Test of SpectraLink PTB450 Telephone

To: FCC 47 CFR Part15.247 & IC RSS-210

Test Report Serial No.: TUVR106-A5 Rev B

TEST REPORT

Test of SpectraLink PTB450 Telephone

To FCC 47 CFR Part15.247 & IC RSS-210

Test Report Serial No.: TUVR106-A5 Rev B

This report supersedes: TUVR106-A5 Rev A

Manufacturer: SpectraLink Corporation

5755 Central Avenue

Boulder

Colorado 80301, USA

Product Function: 900 MHz Wireless Telephone

Copy No: pdf Issue Date: 16th March '07

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc.

440 Boulder Court, Suite 200 Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304

Fax: +1 (925) 462-0306

www.micomlabs.com

CERTIFICATE #2381.01

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 3 of 60

This page has been left intentionally blank

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 4 of 60

TABLE OF CONTENTS

CO	VER PAGE	1
TIT	LE PAGE	2
AC	CREDITATION & LISTINGS	5
1.	TEST RESULT CERTIFICATE	
2.	REFERENCES AND MEASUREMENT UNCERTAINTY	
۷.		
	2.1. Normative References2.2. Test and Uncertainty Procedures	
3.	PRODUCT DETAILS AND TEST CONFIGURATIONS	10
٥.	3.1. Technical Details	
	3.2. Scope of Test Program	
	3.3. Equipment Model(s) and Serial Number(s)	
	3.4. Antenna Details	13
	3.5. Cabling and I/O Ports	14
	3.6. Test Configurations	
	3.7. Equipment Modifications	
	3.8. Deviations from the Test Standard	
4.	3.9. Subcontracted Testing or Third Party Data TEST SUMMARY	
5.	TEST RESULTS	
	5.1. Device Characteristics	
	5.1.1. 20 dB Bandwidth	
	5.1.2. Transmitter Channels - Channel Spacing5.1.3. Transmitter Channels	
	5.1.4. Output Power	
	5.1.5. Conducted Spurious Emissions	
	5.1.6. Radiated Emissions	
	5.1.7. Radiated Spurious Emissions (30M-1 GHz)	
	5.1.8. AC Wireline Conducted Emissions (150 kHz – 30 MHz)	
6.	PHOTOGRAPHS	56
	6.1. General Measurement Test Set-Up	
	6.2. Radiated Emissions >1 GHz	
_	6.3. AC Wireline Conducted Emissions (150 kHz – 30 MHz)	
7.	TEST EQUIPMENT DETAILS	59

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 5 of 60

ACCREDITATION & LISTINGS

MiCOM Labs, Inc. an accredited laboratory complies with the international standard BS EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-01.pdf

THE AMERICAN ASSOCIATION FOR LABORATORY ACCREDITATION

ACCREDITED LABORATORY

A2LA has accredited

MICOM LABS

Pleasanton, CA

for technical competence in the field of

Electrical Testing

The accreditation covers the specific tests and types of tests listed on the agreed scope of accreditation. This laboratory meets the requirements of ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration Laboratories" and any additional program requirements in the identified field of testing.

Presented this 14th day of September 2005.

President President President President Valid to: November 30, 2007

For tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 6 of 60

LISTINGS

MiCOM Labs test facilities are listed by the following organizations;

North America

United States of America

Federal Communications Commission (FCC) Listing #: 102167

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 7 of 60

DOCUMENT HISTORY

	Document History					
Revision Date		Comments				
Draft						
Rev A 1 st November '06		Initial Release				
Rev B	16 th March '07	Add power measurement graphs for CH 26 & 51.				

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 8 of 60

1. TEST RESULT CERTIFICATE

Manufacturer: SpectraLink Corporation Tested By: MiCOM Labs, Inc.

5755 Central Avenue 440 Boulder Court

Boulder Suite 200

Colorado 80301, USA Pleasanton

California, 94566, USA

EUT: 900 MHz Wireless Telephone Telephone: +1 925 462 0304

Model: PTB450 Fax: +1 925 462 0306

S/N: 906257876 & 906257878

Test Date(s): 22nd Sept. to 13th Oct. '06 Website: www.micomlabs.com

STANDARD(S)

TEST RESULTS

FCC 47 CFR Part15.247 & IC RSS-210

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

CERTIFICATE #2381.01

ACCREDITED

Graeme Grieve

Quality Manager MiCOM Labs,

Gordon Hurst

President & CEO MiCOM Labs, Inc.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 9 of 60

2. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

2.1. Normative References

Ref.	Publication	Year	Title
(i)	FCC 47 CFR Part 15.247	Feb 2006	Code of Federal Regulations
(ii)	Industry Canada RSS-210	Issue 6 Sept. 2005	Low Power License-Exempt Radiocommunication Devices (All Frequency Bands)
(iii)	Industry Canada RSS-Gen	Issue 1 Sept. 2005	General Requirements and Information for the Certification of Radiocommunication Equipment.
(iv)	ANSI C63.4	2003	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(v)	CISPR 22/ EN 55022	1997 1998	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(vi)	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
(vii)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(viii)	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(ix)	A2LA	14 th September 2005	Reference to A2LA Accreditation Status – A2LA Advertising Policy

