

FCC PART 15C & RSS 247 TEST REPORT No. I18N01184-WLAN

for

Spectralink Corp

GSM Quad-band/UMTS five-band/LTE/CA Mobile phone

9640

with

Hardware Version: PIO

Software Version: vF03

FCC ID: IYG96XX

IC: 2128B-96XX

Issued Date: 2018-09-10

Designation Number: CN1210 ISED Assigned Code: 23289

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

Shenzhen Academy of Information and Communications Technology Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen,

Guangdong, P. R. China 518026.

Tel: +86(0)755-33322000, Fax: +86(0)755-33322001, Email:yewu@caict.ac.cn.www.cszit.com

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I18N01184-WLAN	Rev.0	1st edition	2018-09-10

CONTENTS

CONT	ENTS	3
1. Tl	EST LABORATORY	4
1.1.	TESTING LOCATION	4
1.2.	TESTING ENVIRONMENT	4
1.3.	Project data	4
1.4.	SIGNATURE	4
2. C	LIENT INFORMATION	5
2.1.	APPLICANT INFORMATION	5
2.2.	MANUFACTURER INFORMATION	5
3. E	QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	6
3.1.	ABOUT EUT	6
3.2.	INTERNAL IDENTIFICATION OF EUT	6
3.3.	INTERNAL IDENTIFICATION OF AE	6
3.4.	GENERAL DESCRIPTION	6
4. R	EFERENCE DOCUMENTS	7
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	7
4.2.	REFERENCE DOCUMENTS FOR TESTING	7
5. Tl	EST RESULTS	8
5.1.	SUMMARY OF TEST RESULTS	8
5.2.	STATEMENTS	8
5.3.	TERMS USED IN THE RESULT TABLE	8
5.4.	LABORATORY ENVIRONMENT	9
6. Tl	EST FACILITIES UTILIZED	10
7. M	EASUREMENT UNCERTAINTY	11
ANNE	X A: DETAILED TEST RESULTS	12
A.0 A	Antenna requirement	12
A.1 I	Radiated Emission	13

1. Test Laboratory

1.1. Testing Location

Location: Shenzhen Academy of Information and Communications Technology

Address: Building G, Shenzhen International Innovation Center, No.1006

Shennan Road, Futian District, Shenzhen, Guangdong

Province ,China

Postal Code: 518026

Telephone: +86(0)755-33322000 Fax: +86(0)755-33322001

1.2. Testing Environment

Normal Temperature: $15-30^{\circ}$ C Relative Humidity: $35-60^{\circ}$

1.3. Project data

Testing Start Date: 2018-08-09
Testing End Date: 2018-09-10

1.4. Signature

An Ran

(Prepared this test report)

Tang Weisheng

(Reviewed this test report)

Zhang Bojun

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: Spectralink Corp

Address: 2560 55th Street Boulder, CO 80301 USA

Contact Person Andrew Duncan

E-Mail Andrew.duncan@spectralink.com

Telephone: +1 720-925-0480

Fax: /

2.2. Manufacturer Information

Company Name: Spectralink Corp

Address: 2560 55th Street Boulder, CO 80301 USA

Contact Person Andrew Duncan

E-Mail Andrew.duncan@spectralink.com

Telephone: +1 720-925-0480

Fax: /

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description GSM Quad-band/UMTS five-band/LTE/CA Mobile phone

Model Name 9640 Market Name Versity

RF Protocol IEEE 802.11 b/g/n-HT20/n-HT40

Operating Frequency 2412MHz~2462MHz

Number of Channels 11

Antenna Type Integrated

Antenna Gain 0.5dBi(ANT0),0.6dBi(ANT1)

Power Supply 3.7V DC by Battery

FCC ID IYG96XX IC number 2128B-96XX

Condition of EUT as received No abnormality in appearance

Note: Components list, please refer to documents of the manufacturer.

3.2. Internal Identification of EUT

EUT ID*	IMEI	HW Version	SW Version	Receive Date
EUT1	357023090001067	PIO	vF03	2018-08-09

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE ID*	Description	Mode	Manufacturer
AE1	Switching Adapter	ASUC71w-050912300	Aquil Star Precision Industrial
			(ShenZhen) Co., Ltd

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4. General Description

The Equipment Under Test (EUT) are a model of Mobile Phone with integrated antenna.

It consists of normal options: travel Charger, USB cable.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

Note: The GSM Quad-band/UMTS five-band/LTE/CA Mobile phone 9640 manufactured by Spectralink Corp. According to the declaration of changes, Radiated Emissions and AC Power line Conducted test needs to been performed. else results are cited from the initial model. The report number for initial model is I18N00673-WLAN

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part15	FCC CFR 47, Part 15, Subpart C:	
	15.205 Restricted bands of operation;	
	15.209 Radiated emission limits, general requirements;	2017
	15.247 Operation within the bands 902–928MHz,	
	2400-2483.5 MHz, and 5725-5850 MHz	
ANSI C63.10	American National Standard of Procedures for Compliance	2013
	Testing of Unlicensed Wireless Devices	2013
RSS-247	Spectrum Management and Telecommunications Radio	
	Standards Specification	Issue 2
	Digital Transmission Systems (DTSs), Frequency Hopping	February,
	Systems (FHSs) and License-Exempt Local Area Network	2017
	(LE-LAN) Devices	
RSS-Gen	Spectrum Management and Telecommunications Radio	Issue 5
	Standards Specification	April,
	General Requirements for Compliance of Radio Apparatus	2018
KDB 662911	D01 Multiple Transmitter Output	v02r01

5. Test Results

5.1. Summary of Test Results

No	Test cases	Sub-clause of Part 15C	Sub-clause of IC	Verdict
0	Antenna Requirement	15.203	/	Р
4	Radiated Emission	15.247, 15.205,	RSS-247 section 5.5/	P
'	Radiated Effilssion	15.209	RSS-Gen section 6.13	r

See ANNEX A for details.

