

A.6. Contention Based Protocol

Measurement Limit and Method:

Indoor access points, subordinate devices and client devices operating in the 5.925-7.125 GHz band must employ a contention-based protocol.

Unlicensed low-power indoor devices must detect co-channel radio frequency power that is at least -62dBm or lower. Upon detection of energy in the band, unlicensed low power indoor devices must vacate the channel (in which incumbent signal is transmitted) and stay off the incumbent channel as long as detected radio frequency power is equal to or greater than the threshold (-62 dBm)1. The -62 dBm (or lower) threshold is referenced to a 0 dBi antenna gain.

To ensure incumbent operations are reliably detected in the band, low power indoor devices must detect RF energy throughout their intended operating channel. For example, an 802.11 device that plans to transmit a 40 MHz- wide signal (on a primary 20 MHz channel and a secondary 20 MHz channel) must detect energy throughout the entire 40 MHz channel. Additionally, low-power indoor devices must detect co-channel energy with 90% or greater certainty.

The measurement is made according to KDB 987594.

EUT does not use channel puncturing for incumbent avoidance. The EUT use bandwidth reduction for incumbent avoidance. Following figure illustrates an example scenarios of an 160MHz channel centered at 6185 MHz.

For the lower edge:

A 10 MHz AWGN signal (center frequency is 6110MHz) is injected, the signal reduces to 40 MHz centered around 6165MHz.

MultiView	Spectrum								
Ref Level 20).00 dBm	RBW 1	0 MHz						SGL
Att	30 dB 😑 SWT	15 s • VBW 1	0 MHz Mode A	Auto Sweep					Count 1/1
1 Frequency S	Sweep								O1Pk Clrw
								M2[1]	-41.27 dBm
								6.1	10 000 00 GHz
10 dBm								M1[1]	-41.02 dBm
								6.1	.65 000 00 GHz
0.10									
U dBm-									
				Children Chara					
-10 dBm									
					<u>``</u>				
					" <mark>1</mark>				
-20 dBm-				ii i	1				
-30 dBm									
al asset of a second domain			.I M2	MI		يابير ادار فري	ملاقد مسلاله السالمان والسرار	a should reach the	and a second state of the second state of the
-40 dBM		a date substant elfation	and all all all have the second as	▼	A SAMPLE AND A SAM			and the second se	ale all define the second second
-50 d8m									
-60 dBm-									
-70 dBm									
10 0011									
CF 6.185 GHz			100001 g	ots	5	0.0 MHz/		Sp	an 500.0 MHz

For the center frequency

A 10 MHz AWGN signal (center frequency is 6185MHz) is injected, the signal completely ceases operation.

MultiVie	ew	Sp	ectrum	1										
RefLev	el 20.	00 dBm		•	RBW 10) MHz								SGL
Att		30 dB	. SWT	15 s 单	VBW 10	MHz M	ode Auto Si	weep						Count 1/1
1 Freque	ncy Sv	weep												1Pk Clrw
												M1[1]		-41.64 dBm
100000000													6.1	85 000 00 GHz
10 dam-												M2[1]		-41.29 dBm
													6.1	35 000 00 GHz
0 dBm														
-10 dBm-														
-20 dBm-														
-30 dBm														
in the second second	interior and	disert based	And the second	and all the			M2	م ديده ميدا هم	1	mandate Section and	and a constraint dataset	alist allelation	- die	a boot bid position
State of sold state	Contraction of the local division of the loc	In this test	disco de la		the local and been	-				in the same of the same of the				
-50 dBm-														
100 1000														
-50 0511-														
-70 dBm-														
CF 6.185	GHz					100	001 pts		5	0.0 MHz/			Sp	an 500.0 MHz
2 Marker	Table													
Туре	Ref	Trc		X-V	alue		Y-۱	/alue		Function		Functi	on Re	esult
M1				6.18	GHZ		-41.6	4 dBm						
M2 M3				6.26	GHZ		-39.1	1 dBm						
					_									

For the upper edge:

A 10 MHz AWGN signal (center frequency is 6260MHz) is injected, the signal reduces to 40 MHz centered around 6125MHz.

MultiView	= Spectrum	1							
Ref Level 2	0.00 dBm	RBW 10) MHz						SGL
 Att 	30 dB 😑 SWT	15 s = VBW 10	MHz Mode A	uto Sweep					Count 1/1
1 Frequency	Sweep								O1Pk Clrw
								M2[1]	-41.25 dBm
								6.2	60 000 00 GHz
10 dBm								M1[1]	-41.55 dBm
								6.1	25 000 00 GHz
0 dBm									
-10 dBm-									
-20 dBm-									
-30 dBm									
-30 ubm									
				<u>.</u>				Line of the standard	attaken it atur Lata ke
-40 6BM	a kongrid (b. 1919-199-197-	adde alf de Belle de de de de de de de		lated and a set	la la subacha da ante	an phillip in which	No providence and a		
			and all and the second second second	The Riferald shade Locale and Ale	a partien of a to be dependent on the state of the				
100									
-50 dBm									
-60 d8m-									
-70 dBm									
CF 6.185 GH:	2		100001 p	ts	5	0.0 MHz/		Sp	ian 500.0 MHz