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 10 of 60

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details

Details	Description
Purpose:	Test of the SpectraLink PTB450 Telephone to FCC
·	Part 15.247 and Industry Canada RSS-210
	regulations
Applicant:	As Manufacturer
Manufacturer:	SpectraLink Corporation
	5755 Central Avenue
	Boulder
	Colorado 80301, USA
Laboratory performing the tests:	MiCOM Labs, Inc.
	440 Boulder Court, Suite 200
	Pleasanton, California 94566 USA
Test report reference number:	TUVR106-A5 Rev B
Date EUT received:	
Standard(s) applied:	
Dates of test (from - to):	22nd Sept. to 13th Oct. '06
No of Units Tested:	Two.
Type of Equipment:	Wireless Telephone
Manufacturers Trade Name:	
Model:	PTB450
Location for use:	Indoor
Declared Frequency Range(s):	902 - 928 MHz
Type of Modulation:	GFSK
Declared Nominal Output Power:	+20 dBm
EUT Modes of Operation:	FHSS
Transmit/Receive Operation:	Duplex
Rated Input Voltage and Current:	Battery Operated
Operating Temperature Range:	-10 to +50°C
ITU Emission Designator:	441KF1E
Microprocessor(s) Model:	DSP TI D12945PN (TMS320C209)
Clock/Oscillator(s):	23.04 MHz, 32.768 KHz
Frequency Stability:	±15 ppm
Primary function of equipment:	Wireless Telephone Handset

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 11 of 60

3.2. Scope of Test Program

The scope of the test program was to test the SpectraLink PTB450 wireless telephone handset in the frequency ranges 902 - 928 MHz with the SpectraLink PTC400 phone stand/charger unit and the Plantronics PTH100 Headset for compliance against FCC 47 CFR Part 15.247 and Industry Canada RSS-210 specifications.

Models PTB400 & PTB450

The PTB400 and PTB450 phones use common RF components and printed circuit boards. The PTB450 model telephone is a variation of the PTB400 telephone.

PTB450 V's PTB400 Variations

PTB450 has a vibrator and back-lit keypad.

As a result of the commonality between the PTB400 and PTB450 telephones and to prove compliance with the R&TTE Directive all conducted test results (with the exception of AC Wireline Conducted Emissions) performed on the PTB400 telephone were used in the generation of this test report.

Testing on the PTB450 telephone was limited to;- Transmitter Radiated Emissions; Receiver Radiated Emissions; and AC Wireline Conducted Emissions.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 12 of 60

The SpectraLink PTB450 telephone is a Frequency Hoping Spread Spectrum (FHSS) device employing GFSK modulation.

SpectraLink Corporation PTB450 Wireless Telephone Handset

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 13 of 60

Photos of the Plantronics PTH100 headset that was tested in combination with the PTB450 phone.

PTH100 Headset

3.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	Wireless phone	SpectraLink	PTB450	906257876 & 906257878
EUT	Phone stand and dual battery charger	SpectraLink	PTC400	None
EUT	Headset	Plantronics	PTH100	None
EUT	DC Power Supply	HON- KWANG	D7-10-01	0305S

3.4. Antenna Details

1. 0 dBi integral antenna

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 14 of 60

3.5. Cabling and I/O Ports

Number and type of I/O ports

1. 2.4mm socket for headset or earpiece

2.

3.6. Test Configurations

Telephone test configurations

Operating Channel	Frequencies (MHz)
1	902.4449
26	914.7314
51	926.9845

Only worst case plots are provided for each test parameter are identified within this report. Plots not included are held on file by the test laboratory and available upon request with client permission.

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. None

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. None.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 15 of 60

3.9. Subcontracted Testing or Third Party Data

The following tests were performed by a MiCOM Labs approved test facility;-

1. None

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 16 of 60

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.247, Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(a)(1) A8.1	20 dB BW	20 dB BW	Conducted	Complies	5.1.1
15.247(a)(1) A8.1	Transmitter Channels	Channel Spacing	Conducted	Complies	5.1.2
15.247(a)(1) A8.1	Transmitter Channels	Number of Channels	Conducted	Complies	5.1.3.1
		Channel Occupancy	Conducted	Complies	5.1.3.2
15.247(b)(2) A8.4	Output Power	Transmit Power	Conducted	Complies	5.1.4
15.247(d) A8.5	Conducted Spurious Emissions	Band Edge	Conducted	Complies	5.1.5
		Spurious Emissions (1 to 10 GHz)	Conducted	Complies	

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 17 of 60

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.247, Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(d) 15.205 15.209 A8.5 2.2 2.6 4.7	Radiated Emissions above 1 GHz	Transmitter	Radiated	Complies	5.1.6.1
4.8, & 6		Receiver	Radiated	Complies	5.1.6.2
15.247(d) 15.205 15.209 A8.5 2.2 2.6	Radiated Emissions below 1 GHz		Radiated	Complies	5.1.7
15.207 7.2.2	Conducted	AC Wireline Conducted Emissions	Conducted	Complies	5.1.8

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

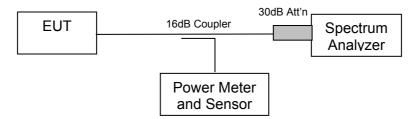
To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 18 of 60