5.2. Statements

SAICT has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.1 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.

5.3. Terms used in the result table

Terms used in Verdict column

Р	Pass
NA	Not Available
F	Fail

Abbreviations

AC	Alternating Current
AFH	Adaptive Frequency Hopping
BW	Band Width
E.I.R.P.	equivalent isotropic radiated power
ISM	Industrial, Scientific and Medical
R&TTE	Radio and Telecommunications Terminal Equipment
RF	Radio Frequency
Tx	Transmitter

5.4. <u>Laboratory Environment</u>

Semi-anechoic chamber did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 15 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 4 Ω
Normalised site attenuation (NSA)	< ±4 dB, 3 m distance, from 30 to 1000 MHz

Conducted shielded room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. =20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-10000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 4 Ω

Fully-anechoic chamber did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 15 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 4 Ω
Voltage Standing Wave Ratio (VSWR)	≤ 6 dB, from 1 to 18 GHz, 3 m distance
Uniformity of field strength	Between 0 and 6 dB, from 80 to 6000 MHz

6. Test Facilities Utilized

Radiated test system

No.	Equipment	Model	Serial	Manufacturer	Calibration	Calibration
			Number		Due date	Period
1	Chamber	FACT3-2.0	1285	ETS-Lindgren	2020.07.20	3 years
2	Test Receiver	ESR7	101676	Rohde & Schwarz	2018.11.29	1 year
3	Spectrum Analyser	FSV40	101192	Rohde & Schwarz	2019.05.21	1 year
4	BiLog Antenna	3142E	00224831	ETS-Lindgren	2021.05.17	3 years
5	Horn Antenna	3117	00066577	ETS-Lindgren	2019.04.05	3 years
6	Loop Antenna	HLA6120	35779	TESEQ	2019.05.02	3 years
7	Horn Antenna	QSH-SL-1	17013	Q-par	2020.01.15	3 years
		8-26-S-20				,

Test software

No.	Equipment	Manufacturer	Version
1	EMC32	Rohde & Schwarz	10.01.00

EUT is engineering software provided by the customer to control the transmitting signal. The EUT was programmed to be in continuously transmitting mode.

Anechoic Chamber

Fully anechoic Chamber by ETS-Lindgren.

7. Measurement Uncertainty

Test Name	Uncertainty	
Transmitter Spurious Emission - Radiated	9kHz≤f≤30MHz	1.84dB
	30MHz≤f≤1GHz	4.90dB
	1GHz≤f≤18GHz	5.12dB
	18GHz≤f≤40GHz	4.66dB

ANNEX A: Detailed Test Results

A.0 Antenna requirement

Measurement Limit:

Standard	Requirement
FCC CRF Part 15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Conclusion: The Directional gains of antenna used for transmitting are 0.5dBi(ANT0) and 0.6dBi(ANT1).The RF transmitter uses an integrate antenna without connector.

A.1 Radiated Emission

Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247, 15.205, 15.209 &	20dP halow pook output power	
RSS-247 Section 5.5/RSS-Gen 6.13	20dB below peak output power	

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission (MHz)	Field strength(µV/m)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Condition:

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

•	•	3
Frequency of emission	RBW/VBW	Sweep Time(s)
(MHz)		
30-1000	120kHz/300kHz	5
1000-4000	1MHz/3MHz	15
4000-18000	1MHz/3MHz	40
18000-26500	1MHz/3MHz	20

Note:

According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band below 30MHz. Therefore, the measurement starts from 30MHz to tenth harmonic.

The measurement results include the horizontal polarization and vertical polarization measurements.

Measurement Results:

SISO (Antenna 0):

Mode	Channel	Frequency Range	Test Results	Conclusion
	CH 1	1 GHz ~18 GHz	Fig.1	Р
	CH 6	1 GHz ~18 GHz	Fig.2	Р
802.11b	CH 11	1 GHz ~18 GHz	Fig.3	Р
	Restricted Band (CH1)	2.38 GHz ~ 2.45 GHz	Fig.4	Р
	Restricted Band (CH11)	2.45 GHz ~ 2.5 GHz	Fig.5	Р
	CH 1	1 GHz ~18 GHz	Fig.6	Р
	CH 6	1 GHz ~18 GHz	Fig.7	Р
802.11g	CH 11	1 GHz ~18 GHz	Fig.8	Р
	Restricted Band (CH1)	2.38 GHz ~ 2.45 GHz	Fig.9	Р
	Restricted Band (CH11)	2.45 GHz ~ 2.5 GHz	Fig.10	Р
	CH 1	1 GHz ~18 GHz	Fig.11	Р
000 115	CH 6	1 GHz ~18 GHz	Fig.12	Р
802.11n HT20	CH 11	1 GHz ~18 GHz	Fig.13	Р
ПІ20	Restricted Band (CH1)	2.38 GHz ~ 2.45 GHz	Fig.14	Р
	Restricted Band (CH11)	2.45 GHz ~ 2.5 GHz	Fig.15	Р
	CH 3	1 GHz ~18 GHz	Fig.16	Р
802.11n	CH 6	1 GHz ~18 GHz	Fig.17	Р
HT40	CH 9	1 GHz ~18 GHz	Fig.18	Р
П140	Restricted Band (CH3)	2.38 GHz ~ 2.45 GHz	Fig.19	Р
	Restricted Band (CH9)	2.45 GHz ~ 2.5 GHz	Fig.20	Р
		9 kHz ~30 MHz	Fig.21	Р
/	All Channels	30 MHz ~1 GHz	Fig.22	Р
		18 GHz ~26.5 GHz	Fig.23	Р