Measurement Results:

UNII Band 5:20M-6175MHz

Incumbent Frequency (MHz)	Injected (AWGN) Power (dBm)	Antenna Gain (dBi)	Adjusted Power (dBm)	Detection Limit (dBm)	EUT TX Status
	-73.71	1.2	-74.91	-62	Ceased
6175	-74.71	1.2	-75.91	-62	Minimal
	-80.00	1.2	-81.20	-62	Normal

Note: Adjusted Power(dBm)=Injected (AWGN) Power(dBm)-Antenna Gain(dBi)+Path loss(dB). Path loss is negligible (0dB). The adjusted power level is less than or equal to the detection threshold (-62dBm) with reference to 0dBi antenna gain.

Conclusion: PASS

UNII Band 5:160M-6185MHz

Incumbent Frequency (MHz)	Injected (AWGN) Power (dBm)	Antenna Gain (dBi)	Adjusted Power (dBm)	Detection Limit (dBm)	EUT TX Status
6110	-71.71	1.2	-72.91	-62	Ceased
(Lower	-72.71	1.2	-73.91	-62	Minimal
Edge)	-80.00	1.2	-81.20	-62	Normal
6185	-67.71	1.2	-68.91	-62	Ceased

(Center	-68.71	1.2	-69.91	-62	Minimal
Frequency)	-80.00	1.2	-81.20	-62	Normal
c200	-72.71	1.2	-73.91	-62	Ceased
0260 (Upper	-73.71	1.2	-74.91	-62	Minimal
Edge)	-80.00	1.2	-81.20	-62	Normal

Note: Adjusted Power(dBm)=Injected (AWGN) Power(dBm)-Antenna Gain(dBi)+Path loss(dB). Path loss is negligible (0dB). The adjusted power level is less than or equal to the detection threshold (-62dBm) with reference to 0dBi antenna gain. EUT support bandwidth reduction mechanism.

Conclusion: PASS

UNII Band 6:20M-6435MHz

Incumbent Frequency (MHz)	Injected (AWGN) Power (dBm)	Antenna Gain (dBi)	Adjusted Power (dBm)	Detection Limit (dBm)	EUT TX Status
	-73.71	1.2	-74.91	-62	Ceased
6435	-74.71	1.2	-75.91	-62	Minimal
	-80.00	1.2	-81.20	-62	Normal

Note: Adjusted Power(dBm)=Injected (AWGN) Power(dBm)-Antenna Gain(dBi)+Path loss(dB). Path loss is negligible (0dB). The adjusted power level is less than or equal to the detection threshold (-62dBm) with reference to 0dBi antenna gain.

Conclusion: PASS

UNII Band 6:160M-6505MHz

Incumbent Frequency (MHz)	Injected (AWGN) Power (dBm)	Antenna Gain (dBi)	Adjusted Power (dBm)	Detection Limit (dBm)	EUT TX Status
6430	-71.71	1.2	-72.91	-62	Ceased
(Lower	-72.71	1.2	-73.91	-62	Minimal
Edge)	-80.00	1.2	-81.20	-62	Normal
6505	-67.71	1.2	-68.91	-62	Ceased
(Center	-68.71	1.2	-69.91	-62	Minimal
Frequency)	-80.00	1.2	-81.20	-62	Normal

6590	-72.71	1.2	-73.91	-62	Ceased
(Upper	-73.71	1.2	-74.91	-62	Minimal
Edge)	-80.00	1.2	-81.20	-62	Normal

Note: Adjusted Power(dBm)=Injected (AWGN) Power(dBm)-Antenna Gain(dBi)+Path loss(dB). Path loss is negligible (0dB). The adjusted power level is less than or equal to the detection threshold (-62dBm) with reference to 0dBi antenna gain. EUT support bandwidth reduction mechanism.

Conclusion: PASS

UNII Band 7:20M-6855MHz

Incumbent Frequency (MHz)	Injected (AWGN) Power (dBm)	Antenna Gain (dBi)	Adjusted Power (dBm)	Detection Limit (dBm)	EUT TX Status
	-74.71	1.2	-75.91	-62	Ceased
6855	-75.71	1.2	-76.91	-62	Minimal
	-80.00	1.2	-81.20	-62	Normal

Note: Adjusted Power(dBm)=Injected (AWGN) Power(dBm)-Antenna Gain(dBi)+Path loss(dB). Path loss is negligible (0dB). The adjusted power level is less than or equal to the detection threshold (-62dBm) with reference to 0dBi antenna gain.

