FCC PART 15C & RSS 247 TEST REPORT No. I18N00939-BLE for **Spectralink Corp** Wifi/BT handset 9540 with **Hardware Version: PIO** Software Version: vF03 FCC ID: IYG95XX IC: 2128B-95XX Issued Date: 2018-09-21 Designation Number: CN1210 ISED Assigned Code: 23289 Note: The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT. #### **Test Laboratory:** Shenzhen Academy of Information and Communications Technology Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518026. Tel: +86(0)755-33322000, Fax: +86(0)755-33322001, Email:yewu@caict.ac.cn.www.cszit.com # **REPORT HISTORY** | Report Number | Revision | Description | Issue Date | |---------------|----------|-------------|------------| | I18N00939-BLE | Rev.0 | 1st edition | 2018-09-21 | # **CONTENTS** | CONT | ENTS | 3 | |-------|--|----| | 1. TI | EST LABORATORY | 4 | | 1.1. | TESTING LOCATION | 4 | | 1.2. | TESTING ENVIRONMENT | | | 1.3. | Project data | 4 | | 1.4. | SIGNATURE | 4 | | 2. CI | LIENT INFORMATION | 5 | | 2.1. | APPLICANT INFORMATION | 5 | | 2.2. | MANUFACTURER INFORMATION | 5 | | 3. E(| QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) | 6 | | 3.1. | ABOUT EUT | 6 | | 3.2. | INTERNAL IDENTIFICATION OF EUT | 6 | | 3.3. | INTERNAL IDENTIFICATION OF AE | 6 | | 3.4. | GENERAL DESCRIPTION | 6 | | 4. RI | EFERENCE DOCUMENTS | 7 | | 4.1. | REFERENCE DOCUMENTS FOR TESTING | 7 | | 5. TI | EST RESULTS | 8 | | 5.1. | SUMMARY OF TEST RESULTS | 8 | | 5.2. | STATEMENTS | 8 | | 5.3. | TERMS USED IN THE RESULT TABLE | 8 | | 5.4. | LABORATORY ENVIRONMENT | 9 | | 6. TI | EST FACILITIES UTILIZED | 10 | | 7. M | EASUREMENT UNCERTAINTY | 11 | | ANNE | X A: DETAILED TEST RESULTS | 12 | | A.0 A | Antenna requirement | 12 | | A.17 | Transmitter Spurious Emission - Radiated | 13 | ### 1. Test Laboratory ### 1.1. Testing Location Location: Shenzhen Academy of Information and Communications Technology Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong Province, China Postal Code: 518026 Telephone: +86(0)755-33322000 Fax: +86(0)755-33322001 ### 1.2. Testing Environment Normal Temperature: $15-30^{\circ}$ C Relative Humidity: $35-60^{\circ}$ ### 1.3. Project data Testing Start Date: 2018-08-09 Testing End Date: 2018-09-20 ### 1.4. Signature An Ran (Prepared this test report) Tang Weisheng (Reviewed this test report) **Zhang Bojun** (Approved this test report) # 2. Client Information ### 2.1. Applicant Information Company Name: Spectralink Corp Address: 2560 55th Street Boulder, CO 80301 USA Contact Person Andrew Duncan E-Mail Andrew.duncan@spectralink.com Telephone: +1 720-925-0480 Fax: / ### 2.2. Manufacturer Information Company Name: Spectralink Corp Address: 2560 55th Street Boulder, CO 80301 USA Contact Person Andrew Duncan E-Mail Andrew.duncan@spectralink.com Telephone: +1 720-925-0480 Fax: / ### 3. Equipment Under Test (EUT) and Ancillary Equipment (AE) ### 3.1. About EUT Description Wifi/BT handset Model Name 9540 Market Name Versity Frequency Range 2400MHz~2483.5MHz Type of Modulation GFSK Number of Channels 40 Antenna Type Integrated Antenna Gain 0.5dBi Power Supply 3.7V DC by Battery FCC ID IYG95XX IC number 21288-95XX Condition of EUT as received No abnormality in