MIMO:

Mode	Channel	Frequency Range	Test Results	Conclusion
	CH 1	1 GHz ~18 GHz	Fig.24	Р
000 115	CH 6	1 GHz ~18 GHz	Fig.25	Р
802.11n HT20	CH 11	1 GHz ~18 GHz	Fig.26	Р
11120	Restricted Band (CH1)	2.38 GHz ~ 2.45 GHz	Fig.27	Р
	Restricted Band (CH11)	2.45 GHz ~ 2.5 GHz	Fig.28	Р
	CH 3	1 GHz ~18 GHz	Fig.29	Р
802.11n	CH 6	1 GHz ~18 GHz	Fig.30	Р
HT40	CH 9	1 GHz ~18 GHz	Fig.31	Р
11140	Restricted Band (CH3)	2.38 GHz ~ 2.45 GHz	Fig.32	Р
	Restricted Band (CH9)	2.45 GHz ~ 2.5 GHz	Fig.33	Р
		9 kHz ~30 MHz	Fig.34	Р
/	All Channels	30 MHz ~1 GHz	Fig.35	Р
		18 GHz ~26.5 GHz	Fig.36	Р

Worst-Case Result: 802.11b CH6 (1-18GHz)

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB)
12544.000000	56.60	74.00	17.40	Н	20.0
14555.500000	56.96	74.00	17.04	Н	20.4
15029.000000	57.01	74.00	16.99	Н	20.0
15730.500000	58.08	74.00	15.92	Н	21.1
16647.000000	59.09	74.00	14.91	Н	22.4
17738.000000	57.25	74.00	16.75	Н	22.8

Frequency	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB)
12433.500000	44.68	54.00	9.32	Н	19.4
12891.500000	45.11	54.00	8.89	Н	19.9
13987.000000	45.29	54.00	8.71	Н	19.6
14689.500000	46.16	54.00	7.84	Н	20.7
15670.000000	47.07	54.00	6.93	Н	21.3
16647.000000	46.94	54.00	7.06	Н	22.4

802.11g CH1 (1GHz-18GHz)

Frequency (MHz)	MaxPeak (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB)
12912.000000	56.30	74.00	17.70	Н	20.0
13632.500000	55.45	74.00	18.55	Н	19.1
14839.000000	57.20	74.00	16.81	Н	20.8
15674.500000	58.21	74.00	15.79	Н	21.3
16607.500000	58.67	74.00	15.33	Н	22.8
17879.000000	56.55	74.00	17.45	Н	23.7

Frequency	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB)
12889.500000	44.80	54.00	9.20	Н	19.9
14000.500000	44.85	54.00	9.15	Н	19.6
14696.500000	45.71	54.00	8.29	Н	20.7
15658.500000	46.92	54.00	7.08	Н	21.3
16637.000000	46.88	54.00	7.12	Н	22.5
17702.000000	45.63	54.00	8.37	Н	22.9

802.11n HT20 CH1 (1GHz-18GHz)

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB)
12850.500000	56.00	74.00	18.00	Н	19.7
13929.000000	56.72	74.00	17.28	Н	19.7
14539.000000	56.45	74.00	17.55	Н	20.4
15027.500000	56.18	74.00	17.82	Н	20.0
16644.000000	57.12	74.00	16.88	Н	22.4
17962.500000	56.51	74.00	17.49	Н	23.3

Frequency	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB)
12893.000000	44.86	54.00	9.14	Н	19.9
13952.500000	44.38	54.00	9.62	Н	19.7
14560.500000	45.19	54.00	8.81	Н	20.4
15574.500000	45.12	54.00	8.88	Н	21.0
16592.000000	46.38	54.00	7.62	Н	22.8
17700.000000	45.46	54.00	8.54	Н	22.9

802.11n HT40 CH3 (1GHz-18GHz)

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB)
12891.000000	55.70	74.00	18.30	Н	19.9
13891.500000	55.62	74.00	18.38	Н	19.8
14678.000000	57.45	74.00	16.55	Н	20.7
16050.500000	57.26	74.00	16.74	Н	21.8
16963.000000	57.35	74.00	16.65	Н	22.8
17695.000000	56.72	74.00	17.28	Н	22.9

Frequency	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB)
12899.000000	44.49	54.00	9.51	Н	20.0
13949.500000	44.33	54.00	9.67	Н	19.7
14682.000000	45.20	54.00	8.80	Н	20.7
15657.000000	46.31	54.00	7.69	Н	21.3
16594.500000	46.14	54.00	7.86	Н	22.8
17703.000000	45.59	54.00	8.41	Н	22.9

Note:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and Antenna Factor, the gain of the preamplifier, the cable loss. P_{Mea} is the field strength recorded from the instrument.

The measurement results are obtained as described below:

Result= P_{Mea} +Cable Loss +Antenna Factor-Gain of the preamplifier.

See below for test graphs.