Conclusion: PASS

UNII Band 7:160M-6665MHz

Incumbent Frequency (MHz)	Injected (AWGN) Power (dBm)	Antenna Gain (dBi)	Adjusted Power (dBm)	Detection Limit (dBm)	EUT TX Status
6500	-72.71	1.2	-73.91	-62	Ceased
6590 (Lower	-73.71	1.2	-74.91	-62	Minimal
Edge)	-80.00	1.2	-81.20	-62	Normal
6665	-68.71	1.2	-69.91	-62	Ceased
(Center	-69.71	1.2	-70.91	-62	Minimal
Frequency)	-80.00	1.2	-81.20	-62	Normal
6740	-72.71	1.2	-73.91	-62	Ceased
(Upper	-73.71	1.2	-74.91	-62	Minimal

Edge)	-80.00	1.2	-81.20	-62	Normal
-------	--------	-----	--------	-----	--------

Note: Adjusted Power(dBm)=Injected (AWGN) Power(dBm)-Antenna Gain(dBi)+Path loss(dB). Path loss is negligible (0dB). The adjusted power level is less than or equal to the detection threshold (-62dBm) with reference to 0dBi antenna gain. EUT support bandwidth reduction mechanism.

Conclusion: PASS

UNII Band 8:20M-6995MHz

Incumbent Frequency (MHz)	Injected (AWGN) Power (dBm)	Antenna Gain (dBi)	Adjusted Power (dBm)	Detection Limit (dBm)	EUT TX Status
	-72.71	1.2	-73.91	-62	Ceased
6995	-73.71	1.2	-74.91	-62	Minimal
	-80.00	1.2	-81.20	-62	Normal

Note: Adjusted Power(dBm)=Injected (AWGN) Power(dBm)-Antenna Gain(dBi)+Path loss(dB). Path loss is negligible (0dB). The adjusted power level is less than or equal to the detection threshold (-62dBm) with reference to 0dBi antenna gain.

Conclusion: PASS

UNII Band 8:160M-6985MHz

Incumbent Frequency (MHz)	Injected (AWGN) Power (dBm)	Antenna Gain (dBi)	Adjusted Power (dBm)	Detection Limit (dBm)	EUT TX Status
6010	-70.71	1.2	-71.91	-62	Ceased
6910 (Lower Edge)	-71.71	1.2	-72.91	-62	Minimal
	-80.00	1.2	-81.20	-62	Normal
6985 (Center Frequency)	-68.71	1.2	-69.91	-62	Ceased
	-69.71	1.2	-70.91	-62	Minimal
	-80.00	1.2	-81.20	-62	Normal
7060 (Upper Edge)	-72.71	1.2	-73.91	-62	Ceased
	-73.71	1.2	-74.91	-62	Minimal
	-80.00	1.2	-81.20	-62	Normal

Note: Adjusted Power(dBm)=Injected (AWGN) Power(dBm)-Antenna Gain(dBi)+Path loss(dB). Path loss is negligible (0dB). The adjusted power level is less than or equal to the detection threshold (-62dBm) with

reference to 0dBi antenna gain. EUT support bandwidth reduction mechanism.

Conclusion: PASS

Detection Probability Evaluation

Mode	UNII Band	Center Frequency (MHz)	Incumbent Frequency (MHz)	Injected AWGN (dBm)	1	2	3	4	5	6	7	8	9	1 0	Detection Probability (%)	Limit (%)
802 11ax 6	5	6175	6175	-73.71	\checkmark	\checkmark			\checkmark						100	90
	6	6435	6435	-73.71	\checkmark	\checkmark	x		\checkmark						90	90
-HE20	7	6855	6855	-74.71	\checkmark	\checkmark			\checkmark						100	90
8	8	6995	6995	-72.71	\checkmark	\checkmark			\checkmark						100	90
5 802.11ax -HE160 7 8		6185	6110	-71.71	\checkmark	\checkmark			\checkmark						100	90
	5		6185	-67.71	\checkmark	\checkmark			\checkmark	x					90	90
		6260	-72.71	\checkmark	\checkmark			\checkmark						100	90	
		6430	-71.71	x	\checkmark			\checkmark						90	90	
	6	6505	6505	-67.71	\checkmark	\checkmark	x		\checkmark						90	90
			6580	-72.71	\checkmark	\checkmark			\checkmark						100	90
		6665	6590	-72.71	\checkmark	\checkmark			\checkmark						100	90
	7		6665	-68.71	\checkmark	\checkmark			\checkmark			x			90	90
			6740	-72.71	\checkmark	\checkmark			\checkmark						100	90
		8 6985	6910	-70.71	\checkmark	\checkmark			\checkmark						100	90
	8		6985	-68.71							x				90	90
			7060	-72.71		x									90	90

.Conclusion: PASS

Test graphs as below:

Mode	Frequency(MHz)	AWGN Signal Level	cease transmission
802.11ax20	6995	See test graph	See test graph
802.11ax160	6185	See test graph	See test graph

20:02:03 05.07.2023

19:55:57 05.07.2023

Contention Based Protocol 802.11ax HE20 6995MHz (cease transmission)