TTI

TTI

TTI

TTI

TTI

TTI

TTI

No.I23Z60761-IOT01

A.6. Contention Based Protocol

Measurement Limit and Method:

Indoor access points, subordinate devices and client devices operating in the 5.925-7.125 GHz band must employ a contention-based protocol.
Unlicensed low-power indoor devices must detect co-channel radio frequency power that is at least -62 dBm or lower. Upon detection of energy in the band, unlicensed low power indoor devices must vacate the channel (in which incumbent signal is transmitted) and stay off the incumbent channel as long as detected radio frequency power is equal to or greater than the threshold (-62 dBm)1. The -62 dBm (or lower) threshold is referenced to a 0 dBi antenna gain.
To ensure incumbent operations are reliably detected in the band, low power indoor devices must detect RF energy throughout their intended operating channel. For example, an 802.11 device that plans to transmit a 40 MHz - wide signal (on a primary 20 MHz channel and a secondary 20 MHz channel) must detect energy throughout the entire 40 MHz channel. Additionally, low-power indoor devices must detect co-channel energy with 90% or greater certainty.
The measurement is made according to KDB 987594.
EUT does not use channel puncturing for incumbent avoidance. The EUT use bandwidth reduction for incumbent avoidance. Following figure illustrates an example scenarios of an 160 MHz channel centered at 6185 MHz .
For the lower edge:
A 10 MHz AWGN signal (center frequency is 6110 MHz) is injected, the signal reduces to 40 MHz centered around 6165 MHz .

For the center frequency
A 10 MHz AWGN signal (center frequency is 6185 MHz) is injected, the signal completely ceases operation.

For the upper edge:
A 10 MHz AWGN signal (center frequency is 6260 MHz) is injected, the signal reduces to 40 MHz centered around 6125 MHz .

Measurement Results:

UNII Band 5:20M-6175MHz
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \text { Incumbent } & \begin{array}{c}\text { Injected } \\ \text { Frequency } \\ (\mathrm{MHz})\end{array} & \begin{array}{c}\text { Power } \\ \text { (dBm) }\end{array} & \begin{array}{c}\text { Antenna } \\ \text { Gain (dBi) }\end{array} & \begin{array}{c}\text { Adjusted } \\ \text { Power } \\ (\mathbf{d B m)}\end{array} & \begin{array}{c}\text { Detection } \\ \text { Limit } \\ (\mathbf{d B m)}\end{array}\end{array} \begin{array}{c}\text { EUT } \\ \text { TX } \\ \text { Status }\end{array}\right]$

Note: Adjusted Power(dBm)=Injected (AWGN) Power(dBm)-Antenna Gain(dBi)+Path loss(dB). Path loss is negligible (0dB). The adjusted power level is less than or equal to the detection threshold (-62dBm) with reference to 0 dBi antenna gain.

Conclusion: PASS

UNII Band 5:160M-6185MHz

Incumbent Frequency (MHz)	Injected (AWGN) Power (dBm)	Antenna Gain (dBi)	Adjusted Power (dBm)	Detection Limit (dBm)	EUT TX Status
$\begin{gathered} 6110 \\ \text { (Lower } \\ \text { Edge) } \end{gathered}$	-71.71	1.2	-72.91	-62	Ceased
	-72.71	1.2	-73.91	-62	Minimal
	-80.00	1.2	-81.20	-62	Normal
6185	-67.71	1.2	-68.91	-62	Ceased

(Center Frequency)	-68.71	1.2	-69.91	-62	Minimal
	-80.00	1.2	-81.20	-62	Normal
6260 (Upper Edge)	-72.71	1.2	-73.91	-62	Ceased
	-73.71	1.2	-74.91	-62	Minimal
	-80.00	1.2	-81.20	-62	Normal

Note: Adjusted Power(dBm)=Injected (AWGN) Power(dBm)-Antenna Gain(dBi)+Path loss(dB). Path loss is negligible (0dB). The adjusted power level is less than or equal to the detection threshold (-62dBm) with reference to 0 dBi antenna gain. EUT support bandwidth reduction mechanism.