Conclusion: PASS

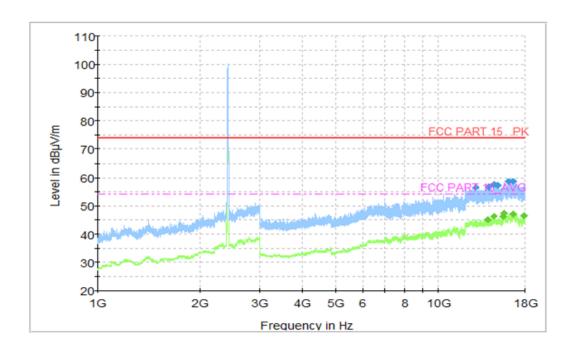


Fig.1 Radiated Spurious Emission (802.11b, CH1, 1 GHz-18GHz)

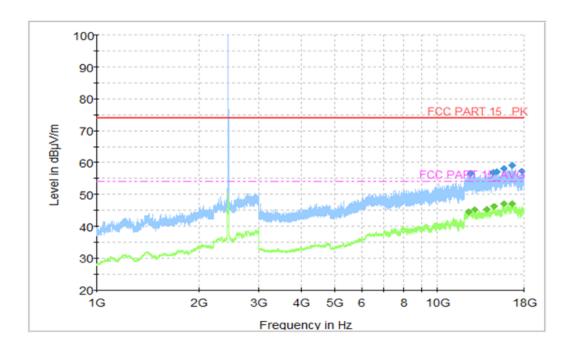


Fig.2 Radiated Spurious Emission (802.11b, CH6, 1 GHz-18GHz)

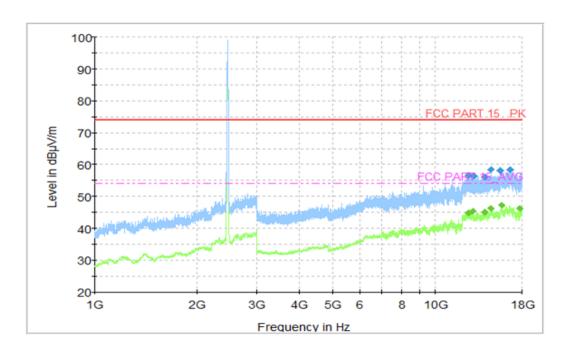


Fig.3 Radiated Spurious Emission (802.11b, CH11, 1 GHz-18GHz)

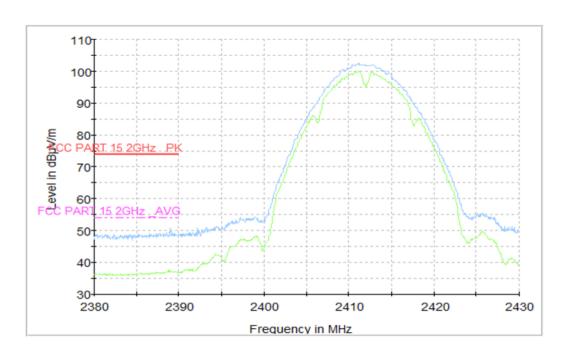


Fig.4 Radiated Restricted Band (802.11b, CH1, 2.38GHz~2.45GHz)

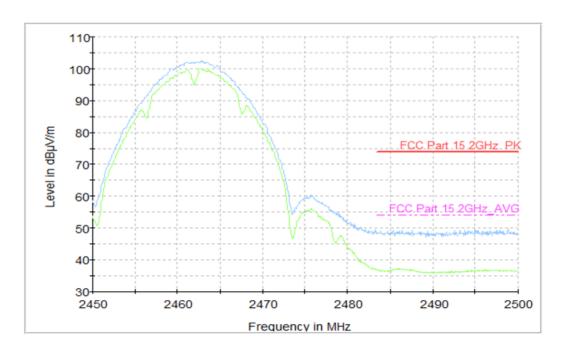


Fig.5 Radiated Restricted Band (802.11b, CH11, 2.45GHz~2.5GHz)

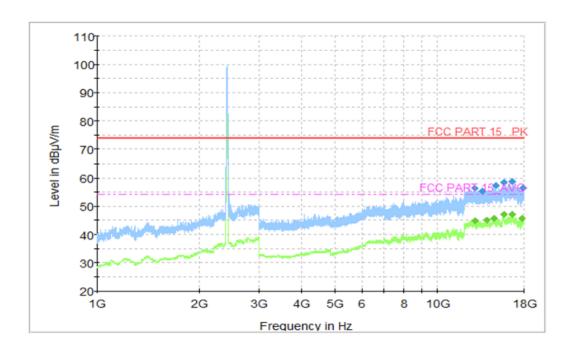


Fig.6 Radiated Spurious Emission (802.11g, CH1, 1 GHz-18 GHz)

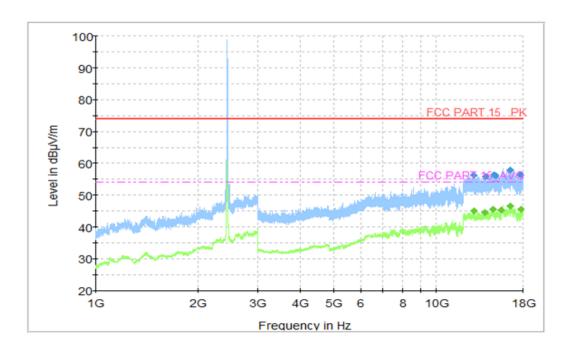


Fig.7 Radiated Spurious Emission (802.11g, CH6, 1 GHz-18 GHz)