5. TEST RESULTS

5.1. Device Characteristics


5.1.1. 20 dB Bandwidth

FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §A8.1

Test Procedure

The 20 dB bandwidth is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

Test Measurement Set up

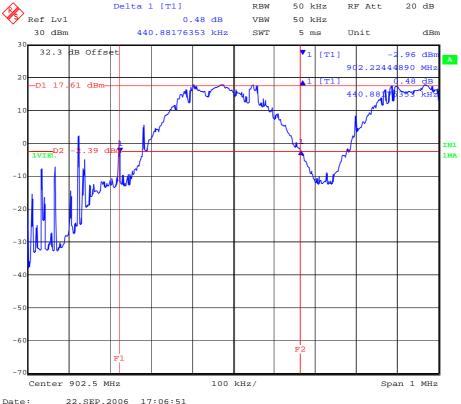
Measurement set up for 20 dB bandwidth test

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 19 of 60

Test Results for 20 dB Bandwidth


Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS -

Channel #	Center Frequency (MHz)	20 dB Bandwidth (kHz)	Specification (kHz)	20 dB Plot #
01	902.4449	440.88176	<500	01
26	914.7314	380.76152	<500	On File
51	926.9845	379.75952	<500	On File

Plot 01 CH 01 902.4449 MHz 20 dB Bandwidth

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 20 of 60

Specification

Limits

FCC §15.247 (a)(1) Industry Canada RSS-210 §8.1

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement uncertainty ±2.81 dB	leasurement uncertainty	±2.81 dB
----------------------------------	-------------------------	----------

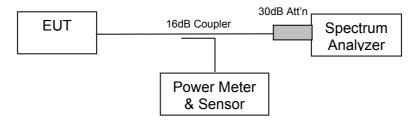
Traceability

Method	Test Equipment Used
Measurements were made per work	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117
instruction WI-03 'Measurement of RF	
Spectrum Mask'	

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 21 of 60


5.1.2. Transmitter Channels - Channel Spacing

FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §8.1(2)

Test Procedure

The channel spacing is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

Test Measurement Set up

Measurement set up for Channel Spacing Test

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 22 of 60

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS -

Channel #	Channel Spacing (MHz)	Specification	Plot #
1-2	478.55711423	20 dB Bandwidth	On File
26-27	494.98997996	20 dB Bandwidth	02
50-51	490.98196393	20 dB Bandwidth	On File

Plot 02 Channel Spacing for CH 25 – CH 26

Date: 22.SEP.2006 18:27:43

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 23 of 60

Specification for Channel Spacing

Limits

FCC §15.247 (a)(1)

Industry Canada RSS-210 §A8.1(2)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Laboratory Uncertainty for Frequency Measurements

Measurement uncertainty	±0.86ppm
-------------------------	----------

Traceability

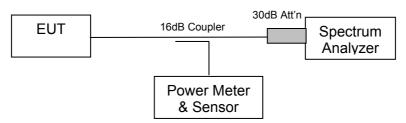
Method	Test Equipment Used
Measurements were made per work	0078, 0134, 0158, 0184, 0193, 0250,0252
instruction WI-02 'Frequency Measurement"	0310, 0312.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 24 of 60

5.1.3. Transmitter Channels


5.1.3.1. Number of Channels

FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §A8.1

Test Procedure

The number of channels and channel occupancy is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

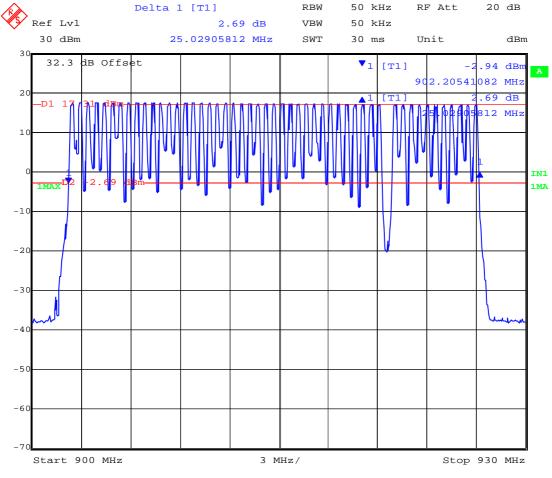
Test Measurement Set up

Test set up to measure the number of channels and channel occupancy

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 25 of 60


Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS -

Number of Channels	Specification	Plot #
51	>= 25 Channels for a 20 dB Bandwidth > 250 kHz	03

Plot 03 Number of Channels

Date: 22.SEP.2006 17:42:38

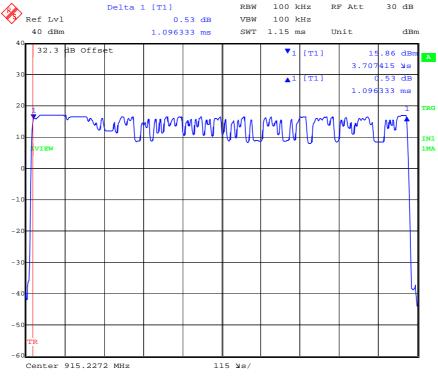
To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 26 of 60

5.1.3.2. Channel Occupancy FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §A8.1

Ambient conditions.


Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Channel Dwell Time

TABLE OF RESULTS -

Channel #	Center Frequency (MHz)	Channel Dwell Time (mSeconds)	Plot #
01	902.4449	1.096333	On File
26 914.7314		1.096333	04
51	926.9845	1.096333	On File

Plot 04 Channel dwell time Ch 26 914.7314 MHz

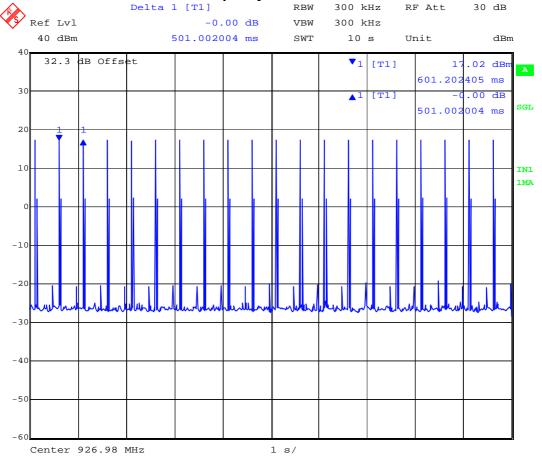
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

22.SEP.2006 18:47:09

Date:

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07


Page: 27 of 60

Channel Occupancy/

TABLE OF RESULTS -

Channel #	Center Frequency (MHz)	Channel Occupancy In 10 Second Period (mSeconds)	Plot #
01	902.4449	21.92666	On File
26	914.7314	21.92666	On File
51	926.9845	21.92666	05

Plot 05 Channel Occupancy Ch 51 926.9845 MHz

Date: 22.SEP.2006 18:43:10

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 28 of 60

Specification for Number of Channels and Channel Occupancy Limits

FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §A8.1

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Laboratory Uncertainty for Frequency Measurements

Measurement uncertainty	±0.86ppm
-------------------------	----------

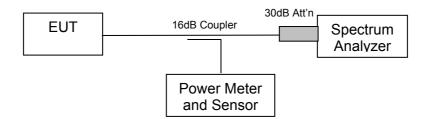
Traceability

Method	Test Equipment Used		
Measurements were made per work	0078, 0134, 0158, 0184, 0193, 0250,		
instruction WI-02 'Frequency Measurement"	0252 0310, 0312.		

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 29 of 60


5.1.4. Output Power

FCC, Part 15 Subpart C §15.247(b)(2) Industry Canada RSS-210 §A8.4

Test Procedure

The transmitter terminal of EUT was connected to the input of the spectrum analyzer set to measure power. The resolution filter bandwidth was set to 6 dB, peak detector selected and the analyzer built-in power function was used to measure power over the 99 % bandwidth.

Test Measurement Set up

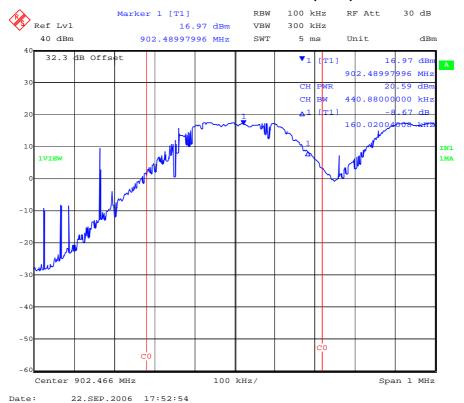
Measurement set up for Transmitter Output Power

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 30 of 60

Measurement Results for Output Power

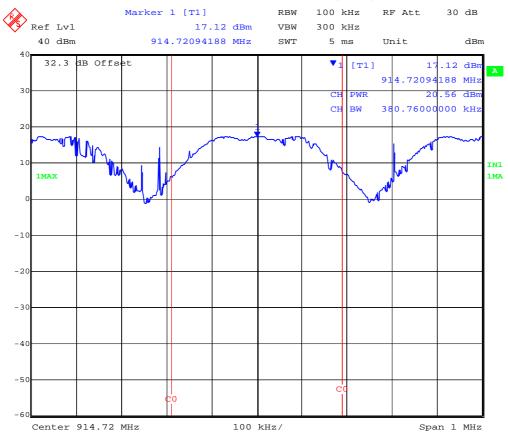

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS -

Channel #	Center Frequency (MHz)	Power (dBm)	Plot #
01	902.4449	20.59	06
26	914.7314	20.56	07
51	926.9845	20.19	08

Plot 06 CH 01 902.4449 MHz Power (dBm)



To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 31 of 60

Plot 07
CH 26 914.7314 MHz Power (dBm)

Date: 22.SEP.2006 18:00:54



To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 32 of 60

Plot 08 CH 51 926.9845 MHz Power (dBm)

Date: 22.SEP.2006 18:07:45

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 33 of 60

Specification

Limits

FCC, Part 15 Subpart C §15.247 (b)(2) The maximum output power of the intentional radiator shall not exceed the following:

(2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Industry Canada RSS-210 §A8.4

For frequency hopping systems operating in the 902 - 928 MHz band, the maximum peak conducted power output power is not to succeed 1.0 W if the hopset uses 50 or more hopping channels and 0.25 W if the hopset uses less than 50 hopping channels.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty ±1.33 dB

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117
Power'	

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 34 of 60

5.1.5. Conducted Spurious Emissions

FCC, Part 15 Subpart C §15.247(d) Industry Canada RSS-210 §A8.5

Test Procedure

Conducted emissions were measured at a limit of 20 dB below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Emissions at the band edge were measured and recorded. Measurements were made while EUT was operating in transmit mode of operation at the appropriate center frequency.