Conclusion: PASS

UNII Band 6:20M-6435MHz

$\left.$| Incumbent | Injected
 Frequency
 (MHz) | AWGN)
 Power
 (dBm) | Antenna
 Gain (dBi) | Adjusted
 Power
 (dBm) | Detection
 Limit
 (dBm) |
| :---: | :---: | :---: | :---: | :---: | :---: | | EUT |
| :---: |
| TX |
| Status | \right\rvert\,

Note: Adjusted Power(dBm)=Injected (AWGN) Power(dBm)-Antenna Gain(dBi)+Path loss(dB). Path loss is negligible (0dB). The adjusted power level is less than or equal to the detection threshold (-62dBm) with reference to 0 dBi antenna gain.

Conclusion: PASS

UNII Band 6:160M-6505MHz

Incumbent	Injected Frequency (MHZ) Power (dBm)	Antenna Gain (dBi)	Adjusted Power (dBm)	Detection Limit (dBm)	EUT TX Status
(Lower Edge)	-71.71	1.2	-72.91	-62	Ceased
	-72.71	1.2	-73.91	-62	Minimal
	-80.00	1.2	-81.20	-62	Normal
6505 (Center Frequency)	-67.71	1.2	-68.91	-62	Ceased
	-60.71	1.2	-69.91	-62	Minimal
	-800	1.2	-81.20	-62	Normal

6580 (Upper Edge)	-72.71	1.2	-73.91	-62	Ceased
	-73.71	1.2	-74.91	-62	Minimal
	-80.00	1.2	-81.20	-62	Normal

Note: Adjusted Power(dBm)=Injected (AWGN) Power(dBm)-Antenna Gain(dBi)+Path loss(dB). Path loss is negligible (0 dB). The adjusted power level is less than or equal to the detection threshold (-62 dBm) with reference to OdBi antenna gain. EUT support bandwidth reduction mechanism.

Conclusion: PASS

UNII Band 7:20M-6855MHz

$\left.$| Incumbent | Injected
 Frequency
 (MHz) | AWGN)
 Power
 (dBm) | Antenna
 Gain (dBi) | Adjusted
 Power
 $(\mathbf{d B m})$ | Detection
 Limit
 $(\mathbf{d B m)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | | EUT |
| :---: |
| TX |
| Status | \right\rvert\,

Note: Adjusted Power(dBm)=Injected (AWGN) Power(dBm)-Antenna Gain(dBi)+Path loss(dB). Path loss is negligible (0dB). The adjusted power level is less than or equal to the detection threshold (-62dBm) with reference to 0 dBi antenna gain.

Conclusion: PASS

UNII Band 7:160M-6665MHz

Incumbent Frequency (MHz)	Injected (AWGN) Power (dBm)	Antenna Gain (dBi)	Adjusted Power (dBm)	Detection Limit (dBm)	EUT TX Status
$\begin{gathered} 6590 \\ \text { (Lower } \\ \text { Edge) } \end{gathered}$	-72.71	1.2	-73.91	-62	Ceased
	-73.71	1.2	-74.91	-62	Minimal
	-80.00	1.2	-81.20	-62	Normal
6665 (Center Frequency)	-68.71	1.2	-69.91	-62	Ceased
	-69.71	1.2	-70.91	-62	Minimal
	-80.00	1.2	-81.20	-62	Normal
6740 (Upper	-72.71	1.2	-73.91	-62	Ceased
	-73.71	1.2	-74.91	-62	Minimal

Edge)	-80.00	1.2	-81.20	-62	Normal

Note: Adjusted Power(dBm)=Injected (AWGN) Power(dBm)-Antenna Gain(dBi)+Path loss(dB). Path loss is negligible (0dB). The adjusted power level is less than or equal to the detection threshold (-62dBm) with reference to OdBi antenna gain. EUT support bandwidth reduction mechanism.

Conclusion: PASS

UNII Band 8:20M-6995MHz

Incumbent	Injected (AWGN) (MHz)	Antenna Power (dBm)	Adjusted Gain (dBi) Power (dBm)	Detection Limit (dBm)	EUT TX Status
6995	-72.71	1.2	-73.91	-62	Ceased
	-73.71	1.2	-74.91	-62	Minimal
	-80.00	1.2	-81.20	-62	Normal

Note: Adjusted Power(dBm)=Injected (AWGN) Power(dBm)-Antenna Gain(dBi)+Path loss(dB). Path loss is negligible (0 dB). The adjusted power level is less than or equal to the detection threshold $(-62 \mathrm{dBm})$ with reference to 0 dBi antenna gain.

