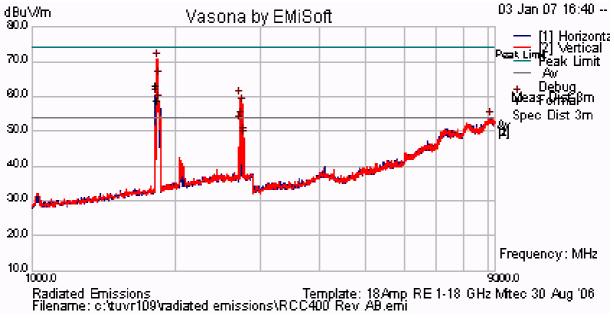

Pressure: 999 to 1012 mbar Temperature: 17 to 23°C Relative humidity: 31 to 57 %

TABLE OF RESULTS

Freq. (MHz)	Pol. (H/V)	Raw Reading (dBµV/m)	Correction Factor (dB)	Corrected Field Strength (dBμV/m)	Limit (dBμV/m)	Margin (dB)
1848.667	V	70.84	-12.23	58.61	81.96	-23.35
2719.500	V	61.84	-9.49	52.35	54.00	-1.65

^{* -} None restricted band. Limit dictated by the peak fundamental emission (see Section 5.1.7 Radiated Spurious Emissions (30M-1 GHz) for peak emission = $101.96 - 20 = 81.96 \text{ dB}_{\mu}\text{V/m}$.

Plot 21 **Radiated Emissions Above 1 GHz**

To: FCC 47 CFR Part15.247 & IC RSS-210 Serial #: TUVR107-A1 Rev A

Issue Date: 14th February '07

Page: 50 of 69

Radiated Spurious Emissions above 1 GHz (continued)

FCC, Part 15 Subpart C §15.247(d) Industry Canada RSS-210 §A8.5

Specification

FCC Part 15 Subpart C §15.247(d)

Industry Canada §A8.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty +5.6/ -4.5 dE

Traceability

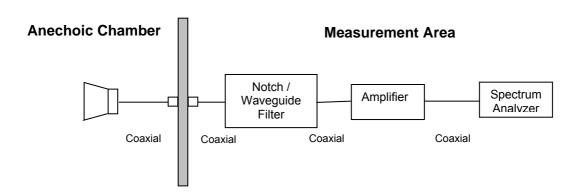
Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 51 of 69

5.1.6.2. Receiver Radiated Spurious Emissions


Industry Canada RSS-Gen §4.8, & §6

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Test Measurement Set up

Measurement set up for Radiated Emission Test

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

Serial #: TUVR107-A1 Rev A

Issue Date: 14th February '07

Page: 52 of 69

For example:

Given receiver input reading of $51.5~dB_{\mu}V$; Antenna Factor of 8.5~dB; Cable Loss of 1.3~dB; Falloff Factor of 0~dB, an Amplifier Gain of 26~dB and Notch Filter Loss of 1~dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

 $40 \text{ dB}\mu\text{V/m} = 100 \mu\text{V/m}$ $48 \text{ dB}\mu\text{V/m} = 250 \mu\text{V/m}$

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 53 of 69

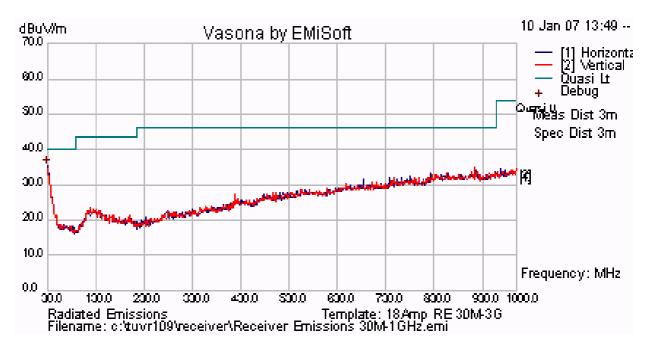

Receiver Radiated Spurious Emissions below 1 GHz

TABLE OF RESULTS

Freq. (MHz)	Pol. (H/V)	Raw Reading (dB _µ V/m)	Correction Factor (dB)	Corrected Field Strength (dB _µ V/m)	Limit (dBμV/m)	Margin (dB)