Test Measurement Set up

Band-edge measurement test configuration

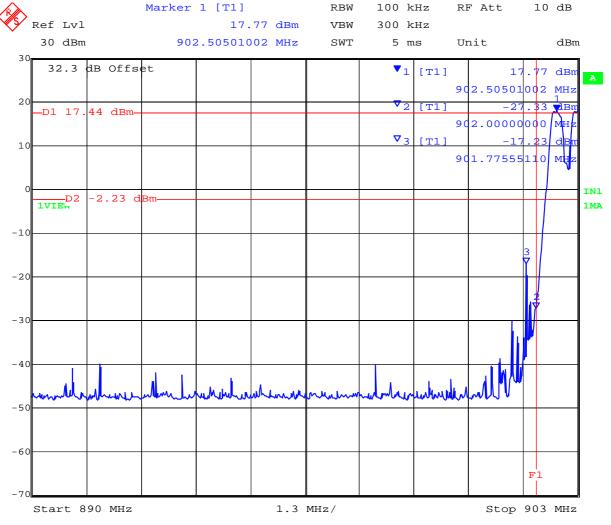
Measurement Results of Conducted Spurious Emissions

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07


Page: 35 of 60

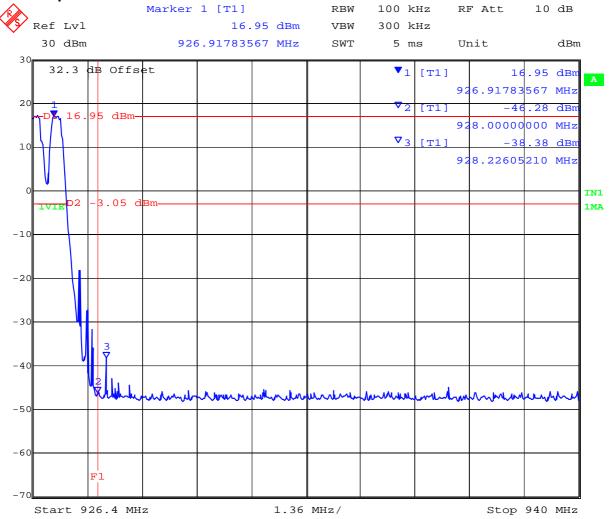
Conducted Band-Edge Results

TABLE OF RESULTS - 802.11b

Channel #	Center Frequency (MHz)	Band edge Frequency (MHz)	Limit (dBm)	Amplitude @ Band edge (dBm)	Plot #	Margin (dB)
1	902.4449	902.0	-3.05	-27.33	09	-24.28
51	926.9845	928.0	-3.05	-46.28	10	-43.23

Plot 09
Conducted Spurious Emissions at the 902 MHz Lower Band Edge

Date: 23.SEP.2006 09:09:25


To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 36 of 60

Plot 10
Conducted Spurious Emissions at the 928 MHz Upper Band Edge

Graph also shows the emission level at Restricted Band that starts at 960 MHz

Date: 23.SEP.2006 09:14:58

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 37 of 60

Spurious Emissions (1-10 GHz)

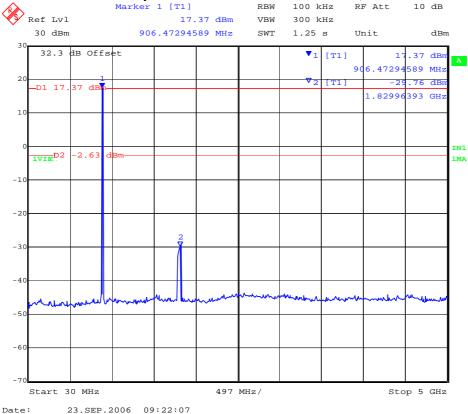

Conducted spurious emissions (1-10 GHz) are provided indicated by the following matrix. Measurements were performed with the transmitter tuned to the channel closest to the bandedge being measured. All emissions were maximized during measurement. Limits which were derived from the band-edge measurements provided below are drawn on each plot.

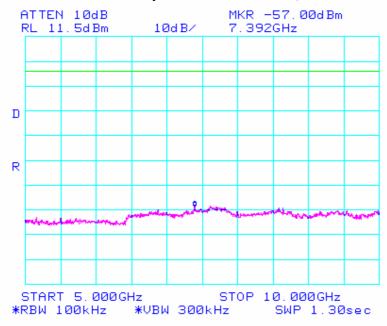
TABLE OF RESULTS -

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Plot #	Margin (dB)
902.4449	30	5,000	-29.76	-2.63	11	-27.13
902.4449	5,000	10,000	-57.00	-2.63	12	-54.37

The emission breaking the limit line is the carrier.

Plot 11
Conducted Spurious Emissions 30 MHz to 5,000 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 38 of 60

Plot 12 Conducted Spurious Emissions 5,000 MHz to 10,000 MHz

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 39 of 60

Specification

Limits Band-Edge

Lower Limit Band-edge	Upper Limit Band-edge	Limit below highest level of desired power
902 MHz	928 MHz	≥ 20 dB

FCC, Part 15 Subpart C §15.247(d)

Industry Canada RSS-210 §A.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

Measurement uncertainty	±2.37 dB
Measurement uncertainty	12.37 UD

Method	Test Equipment Used
Measurements were made per work instruction WI-05 'Measurement of Spurious Emissions'	0088, 0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117.