appearance Note: Components list, please refer to documents of the manufacturer. ### 3.2. Internal Identification of EUT | EUT ID* | IMEI | HW Version | SW Version | Receive Date | |---------|-----------------|-------------------|------------|--------------| | EUT1 | 357023090001067 | PIO | vF03 | 2018-08-09 | ^{*}EUT ID: is used to identify the test sample in the lab internally. #### 3.3. Internal Identification of AE | AE ID* | Description | Mode | Manufacturer | | |--------|-------------------|-------------------|---------------------------------|--| | AE1 | Switching Adapter | ASUC71w-050912300 | Aquil Star Precision Industrial | | | | | | (ShenZhen) Co., Ltd | | ^{*}AE ID: is used to identify the test sample in the lab internally. #### 3.4. General Description The Equipment Under Test (EUT) is a model of Wifi/BT handset with integrated antenna. It consists of normal options: travel charger, USB cable. Manual and specifications of the EUT were provided to fulfil the test. Samples undergoing test were selected by the client. Note: The Wifi/BT handset 9540 manufactured by Spectralink Corp. According to the declaration of changes, Transmitter Spurious Emission - Radiated test needs to been performed. else results are cited from the initial model. The report number for initial model is I18N00940-BLE # 4. Reference Documents ### 4.1. Reference Documents for testing The following documents listed in this section are referred for testing. | Reference | Title | Version | |-----------------|---|------------------------------| | FCC Part15 | FCC CFR 47, Part 15, Subpart C: | | | | 15.205 Restricted bands of operation; | | | | 15.209 Radiated emission limits, general requirements; | 2017 | | | 15.247 Operation within the bands 902–928MHz, | | | | 2400-2483.5 MHz, and 5725-5850 MHz | | | ANSI C63.10 | American National Standard of Procedures for Compliance | 2013 | | | Testing of Unlicensed Wireless Devices | | | D00 047 | On a strong Management and Talagement in the Dadie | 1 | | RSS-247 | Spectrum Management and Telecommunications Radio | Issue 2 | | RSS-24/ | Standards Specification | February, | | KSS-24 <i>1</i> | | | | KSS-24 <i>1</i> | Standards Specification | February, | | KSS-24 <i>1</i> | Standards Specification Digital Transmission Systems (DTSs), Frequency Hopping | February, | | RSS-247 | Standards Specification Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network | February, | | | Standards Specification Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices | February,
2017 | | | Standards Specification Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices Spectrum Management and Telecommunications Radio | February,
2017
Issue 5 | ### 5. Test Results ### 5.1. Summary of Test Results | No | Test cases | Sub-clause of IC Sub-clause of IC | | Verdict | |----|-------------------------------|-----------------------------------|----------------------|---------| | 0 | Antenna Requirement | 15.203 | / | Р | | 1 | Transmitter Spurious Emission | 15.247, 15.205, | RSS-247 section 5.5/ | P | | ' | - Radiated | 15.209 | RSS-Gen section 6.13 | | See ANNEX A for details. ### 5.2. Statements SAICT