Conclusion: PASS

UNII Band 8:160M-6985MHz

Incumbent Frequency (MHz)	Injected (AWGN) Power (dBm)	Antenna Gain (dBi)	Adjusted Power (dBm)	Detection Limit (dBm)	EUT TX Status
6910 (Lower Edge)	-70.71	1.2	-71.91	-62	Ceased
	-71.71	1.2	-72.91	-62	Minimal
	-80.00	1.2	-81.20	-62	Normal
6985 (Center Frequency)	-68.71	1.2	-69.91	-62	Ceased
	-69.71	1.2	-70.91	-62	Minimal
	-80.00	1.2	-81.20	-62	Normal
$\begin{gathered} 7060 \\ \text { (Upper } \\ \text { Edge) } \end{gathered}$	-72.71	1.2	-73.91	-62	Ceased
	-73.71	1.2	-74.91	-62	Minimal
	-80.00	1.2	-81.20	-62	Normal

Note: Adjusted Power(dBm)=Injected (AWGN) Power(dBm)-Antenna Gain(dBi)+Path loss(dB). Path loss is negligible $(0 \mathrm{~dB})$. The adjusted power level is less than or equal to the detection threshold $(-62 \mathrm{dBm})$ with
reference to 0 dBi antenna gain. EUT support bandwidth reduction mechanism.

Conclusion: PASS

Detection Probability Evaluation

Mode	UNII Band	Center Frequency (MHz)	Incumbent Frequency (MHz)	Injected AWGN (dBm)	1	2	3	4	5	6	7	8	9	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Detection Probability (\%)	Limit (\%)
$\begin{gathered} \text { 802.11ax } \\ \text {-HE20 } \end{gathered}$	5	6175	6175	-73.71	\checkmark	100	90									
	6	6435	6435	-73.71	\checkmark	\checkmark	x	\checkmark	90	90						
	7	6855	6855	-74.71	\checkmark	100	90									
	8	6995	6995	-72.71	\checkmark	100	90									
$\begin{aligned} & \text { 802.11ax } \\ & \text {-HE160 } \end{aligned}$	5	6185	6110	-71.71	\checkmark	100	90									
			6185	-67.71	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	x	\checkmark	\checkmark	\checkmark	\checkmark	90	90
			6260	-72.71	\checkmark	100	90									
	6	6505	6430	-71.71	x	\checkmark	90	90								
			6505	-67.71	\checkmark	\checkmark	x	\checkmark	90	90						
			6580	-72.71	\checkmark	100	90									
	7	6665	6590	-72.71	\checkmark	100	90									
			6665	-68.71	\checkmark	x	\checkmark	\checkmark	90	90						
			6740	-72.71	\checkmark	100	90									
	8	6985	6910	-70.71	\checkmark	100	90									
			6985	-68.71	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	x	\checkmark	\checkmark	\checkmark	90	90
			7060	-72.71	\checkmark	x	\checkmark	90	90							

.Conclusion: PASS

Test graphs as below:

Mode	Frequency(MHz)	AWGN Signal Level	cease transmission
802.11 ax 20	6995	See test graph	See test graph
$802.11 \mathrm{ax160}$	6185	See test graph	See test graph

20:02:03 05.07.2023
AWGN Signal Level 802.11ax HE20 6995MHz (at Antenna Port)

19:55:57 05.07.2023
Contention Based Protocol 802.11ax HE20 6995MHz (cease transmission)

16:28:44 05.07.2023
AWGN Signal Level 802.11ax HE160 6185 (middle, at Antenna Port)

13:09:09 05.07.2023
Contention Based Protocol 802.11ax HE160 6185 (middle, cease transmission)

A.7. In-Band Emissions

Measurement Limit and Method:

1. Take nominal bandwidth as reference channel bandwidth provided that 26 dB emission bandwidth is always larger than nominal bandwidth
2. Measure the power spectral density (which will be used for emissions mask reference) using the following procedure:
a) Set the span to encompass the entire 26 dB EBW of the signal.
b) Set RBW = same RBW used for 26 dB EBW measurement.
c) Set VBW $\geqslant 3 \times$ RBW
d) Number of points in sweep $\geqslant[2 \mathrm{X}$ span / RBW].
e) Sweep time = auto.
f) Detector = RMS (i.e., power averaging)
g) Trace average at least 100 traces in power averaging (rms) mode.
h) Use the peak search function on the instrument to find the peak of the spectrum.
3. Using the measuring equipment limit line function, develop the emissions mask based on the following requirements. The emissions power spectral density must be reduced below the peak power spectral density (in dB) as follows:
a. Suppressed by 20 dB at 1 MHz outside of the channel edge. (The channel edge is defined as the $26-\mathrm{dB}$ point on either side of the carrier center frequency.)
b. Suppressed by 28 dB at one channel bandwidth from the channel center.
c. Suppressed by 40 dB at one- and one-half times the channel bandwidth from the channel center.
4. Adjust the span to encompass the entire mask as necessary.
5. Clear trace.
6. Trace average at least 100 traces in power averaging (rms) mode.
7. Adjust the reference level as necessary so that the crest of the channel touches the top of the emission mask.

Generic Emission Mask
The measurement is made according to KDB 987594.

Measurement Results:

MIMO

Test Mode	Antenna	Channel	Result	Limit	Verdict
11A CDD	Ant2	5955	See test graph	See test graph	PASS
	Ant3	5955	See test graph	See test graph	PASS
	Ant2	6175	See test graph	See test graph	PASS
	Ant3	6175	See test graph	See test graph	PASS
	Ant2	6415	See test graph	See test graph	PASS
	Ant3	6415	See test graph	See test graph	PASS
	Ant2	6435	See test graph	See test graph	PASS
	Ant3	6435	See test graph	See test graph	PASS
	Ant2	6475	See test graph	See test graph	PASS
	Ant3	6475	See test graph	See test graph	PASS
	Ant2	6515	See test graph	See test graph	PASS
	Ant3	6515	See test graph	See test graph	PASS
	Ant2	6535	See test graph	See test graph	PASS
	Ant3	6535	See test graph	See test graph	PASS
	Ant2	6695	See test graph	See test graph	PASS
	Ant3	6695	See test graph	See test graph	PASS
	Ant2	6855	See test graph	See test graph	PASS
	Ant3	6855	See test graph	See test graph	PASS
	Ant2	6875	See test graph	See test graph	PASS

	Ant3	6875	See test graph	See test graph	PASS
	Ant2	6895	See test graph	See test graph	PASS
	Ant3	6895	See test graph	See test graph	PASS
	Ant2	6995	See test graph	See test graph	PASS
	Ant3	6995	See test graph	See test graph	PASS
	Ant2	7115	See test graph	See test graph	PASS
	Ant3	7115	See test graph	See test graph	PASS
	Ant2	5955	See test graph	See test graph	PASS
	Ant3	5955	See test graph	See test graph	PASS
	Ant2	6175	See test graph	See test graph	PASS
	Ant3	6175	See test graph	See test graph	PASS
	Ant2	6415	See test graph	See test graph	PASS
	Ant3	6415	See test graph	See test graph	PASS
	Ant2	6435	See test graph	See test graph	PASS
	Ant3	6435	See test graph	See test graph	PASS
	Ant2	6475	See test graph	See test graph	PASS
	Ant3	6475	See test graph	See test graph	PASS
	Ant2	6515	See test graph	See test graph	PASS
	Ant3	6515	See test graph	See test graph	PASS
	Ant2	6535	See test graph	See test graph	PASS
11AX20 MIMO	Ant3	6535	See test graph	See test graph	PASS
	Ant2	6695	See test graph	See test graph	PASS
	Ant3	6695	See test graph	See test graph	PASS
	Ant2	6855	See test graph	See test graph	PASS
	Ant3	6855	See test graph	See test graph	PASS
	Ant2	6875	See test graph	See test graph	PASS
	Ant3	6875	See test graph	See test graph	PASS
	Ant2	6895	See test graph	See test graph	PASS
	Ant3	6895	See test graph	See test graph	PASS
	Ant2	6995	See test graph	See test graph	PASS
	Ant3	6995	See test graph	See test graph	PASS
	Ant2	7115	See test graph	See test graph	PASS
	Ant3	7115	See test graph	See test graph	PASS
11AX40 MIMO	Ant2	5965	See test graph	See test graph	PASS
	Ant3	5965	See test graph	See test graph	PASS
	Ant2	6165	See test graph	See test graph	PASS
	Ant3	6165	See test graph	See test graph	PASS
	Ant2	6405	See test graph	See test graph	PASS
	Ant3	6405	See test graph	See test graph	PASS
	Ant2	6445	See test graph	See test graph	PASS
	Ant3	6445	See test graph	See test graph	PASS
	Ant2	6485	See test graph	See test graph	PASS