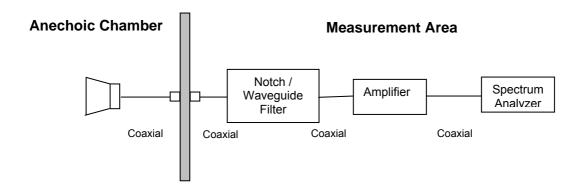
To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 40 of 60

5.1.6. Radiated Emissions

5.1.6.1. Transmitter Radiated Spurious Emissions (above 1 GHz)


FCC, Part 15 Subpart C §15.247(d) Industry Canada RSS-210 §A8.5

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Test Measurement Set up

Measurement set up for Radiated Emission Test

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 41 of 60

For example:

Given receiver input reading of 51.5 dB $_{\mu}$ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V)$ and $\mu V/m$ (or $\mu V)$ are done as:

Level $(dB\mu V/m) = 20 * Log (level (\mu V/m))$

40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m

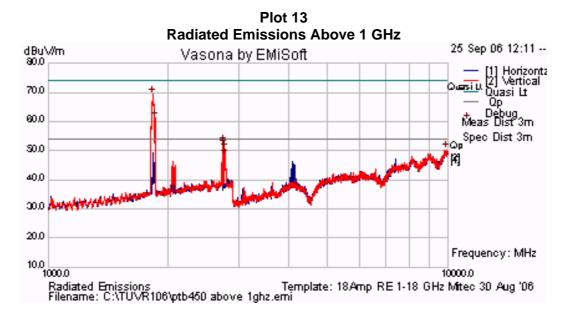
To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 42 of 60

Radiated Spurious Emissions above 1 GHz

Ambient conditions.


Temperature: 17 to 23°C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Radiated Emissions < 1 GHz for PTB450 Phone + PTH100 Earpiece + PTC400 Phone Stand and Charger Unit

TABLE OF RESULTS -

Freq. (MHz)	Pol. (H/V)	Raw Reading (dB _µ V/m)	Correction Factor (dB)	Corrected Field Strength (dBμV/m)	Limit (dBμV/m)	Margin (dB)
1829.667*	V	81.66	-12.32	69.34	81.62	-12.28
1851.833*	V	73.50	-12.21	61.29	81.62	-20.33
2741.667	V	64.17	-11.44	52.73	54.00	-1.27
2751.167	V	61.00	-9.42	51.58	54.00	-2.42
2767.000	V	59.84	-9.39	50.45	54.00	-3.55
9926.667*	V	39.84	+10.50	50.34	81.62	-31.28

^{* -} None restricted band. Limit dictated by the peak fundamental emission = $101.62 - 20 = 81.62 \text{ dB}_{\mu}\text{V/m}$.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 43 of 60

Radiated Spurious Emissions above 1 GHz (continued)

FCC, Part 15 Subpart C §15.247(d) Industry Canada RSS-210 §A8.5

Specification

FCC Part 15 Subpart C §15.247(d)

Industry Canada §A8.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

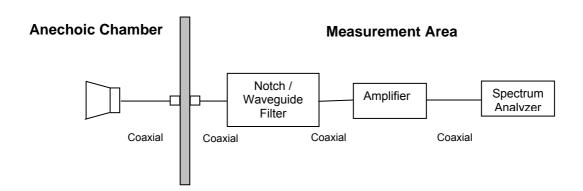
Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 44 of 60

5.1.6.2. Receiver Radiated Spurious Emissions (above 1 GHz)


Industry Canada RSS-Gen §4.8, & §6

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Test Measurement Set up

Measurement set up for Radiated Emission Test

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 45 of 60

For example:

Given receiver input reading of 51.5 dB $_{\mu}$ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 46 of 60

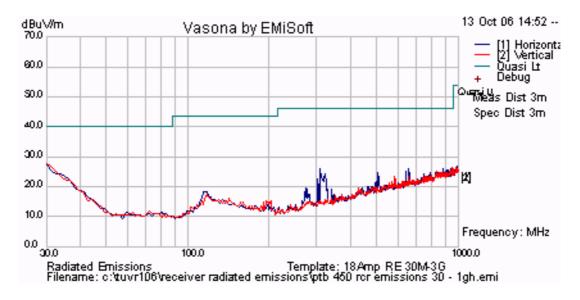

Receiver Radiated Spurious Emissions below 1 GHz

TABLE OF RESULTS

Freq. (MHz)	Pol. (H/V)	Raw Reading (dB _µ V/m)	Correction Factor (dB)	Corrected Field Strength (dBμV/m)	Limit (dBμV/m)	Margin (dB)

No emissions were observed that were close to the limit.

Plot 14
Receiver Radiated Emissions below 1 GHz

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 47 of 60

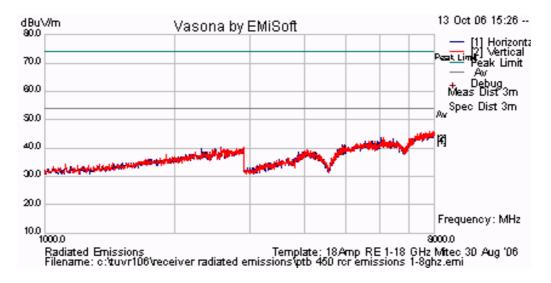

Receiver Radiated Spurious Emissions above 1 GHz

TABLE OF RESULTS

Freq. (MHz)	Pol. (H/V)	Raw Reading (dBµV/m)	Correction Factor (dB)	Corrected Field Strength (dBμV/m)	Limit (dBμV/m)	Margin (dB)

No emissions were observed that were close to the limit.