has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.1 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2. ### 5.3. Terms used in the result table Terms used in Verdict column | Р | Pass | |----|---------------| | NA | Not Available | | F | Fail | #### Abbreviations | AC | Alternating Current | | |----------|---|--| | AFH | Adaptive Frequency Hopping | | | BW | Band Width | | | E.I.R.P. | equivalent isotropic radiated power | | | ISM | Industrial, Scientific and Medical | | | R&TTE | Radio and Telecommunications Terminal Equipment | | | RF | Radio Frequency | | | Tx | Transmitter | | ### 5.4. <u>Laboratory Environment</u> Semi-anechoic chamber did not exceed following limits along the EMC testing: | Temperature | Min. = 15 °C, Max. = 35 °C | |-----------------------------------|--| | Relative humidity | Min. = 15 %, Max. = 75 % | | Shielding effectiveness | 0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB | | Electrical insulation | > 2MΩ | | Ground system resistance | < 4 Ω | | Normalised site attenuation (NSA) | < ±4 dB, 3 m distance, from 30 to 1000 MHz | ### **Conducted shielded room** did not exceed following limits along the EMC testing: | Temperature | Min. = 15 °C, Max. = 30 °C | |--------------------------|---| | Relative humidity | Min. =20 %, Max. = 75 % | | Shielding effectiveness | 0.014MHz-1MHz> 60 dB; 1MHz-10000MHz>90 dB | | Electrical insulation | > 2MΩ | | Ground system resistance | < 4 Ω | ### Fully-anechoic chamber did not exceed following limits along the EMC testing: | Temperature | Min. = 15 °C, Max. = 35 °C | |------------------------------------|---| | Relative humidity | Min. = 15 %, Max. = 75 % | | Shielding effectiveness | 0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB | | Electrical insulation | > 2MΩ | | Ground system resistance | < 4 Ω | | Voltage Standing Wave Ratio (VSWR) | ≤ 6 dB, from 1 to 18 GHz, 3 m distance | | Uniformity of field strength | Between 0 and 6 dB, from 80 to 6000 MHz | # 6. Test Facilities Utilized ### Radiated emission test system | No. | Equipment | Model | Serial
Number | Manufacturer | Calibration Due date | Calibration
Period | |-----|-------------------|-----------------------|------------------|-----------------|----------------------|-----------------------| | 1 | Chamber | FACT3-2.0 | 1285 | ETS-Lindgren | 2020.07.20 | 3 years | | 2 | Test Receiver | ESR7 | 101676 | Rohde & Schwarz | 2018.11.29 | 1 year | | 3 | Spectrum Analyser | FSV40 | 101192 | Rohde & Schwarz | 2019.05.21 | 1 year | | 4 | BiLog Antenna | 3142E | 00224831 | ETS-Lindgren | 2021.05.17 | 3 years | | 5 | Horn Antenna | 3117 | 00066577 | ETS-Lindgren | 2019.04.05 | 3 years | | 6 | Loop Antenna | HLA6120 | 35779 | TESEQ | 2019.05.02 | 3 years | | 7 | Horn Antenna | QSH-SL-1