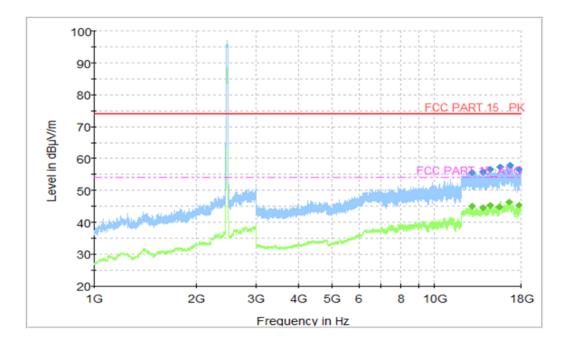


Fig.8 Radiated Spurious Emission (802.11g, CH11, 1 GHz-18 GHz)

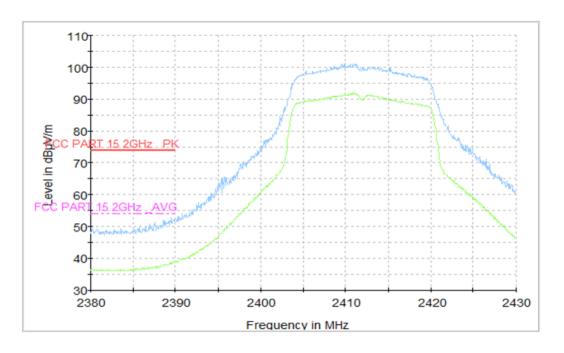


Fig.9 Radiated Restricted Band (802.11g, CH1, 2.38GHz~2.45GHz)

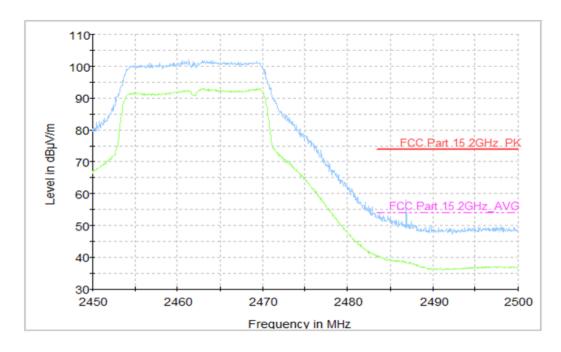


Fig.10 Radiated Restricted Band (802.11g, CH11, 2.45GHz~2.5GHz)

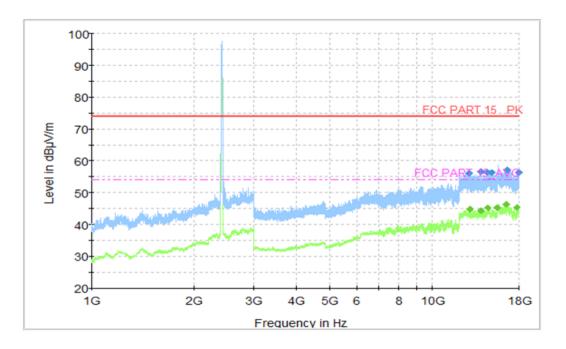


Fig.11 Radiated Spurious Emission (802.11n HT20, CH1, 1 GHz-18 GHz)

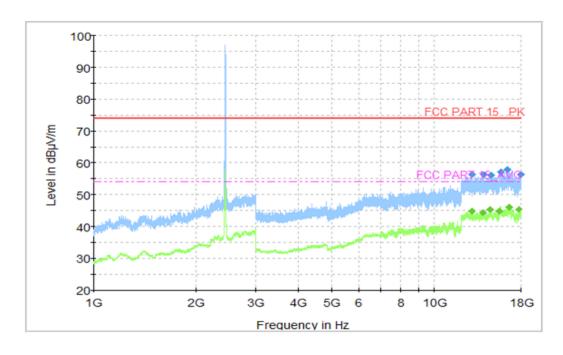


Fig.12 Radiated Spurious Emission (802.11n HT20, CH6, 1 GHz-18 GHz)

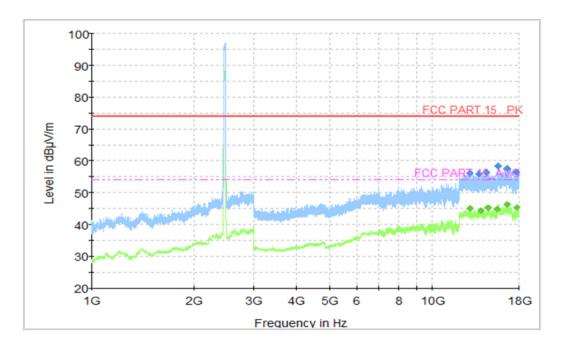


Fig.13 Radiated Spurious Emission (802.11n HT20, CH11, 1 GHz-18 GHz)

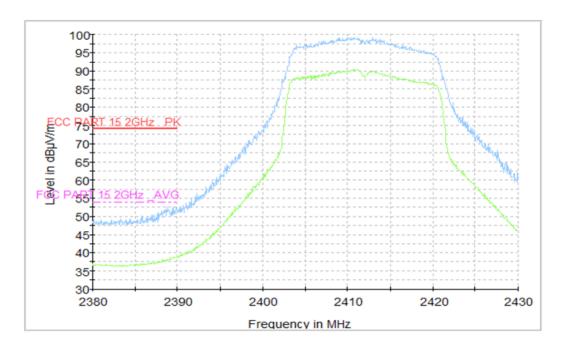


Fig.14 Radiated Restricted Band (802.11n HT20, CH1, 2.38GHz~2.45GHz)