Plot 15
Receiver Radiated Emissions above 1 GHz

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 48 of 60

Specification

Receiver Radiated Spurious Emissions

Industry Canada RSS-Gen §4.8,

The search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is the higher, to at least 3 times the highest tunable or local oscillator frequency, whichever is the higher, without exceeding 40 GHz.

RSS-Gen §6

The following receiver spurious emission limits shall be complied with;

(a) If a radiated measurement is made, all spurious emissions hall comply with the limits of Table 1.

Table 1(Ref RSS-Gen §6) - Spurious Emissions

Frequency	Field Strength	Field Strength	Measurement Distance
(MHz)	(μV/m)	(dBμV/m)	(meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

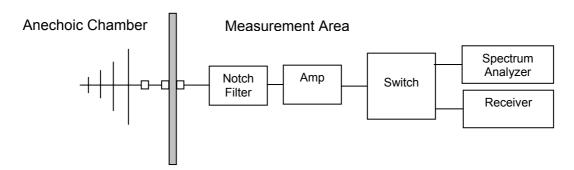
Measurement uncertainty +5.6/ -4.5 dE

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 49 of 60


5.1.7. Radiated Spurious Emissions (30M-1 GHz)

FCC, Part 15 Subpart C §15.247(d), §15.205, 15.209 Industry Canada RSS-210 §A8.5, 2.2, 2.6.

Test Procedure

Testing 30M-1 GHz was subcontracted to the company identified in Section 3.9 Subcontracted Testing. Preliminary radiated emissions are measured in the anechoic chamber at a 10-meter distance on every azimuth in both horizontal and vertical polarity. The emissions are recorded with a spectrum analyzer in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

Test Measurement Set up

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

FS = R + AF + CORR

where:

FS = Field Strength

R = Measured Receiver Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss

AG = Amplifier Gain

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 50 of 60

For example:

Given a Receiver input reading of $51.5dB_{\mu}V$; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

 $40 \text{ dB}_{\mu}\text{V/m} = 100_{\mu}\text{V/m}$ $48 \text{ dB}_{\mu}\text{V/m} = 250_{\mu}\text{V/m}$

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 51 of 60

Measurement Results for Radiated Emissions (30 MHz – 1 GHz)

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Radiated Emissions Below 1 GHz

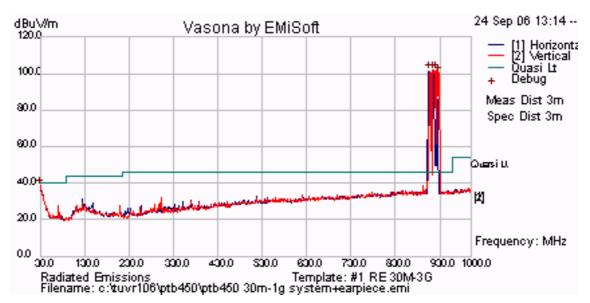

Radiated Emissions < 1 GHz for PTB450 Phone + PTH100 Earpiece + PTC400 Phone Stand and Charger Unit

TABLE OF RESULTS -

Freq. (MHz)	Pol. (H/V)	Raw Reading (dB _µ V/m)	Correction Factor (dB)	Corrected Field Strength (dBμV/m)	Limit (dBμV/m)	Margin (dB)
30.000	V	52.84	-14.39	38.45	40.00	-1.55
906.233	V	120.84	-19.43	101.41	46.00	55.41
915.933	V	120.84	-19.22	101.62	46.00	55.62
922.400	V	120.84	-19.33	101.51	46.00	55.51

The emissions breaking the limit line is the carrier.

Plot 16
Radiated Emissions < 1 GHz for
PTB450 Phone + PTH100 Earpiece + PTC400 Phone Stand and Charger Unit

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 52 of 60

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

§15.209 (a) and RSS-Gen §2.2 Limit Matrix

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

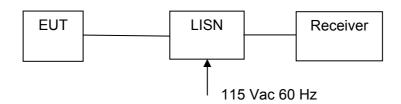
Measurement uncertainty	+5.6/ -4.5 dB

Method	Test Equipment Used		
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312		

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 53 of 60


5.1.8. AC Wireline Conducted Emissions (150 kHz - 30 MHz)

FCC, Part 15 Subpart C §15.207 Industry Canada RSS-Gen §7.2.2

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Test Measurement Set up

Measurement set up for AC Wireline Conducted Emissions Test

Measurement Results for AC Wireline Conducted Emissions (150 kHz – 30 MHz)