	Ant3	6485	See test graph	See test graph	PASS
	Ant2	6525	See test graph	See test graph	PASS
	Ant3	6525	See test graph	See test graph	PASS
	Ant2	6565	See test graph	See test graph	PASS
	Ant3	6565	See test graph	See test graph	PASS
	Ant2	6685	See test graph	See test graph	PASS
	Ant3	6685	See test graph	See test graph	PASS
	Ant2	6845	See test graph	See test graph	PASS
	Ant3	6845	See test graph	See test graph	PASS
	Ant2	6885	See test graph	See test graph	PASS
	Ant3	6885	See test graph	See test graph	PASS
	Ant2	6925	See test graph	See test graph	PASS
	Ant3	6925	See test graph	See test graph	PASS
	Ant2	6965	See test graph	See test graph	PASS
	Ant3	6965	See test graph	See test graph	PASS
	Ant2	7085	See test graph	See test graph	PASS
	Ant3	7085	See test graph	See test graph	PASS
	Ant2	5985	See test graph	See test graph	PASS
	Ant3	5985	See test graph	See test graph	PASS
	Ant2	6145	See test graph	See test graph	PASS
	Ant3	6145	See test graph	See test graph	PASS
	Ant2	6385	See test graph	See test graph	PASS
	Ant3	6385	See test graph	See test graph	PASS
	Ant2	6465	See test graph	See test graph	PASS
	Ant3	6465	See test graph	See test graph	PASS
	Ant2	6545	See test graph	See test graph	PASS
	Ant3	6545	See test graph	See test graph	PASS
11AX80 MIMO	Ant2	6625	See test graph	See test graph	PASS
11AX80 MIMO	Ant3	6625	See test graph	See test graph	PASS
	Ant2	6705	See test graph	See test graph	PASS
	Ant3	6705	See test graph	See test graph	PASS
	Ant2	6785	See test graph	See test graph	PASS
	Ant3	6785	See test graph	See test graph	PASS
	Ant2	6865	See test graph	See test graph	PASS
	Ant3	6865	See test graph	See test graph	PASS
	Ant2	6945	See test graph	See test graph	PASS
	Ant3	6945	See test graph	See test graph	PASS
	Ant2	7025	See test graph	See test graph	PASS
	Ant3	7025	See test graph	See test graph	PASS
11AX160 MIMO	Ant2	6025	See test graph	See test graph	PASS
	Ant3	6025	See test graph	See test graph	PASS
	Ant2	6185	See test graph	See test graph	PASS

	Ant3	6185	See test graph	See test graph	PASS
	Ant2	6345	See test graph	See test graph	PASS
	Ant3	6345	See test graph	See test graph	PASS
	Ant2	6505	See test graph	See test graph	PASS
	Ant3	6505	See test graph	See test graph	PASS
	Ant2	6665	See test graph	See test graph	PASS
	Ant3	6665	See test graph	See test graph	PASS
	Ant2	6825	See test graph	See test graph	PASS
	Ant3	6825	See test graph	See test graph	PASS
	Ant2	6985	See test graph	See test graph	PASS
	Ant3	6985	See test graph	See test graph	PASS

Test Graphs

TTI

TTI

TTL

TTI

TTI

TTI

TTI

TTI

TTI

TTI

TTL

TTI

TTL

TTI

TTI

TTI

TTL

TTI

TTI

TTI

TTI

TTI

TTL

TTL

TTI

TTI

TTI

TTI

TTI

TTI

TTI

TTI

TTI

TTI

TTI

TTI

TTI

TTI

TTI

TTI