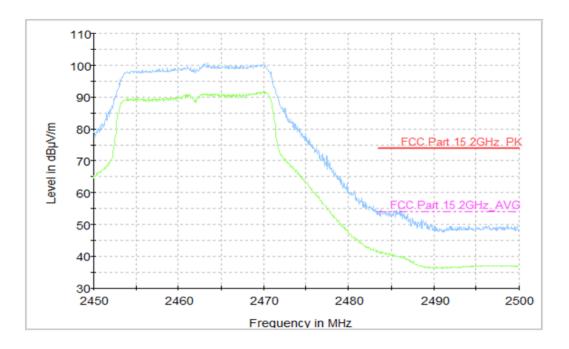


Fig.15 Radiated Restricted Band (802.11n HT20, CH11, 2.45GHz~2.5GHz)

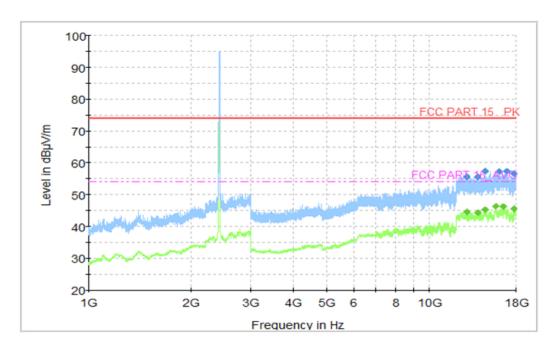


Fig.16 Radiated Spurious Emission (802.11n HT40, CH3, 1 GHz-18 GHz)

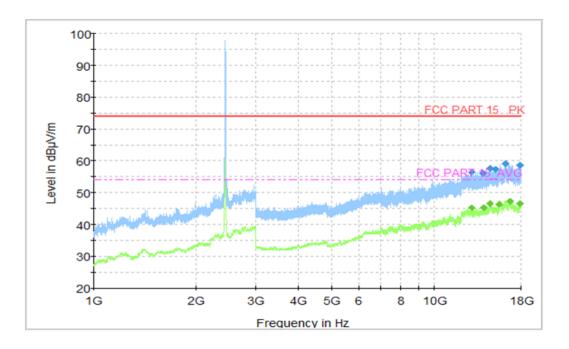


Fig.17 Radiated Spurious Emission (802.11n HT40, CH6, 1 GHz-18 GHz)

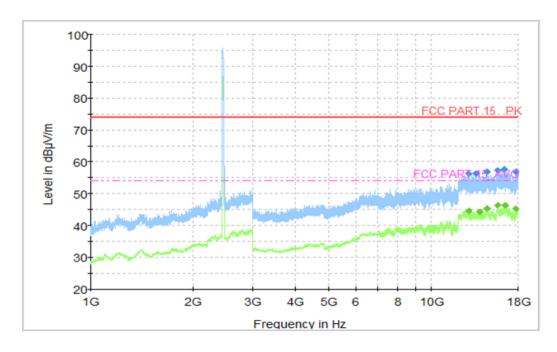


Fig.18 Radiated Spurious Emission (802.11n HT40, CH9, 1 GHz-18 GHz)

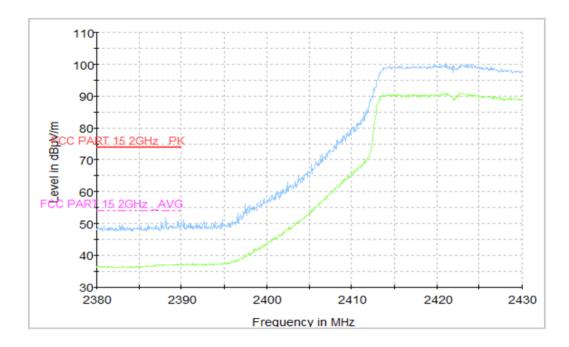


Fig.19 Radiated Restricted Band (802.11n HT40, CH3, 2.38GHz~2.45GHz)

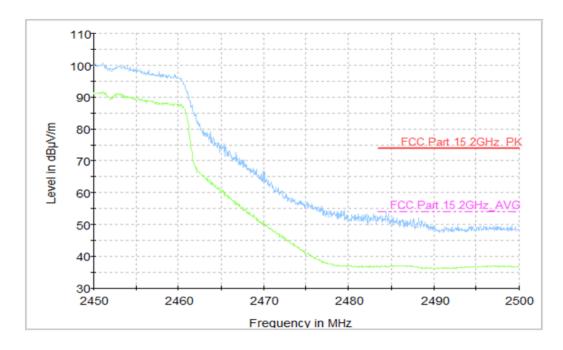


Fig.20 Radiated Restricted Band (802.11n HT40, CH9, 2.45GHz~2.5GHz)



Fig.21 Radiated Spurious Emission (All Channels, 9KHz-30 MHz)

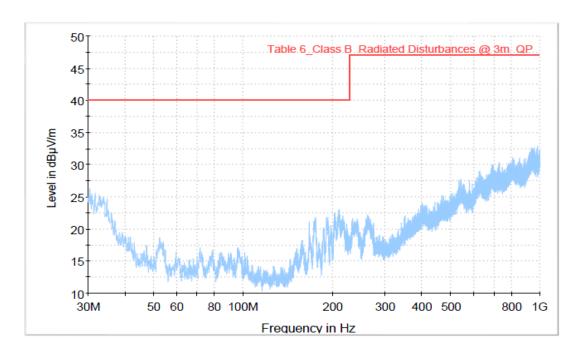


Fig.22 Radiated Spurious Emission (All Channels, 30MHz-1 GHz)