8-26-S-20 | 17013 | Q-par | 2020.01.15 | 3 years | #### **Test software** | No. | Equipment | Manufacturer | Version | | |-----|-----------|-----------------|----------|--| | 1 | EMC32 | Rohde & Schwarz | 10.01.00 | | EUT is engineering software provided by the customer to control the transmitting signal. The EUT was programmed to be in continuously transmitting mode. ### **Anechoic chamber** Fully anechoic chamber by ETS-Lindgren # 7. Measurement Uncertainty | Test Name | Uncertainty | | |--|---------------|--------| | | 9kHz≤f≤30MHz | 1.84dB | | Transmitter Spurious Emission - Radiated | 30MHz≤f≤1GHz | 4.90dB | | 1. Transmitter Spunous Emission - Radiated | 1GHz≤f≤18GHz | 5.12dB | | | 18GHz≤f≤40GHz | 4.66dB | # **ANNEX A: Detailed Test Results** ### A.0 Antenna requirement #### **Measurement Limit:** | Standard | Requirement | |------------------------|--| | FCC CRF Part
15.203 | An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded. | Conclusion: The Directional gains of antenna used for transmitting is 0.5 dBi. The RF transmitter uses an integrate antenna without connector. ### A.1 Transmitter Spurious Emission - Radiated #### **Measurement Limit:** | Standard | Limit | |--|------------------------------| | FCC 47 CFR Part 15.247, 15.205, 15.209 & | 20dD below peak output newer | | RSS-247 section 5.5/RSS-Gen section 6.13 | 20dB below peak output power | In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)). #### Limit in restricted band: | Frequency of emission | Field etropath(u\//m) | Measurement | |-----------------------|-----------------------|------------------| | (MHz) | Field strength(µV/m) | distance(meters) | | 0.009-0.490 | 2400/F(kHz) | 300 | | 0.490-1.705 | 24000/F(kHz) | 30 | | 1.705-30.0 | 30 | 30 | | 30-88 | 100 | 3 | | 88-216 | 150 | 3 | | 216-960 | 200 | 3 | | Above 960 | 500 | 3 | #### **Test Condition:** The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations. | Frequency of emission | RBW/VBW | Sweep Time(s) | |-----------------------|---------------|---------------| | (MHz) | | | | 30-1000 | 120kHz/300kHz | 5 | | 1000-4000 | 1MHz/3MHz | 15 | | 4000-18000 | 1MHz/3MHz | 40 | | 18000-26500 | 1MHz/3MHz | 20 | **Note**: According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band from 9kHz to 30MHz. Therefore, the measurement starts from 30MHz to tenth harmonic. The measurement results include the horizontal polarization and vertical polarization measurements. ### **Measurement Results:** | | 0 | 1 GHz ~3 GHz | Fig.1 | Р | |------|-----------------------|---------------------|--------|---| | | U | 3 GHz ~18 GHz | Fig.2 | Р | | | | 9 kHz ~30 MHz | Fig.3 | Р | | | | 30 MHz ~1 GHz | Fig.4 | Р | | | 19 | 1 GHz ~3 GHz | Fig.5 | Р | | GFSK | | 3 GHz ~18 GHz | Fig.6 | Р | | | | 18 GHz~ 26.5 GHz | Fig.7 | Р | | | 39 | 1 GHz ~3 GHz | Fig.8 | Р | | | 39 | 3 GHz ~18 GHz | Fig.9 | Р | | | Restricted Band(CH0) | 2.38 GHz ~ 2.45 GHz | Fig.10 | Р | | | Restricted Band(CH39) | 2.45 GHz ~ 2.5 GHz | Fig.11 | Р | ### GFSK CH0 (3-18GHz) | Frequency
(MHz) | MaxPeak
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Pol | Corr.
(dB) | |--------------------|---------------------|-------------------|----------------|-----|---------------| | 14875.000000 | 48.18 | 74.00 | 25.82 | Н | 12.6 | | 15952.000000 | 49.01 | 74.00 | 24.99 | V | 14.9 | | 16380.500000 | 49.99 | 74.00 | 24.01 | V | 15.4 | | 16886.500000 | 49.96 | 74.00 | 24.04 | V | 16.3 | | 17150.000000 | 50.32 | 74.00 | 23.68 | Н | 16.3 | | 17640.500000 | 50.15 | 74.00 | 23.85 | V | 16.8 | | Frequency
(MHz) | Average
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Pol | Corr.