No emissions were observed within 6dB of the limit

Plot 22
Receiver Radiated Emissions below 1 GHz

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 54 of 69

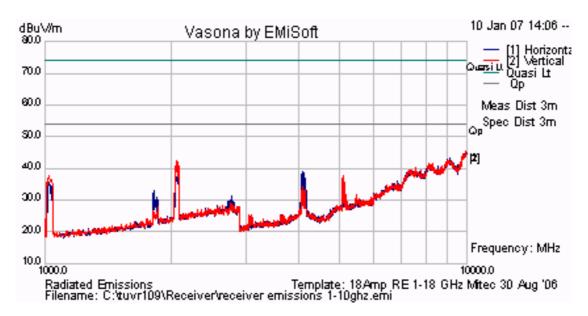

Receiver Radiated Spurious Emissions above 1 GHz

TABLE OF RESULTS

Freq. (MHz)	Pol. (H/V)	Raw Reading (dBµV/m)	Correction Factor (dB)	Corrected Field Strength (dBμV/m)	Limit (dBμV/m)	Margin (dB)

No emissions were observed within 6dB of the limit

Plot 23
Receiver Radiated Emissions above 1 GHz

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 55 of 69

Specification

Receiver Radiated Spurious Emissions

Industry Canada RSS-Gen §4.8,

The search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is the higher, to at least 3 times the highest tunable or local oscillator frequency, whichever is the higher, without exceeding 40 GHz.

RSS-Gen §6

The following receiver spurious emission limits shall be complied with;

(a) If a radiated measurement is made, all spurious emissions hall comply with the limits of Table 1.

Table 1(Ref RSS-Gen §6)- Spurious Emissions

Frequency (MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

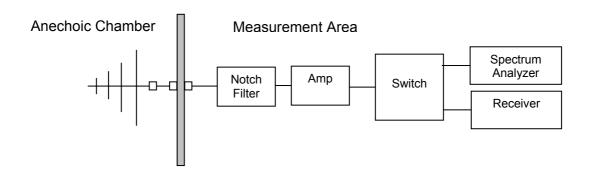
Measurement uncertainty	+5.6/ -4.5 dB

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A
Issue Date: 14th February '07
Page: 56 of 69


5.1.7. Radiated Spurious Emissions (30M-1 GHz)

FCC, Part 15 Subpart C §15.247(d), §15.205, 15.209 Industry Canada RSS-210 §A8.5, 2.2, 2.6.

Test Procedure

Testing 30M-1 GHz was subcontracted to the company identified in Section 3.9 Subcontracted Testing. Preliminary radiated emissions are measured in the anechoic chamber at a 10-meter distance on every azimuth in both horizontal and vertical polarity. The emissions are recorded with a spectrum analyzer in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

Test Measurement Set up

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

FS = R + AF + CORR

where:

FS = Field Strength
R = Measured Receiver Input Amplitude
AF = Antenna Factor
CORR = Correction Factor = CL – AG + NFL
CL = Cable Loss

AG = Amplifier Gain

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 57 of 69

For example:

Given a Receiver input reading of $51.5dB_{\mu}V$; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m

Serial #: TUVR107-A1 Rev A
Issue Date: 14th February '07

Page: 58 of 69

Measurement Results for Radiated Emissions (30 MHz – 1 GHz)

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

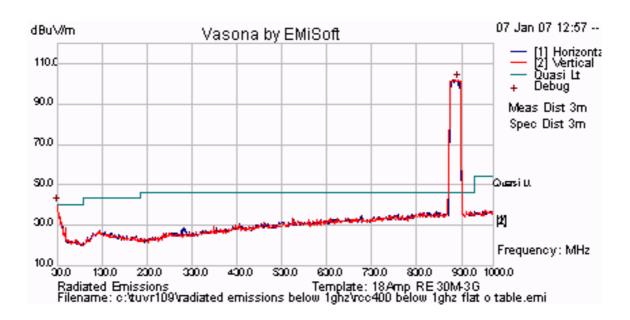

Radiated Emissions Below 1 GHz

TABLE OF RESULTS

Freq. (MHz)	Pol. (H/V)	Raw Reading (dB _µ V/m)	Correction Factor (dB)	Corrected Field Strength (dBμV/m)	Limit (dBμV/m)	Margin (dB)
920.783	V	121.17	-19.24	101.93	46	+55.93
30.000	V	54.67	-14.39	40.28	40	-0.28

The emission breaking the limit line at 920.783 MHz is the carrier.