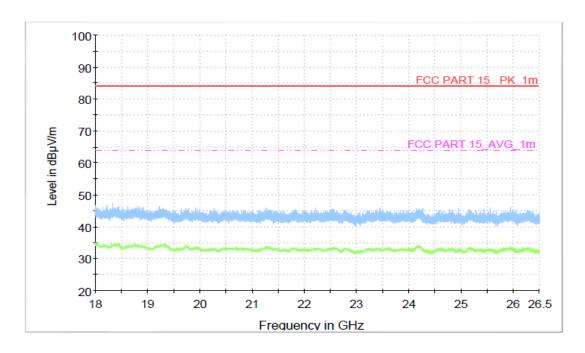


Fig.23 Radiated Spurious Emission (All Channels, 18 GHz-26.5 GHz)

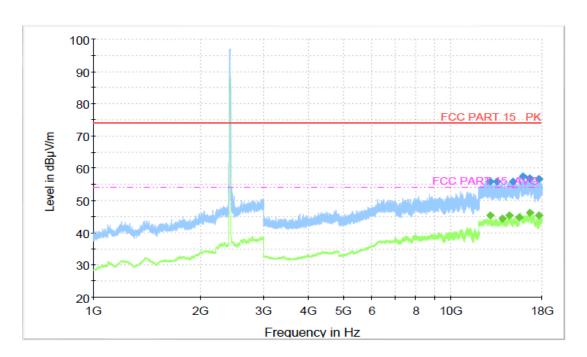


Fig.24 Radiated Spurious Emission (802.11n HT20, CH1, 1 GHz-18 GHz)

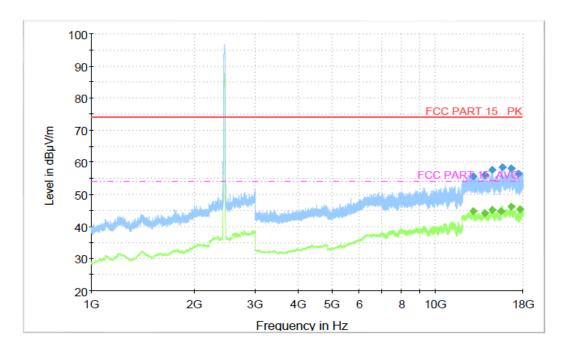


Fig.25 Radiated Spurious Emission (802.11n HT20, CH6, 1 GHz-18 GHz)

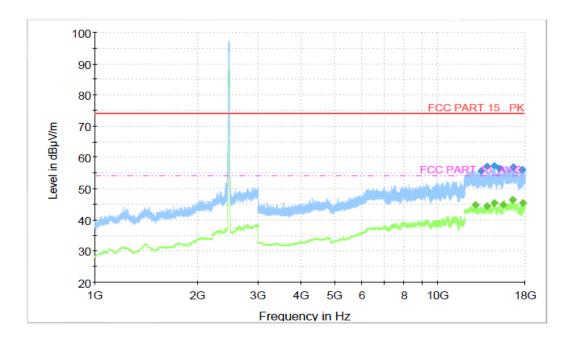


Fig.26 Radiated Spurious Emission (802.11n HT20, CH11, 1 GHz-18 GHz)

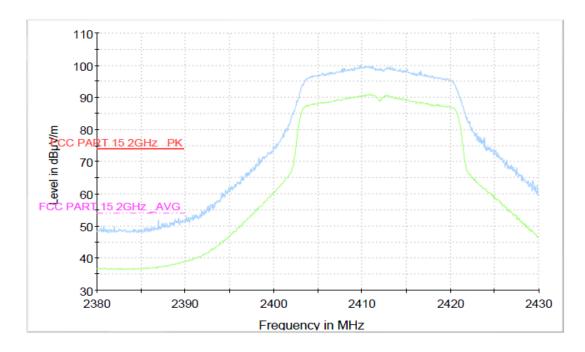


Fig.27 Radiated Restricted Band (802.11n HT20, CH1, 2.38GHz~2.45GHz)

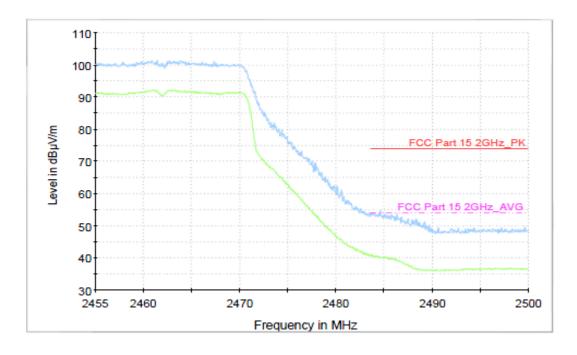


Fig.28 Radiated Restricted Band (802.11n HT20, CH11, 2.45GHz~2.5GHz)

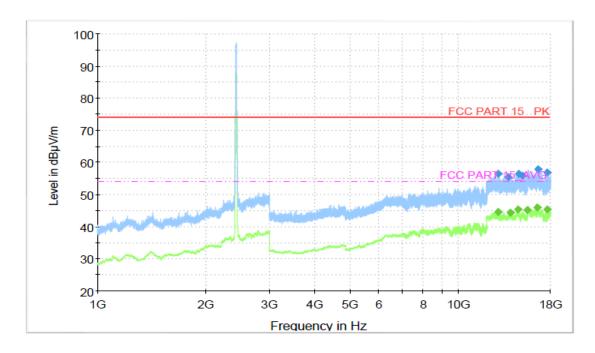


Fig.29 Radiated Spurious Emission (802.11n HT40, CH3, 1 GHz-18 GHz)