(dB) | |--------------------|---------------------|-------------------|----------------|-----|---------------| | 14509.000000 | 35.67 | 54.00 | 18.33 | V | 12.9 | | 15619.000000 | 35.54 | 54.00 | 18.46 | Н | 14.1 | | 16080.000000 | 36.22 | 54.00 | 17.78 | V | 15.1 | | 16709.000000 | 37.90 | 54.00 | 16.10 | Н | 16.4 | | 17290.000000 | 37.64 | 54.00 | 16.36 | V | 16.5 | | 17964.000000 | 38.40 | 54.00 | 15.60 | Н | 17.4 | ### **GFSK CH19 (3-18GHz)** | | <u> </u> | | | | | |--------------|----------|----------|--------|-----|-------| | Frequency | MaxPeak | Limit | Margin | Pol | Corr. | | (MHz) | (dBuV/m) | (dBuV/m) | (dB) | | (dB) | | 14794.000000 | 47.99 | 74.00 | 26.01 | V | 12.5 | | 15661.000000 | 48.18 | 74.00 | 25.82 | V | 14.0 | | 16025.500000 | 49.16 | 74.00 | 24.84 | V | 15.3 | | 16459.500000 | 49.39 | 74.00 | 24.61 | V | 15.7 | | 17133.000000 | 50.21 | 74.00 | 23.79 | Н | 16.2 | | 17569.000000 | 50.90 | 74.00 | 23.10 | Н | 16.9 | | Frequency | Average | Limit | Margin | Pol | Corr. | |--------------|----------|----------|--------|-----|-------| | (MHz) | (dBuV/m) | (dBuV/m) | (dB) | | (dB) | | 14563.000000 | 34.82 | 54.00 | 19.18 | Н | 12.7 | | 15194.500000 | 35.26 | 54.00 | 18.74 | Н | 13.3 | | 15882.500000 | 36.44 | 54.00 | 17.56 | V | 14.9 | | 16708.500000 | 37.86 | 54.00 | 16.14 | Н | 16.4 | | 17123.000000 | 37.61 | 54.00 | 16.39 | Н | 16.3 | | 17891.500000 | 38.55 | 54.00 | 15.45 | V | 17.7 | ### **GFSK CH39 (3-18GHz)** | Frequency | MaxPeak | Limit | Margin | Pol | Corr. | |--------------|----------|----------|--------|-----|-------| | (MHz) | (dBuV/m) | (dBuV/m) | (dB) | | (dB) | | 15553.500000 | 48.57 | 74.00 | 25.43 | V | 14.0 | | 16175.500000 | 49.84 | 74.00 | 24.16 | V | 15.5 | | 16675.500000 | 49.82 | 74.00 | 24.18 | V | 16.0 | | 17155.500000 | 50.23 | 74.00 | 23.77 | Н | 16.3 | | 17607.500000 | 50.26 | 74.00 | 23.74 | Н | 16.6 | | 17897.500000 | 51.98 | 74.00 | 22.02 | V | 17.6 | | Frequency | Average | Limit | Margin | Pol | Corr. | |--------------|----------|----------|--------|-----|-------| | (MHz) | (dBuV/m) | (dBuV/m) | (dB) | | (dB) | | 16032.000000 | 36.49 | 54.00 | 17.51 | Н | 15.3 | | 16403.500000 | 36.59 | 54.00 | 17.41 | Н | 15.4 | | 16691.000000 | 37.66 | 54.00 | 16.34 | V | 16.2 | | 17149.500000 | 37.66 | 54.00 | 16.34 | V | 16.4 | | 17578.000000 | 38.00 | 54.00 | 16.00 | V | 17.0 | | 17903.000000 | 38.28 | 54.00 | 15.72 | Н | 17.6 | ### Note: A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and Antenna Factor, the gain of the preamplifier, the cable loss. P_{Mea} is the field strength recorded from the instrument. The measurement results are obtained as described below: Result= P_{Mea} +Cable Loss +Antenna Factor-Gain of the preamplifier. See below for test graphs. **Conclusion: Pass** Fig.1 Radiated Spurious Emission (GFSK, Ch0, 1 GHz ~3 GHz) Fig.2 Radiated Spurious Emission (GFSK, Ch0, 3 GHz ~18 GHz) Fig.3 Radiated Spurious Emission (Ch19, 9 kHz-30 MHz) Fig.4 Radiated Spurious Emission (Ch19, 30 MHz-1 GHz) Fig.5 Radiated Spurious Emission (Ch19, 1 GHz- 3 GHz) Fig.6 Radiated Spurious Emission (Ch19, 3 GHz- 18 GHz) Fig.7 Radiated Spurious Emission (Ch19, 18 GHz-26.5 GHz) Fig.8 Radiated Spurious Emission (Ch39, 1 GHz-3 GHz) Fig.9 Radiated Spurious Emission (Ch39, 3 GHz-18 GHz) Fig.10 Radiated Band Edges (GFSK, Ch0, 2380GHz~2450GHz) Fig.11 Radiated Band Edges (GFSK, Ch39, 2450GHz~2500GHz) ***END OF REPORT***