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

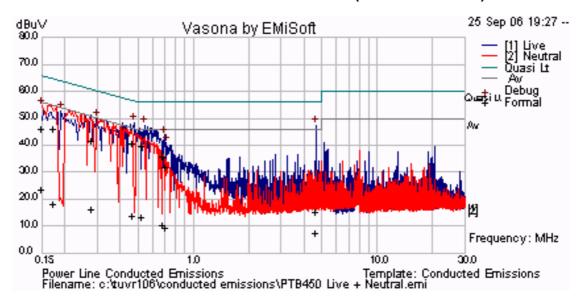

Page: 54 of 60

TABLE OF RESULTS

120v 60 Hz

Freq (MHz)	Line	Peak (dBμV)	QP (dBμV)	QP Limit (dBμV)	QP Margin (dB)	Ave. (dBμV)	Ave. Limit (dBμV)	Ave. Margin (dB)
0.150	Neut	54.64	43.92	66.00	-22.08	21.08	56.00	-34.92
0.174	Live	52.80	43.67	64.75	-21.08	15.80	54.75	-38.95
0.282	Neut	49.86	39.08	60.77	-21.69	13.71	50.77	-37.06
0.465	Live	48.43	38.20	56.60	-18.40	11.33	46.60	-35.27
0.529	Live	47.46	37.53	56.00	-18.47	10.93	46.00	-35.07
0.681	Live	43.66	33.22	56.00	-22.78	8.02	46.00	-37.98
0.705	Live	40.68	29.31	56.00	-26.69	6.78	46.00	-39.22
4.665	Live	47.42	13.06	56.00	-42.94	4.76	46.00	-41.24

Plot 17
AC Wireline - Conducted Emissions (150 kHz – 30 MHz)

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 55 of 60

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

RSS-Gen §7.2.2

The radio frequency voltage that is conducted back into the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The tighter limit applies at the frequency range boundaries.

§15.207 (a) and RSS-Gen §7.2.2 Limit Matrix

The lower limit applies at the boundary between frequency ranges

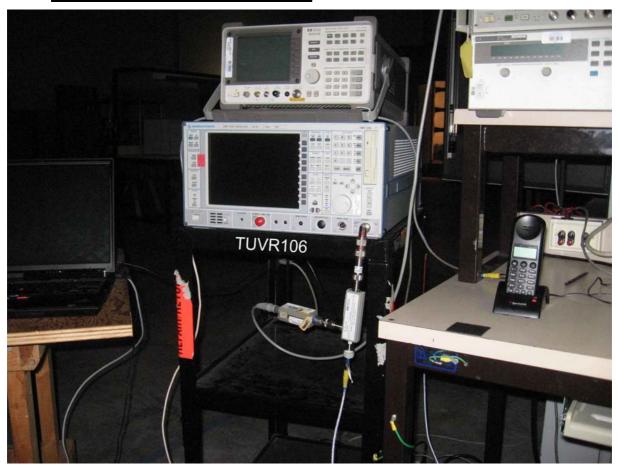
Frequency of Emission (MHz)	Conducted Limit (dBμV)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	±2.64 dB
-------------------------	----------

Method	Test Equipment Used
Measurements were made per Sanmina work instruction	LISN


To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 56 of 60

6. PHOTOGRAPHS

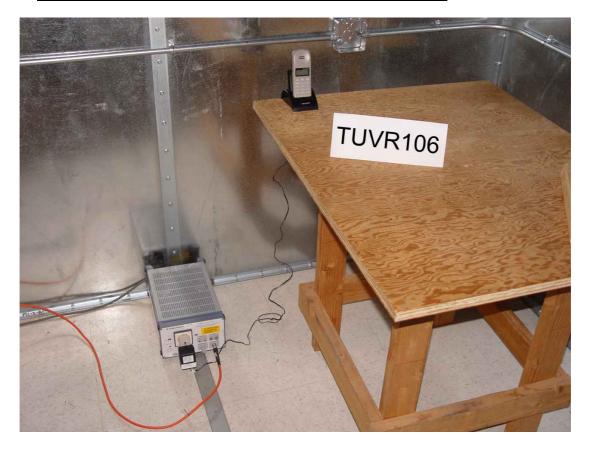
6.1. General Measurement Test Set-Up

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 57 of 60

6.2. Radiated Emissions >1 GHz



To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 58 of 60

6.3. AC Wireline Conducted Emissions (150 kHz – 30 MHz)

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TUVR106-A5 Rev B Issue Date: 16th March '07

Page: 59 of 60

7. TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Part #	Serial #
0088	Spectrum Analyzer	Hewlett Packard	8564E	3410A00141
0104	1-18GHz Horn Antenna	The Electro-Mechanics Company	3115	9205-3882
0134	Amplifier	Com Power	PA 122	181910
0158	Barometer /Thermometer	Control Co.	4196	E2846
0193	EMI Receiver	Rhode & Schwartz	ESI 7	838496/007
0252	SMA Cable	Megaphase	Sucoflex 104	None
0310	2m SMA Cable	Micro-Coax	UFA210A-0-0787- 3G03G0	209089-001
0312	3m SMA Cable	Micro-Coax	UFA210A-1-1181- 3G0300	209092-001
0313	Coupler	Hewlett Packard	86205A	3140A01285
0314	30dB N-Type Attenuator	ARRA	N9444-30	1623
0070	Power Meter	Hewlett Packard	437B	3125U11552
0116	Power Sensor	Hewlett Packard	8485A	3318A19694
0117	Power Sensor	Hewlett Packard	8487D	3318A00371
0184	Pulse Limiter	Rhode & Schwartz	ESH3Z2	357.8810.52
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002

440 Boulder Court, Suite 200 Pleasanton, CA 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306

www.micomlabs.com