Plot 24
Radiated Emissions below 1 GHz

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 59 of 69

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

§15.209 (a) and RSS-Gen §2.2 Limit Matrix

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Traceability

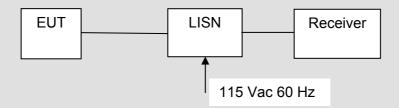
Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 60 of 69

5.1.8. AC Wireline Conducted Emissions (150 kHz – 30 MHz)


FCC, Part 15 Subpart C §15.207 Industry Canada RSS-Gen §7.2.2

Test not applicable base station is 48Vdc

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Test Measurement Set up

Measurement set up for AC Wireline Conducted Emissions Test

Measurement Results for AC Wireline Conducted Emissions (150 kHz – 30 MHz)

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Serial #: TUVR107-A1 Rev A

Page: 61 of 69

Issue Date: 14th February '07

TABLE OF RESULTS

Freq (MHz)	Line	Peak (dBμV)	QP (dBμV)	QP Limit (dBμV)	QP Margin (dB)	Ave. (dBμV)	Ave. Limit (dBµV)	Ave. Margin (dB)

Plot 15 AC Wireline - Conducted Emissions (150 kHz – 30 MHz)

No plot available

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 62 of 69

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

RSS-Gen §7.2.2

The radio frequency voltage that is conducted back into the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The tighter limit applies at the frequency range boundaries.

§15.207 (a) and RSS-Gen §7.2.2 Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dBμV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

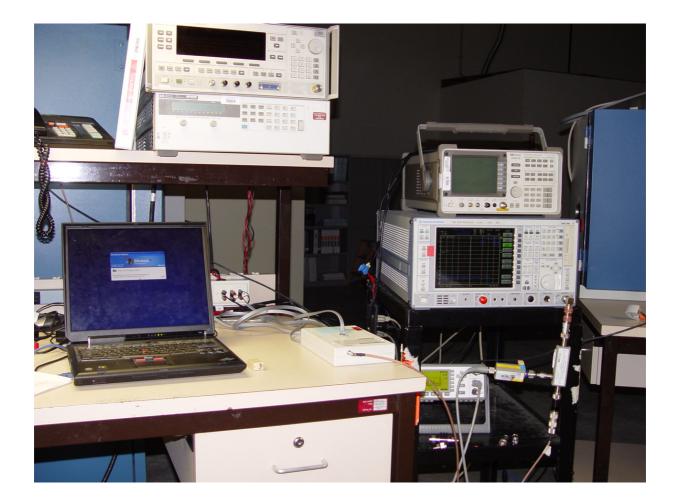
^{*} Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	±2.64 dB

Traceability

Method	Test Equipment Used
Measurements were made per Sanmina work instruction	LISN