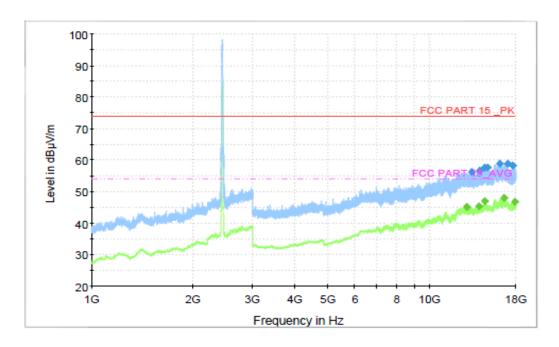


Fig.30 Radiated Spurious Emission (802.11n HT40, CH6, 1 GHz-18 GHz)

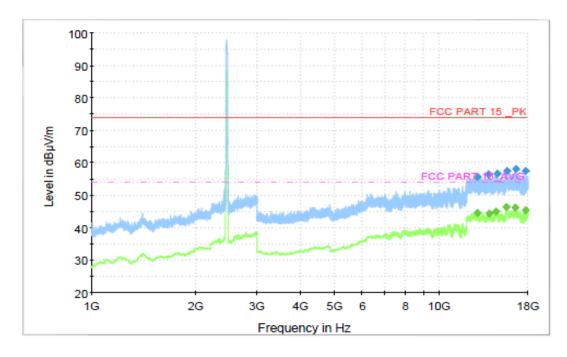


Fig.31 Radiated Spurious Emission (802.11n HT40, CH9, 1 GHz-18 GHz)

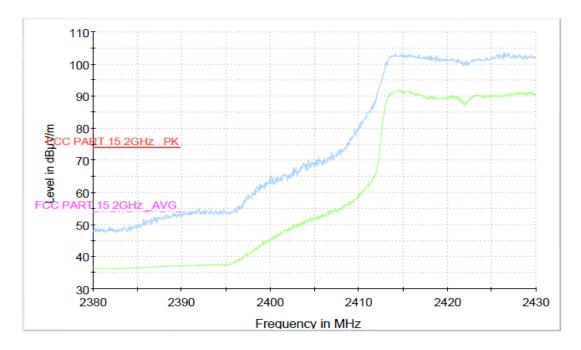


Fig.32 Radiated Restricted Band (802.11n HT40, CH1, 2.38GHz~2.45GHz)

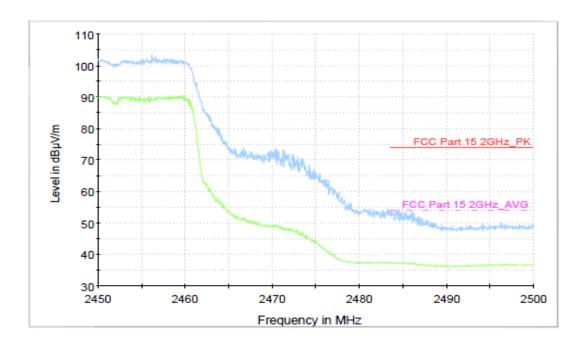


Fig.33 Radiated Restricted Band (802.11n HT40, CH11, 2.45GHz~2.5GHz)

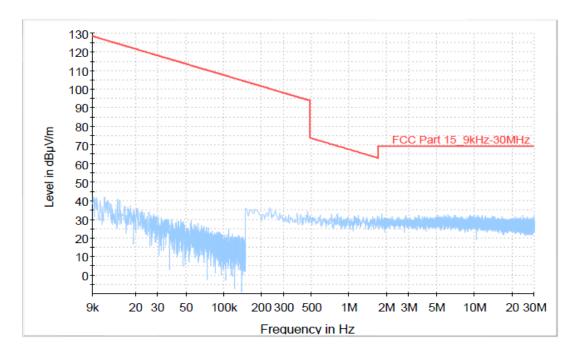


Fig.34 Radiated Spurious Emission (All Channels, 9KHz-30 MHz)

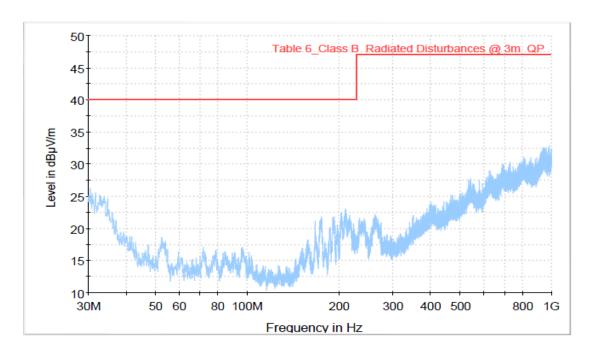


Fig.35 Radiated Spurious Emission (All Channels, 30MHz-1 GHz)

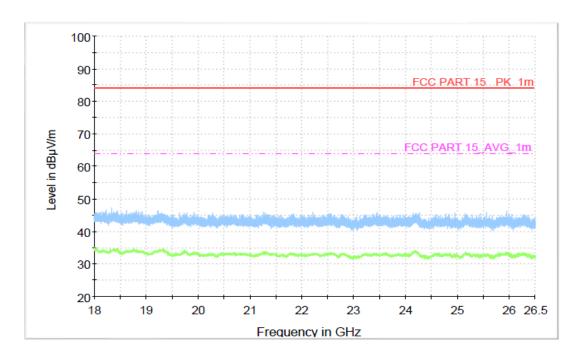


Fig.36 Radiated Spurious Emission (All Channels, 18 GHz-26.5 GHz)

END OF REPORT