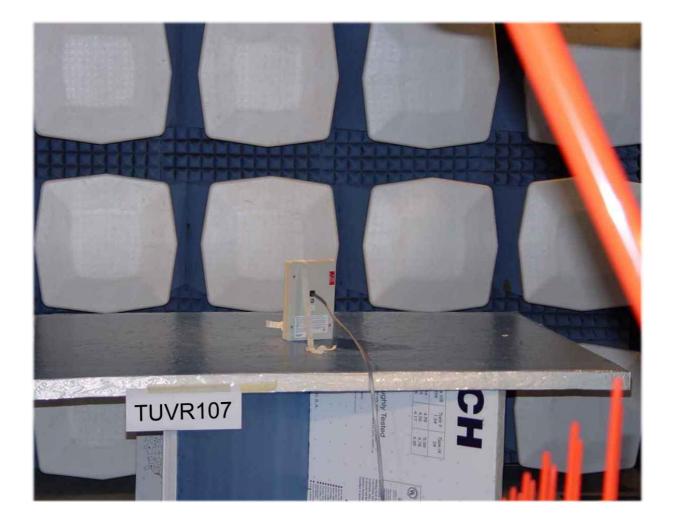


Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 63 of 69

6. PHOTOGRAPHS

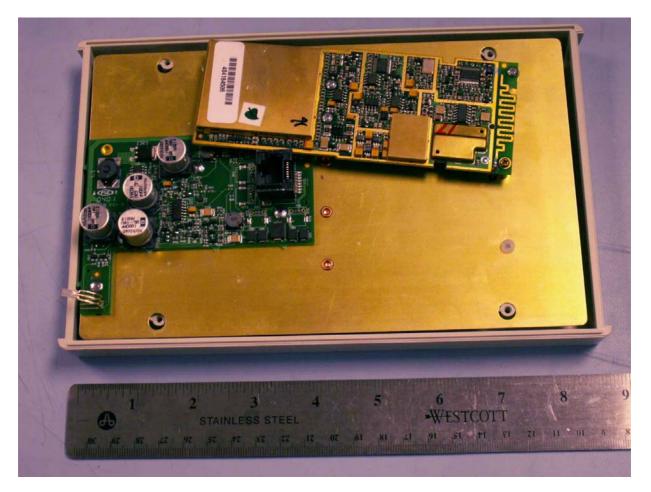
6.1. General Measurement Test Set-Up



Serial #: TUVR107-A1 Rev A
Issue Date: 14th February '07

Page: 64 of 69

6.2. Radiated Emissions >1 GHz

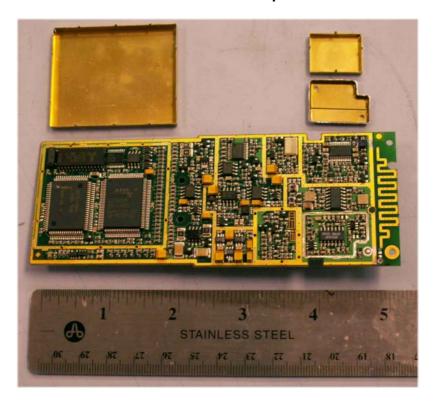


Serial #: TUVR107-A1 Rev A
Issue Date: 14th February '07

Page: 65 of 69

6.3. Internal Photos of the EUT

Inside View of EUT



Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 66 of 69

Radio Board - Top

Radio Board - Bottom



To: FCC 47 CFR Part15.247 & IC RSS-210


Serial #: TUVR107-A1 Rev A Issue Date: 14th February '07

Page: 67 of 69

Power Supply Board - Top

Power Supply Board - Bottom

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Serial #: TUVR107-A1 Rev A
Issue Date: 14th February '07

Page: 68 of 69

7. TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Part #	Serial #
0088	Spectrum Analyzer	Hewlett Packard	8564E	3410A00141
0104	1-18GHz Horn Antenna	The Electro-Mechanics Company	3115	9205-3882
0134	Amplifier	Com Power	PA 122	181910
0158	Barometer /Thermometer	Control Co.	4196	E2846
0193	EMI Receiver	Rhode & Schwartz	ESI 7	838496/007
0252	SMA Cable	Megaphase	Sucoflex 104	None
0310	2m SMA Cable	Micro-Coax	UFA210A-0-0787- 3G03G0	209089-001
0312	3m SMA Cable	Micro-Coax	UFA210A-1-1181- 3G0300	209092-001
0313	Coupler	Hewlett Packard	86205A	3140A01285
0314	30dB N-Type Attenuator	ARRA	N9444-30	1623
0070	Power Meter	Hewlett Packard	437B	3125U11552
0116	Power Sensor	Hewlett Packard	8485A	3318A19694
0117	Power Sensor	Hewlett Packard	8487D	3318A00371
0184	Pulse Limiter	Rhode & Schwartz	ESH3Z2	357.8810.52
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002

440 Boulder Court, Suite 200 Pleasanton, CA 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306

www.micomlabs.com