

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.0 ± 6 %	4.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.6 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.7 ± 6 %	5.14 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		3.22

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.96 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.5 ± 6 %	5.45 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		2222

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.48 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.3 ± 6 %	5.59 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.69 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.5 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.0 ± 6 %	5.86 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		,

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.03 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	6.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	222	Canada (

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.95 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	6.29 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.66 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	47.1 Ω - 5.8 jΩ
Return Loss	- 23.6 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	50.5 Ω - 3.2 jΩ	
Return Loss	- 29.8 dB	

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	$49.0 \Omega + 2.5 j\Omega$
Return Loss	- 31.2 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	$50.0~\Omega + 0.6~\mathrm{j}\Omega$	
Return Loss	- 44.1 dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	$55.6 \Omega + 1.9 j\Omega$	
Return Loss	- 25.1 dB	

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	48.6 Ω - 3.4 jΩ	
Return Loss	- 28.6 dB	

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	49.6 Ω - 2.4 jΩ
Return Loss	- 32.3 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	$49.5 \Omega + 2.5 j\Omega$		
Return Loss	- 31.7 dB		

Certificate No: D5GHzV2-1238_Sep16

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	$50.8 \Omega + 2.5 j\Omega$	
Return Loss	- 31.7 dB	

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	$56.0 \Omega + 3.0 j\Omega$			
Return Loss	- 24.0 dB			

General Antenna Parameters and Design

Electrical Delay (one direction)	1.191 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 04, 2015

DASY5 Validation Report for Head TSL

Date: 21.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1238

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500

MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 4.54$ S/m; $\epsilon_r = 34.6$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5300 MHz; $\sigma = 4.63$ S/m; $\epsilon_r = 34.4$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5500 MHz; $\sigma = 4.83$ S/m; $\epsilon_r = 34.2$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 4.93$ S/m; $\epsilon_r = 34.0$; $\rho = 1000$ kg/m³

Medium parameters used: f = 5800 MHz; $\sigma = 5.14 \text{ S/m}$; $\varepsilon_r = 33.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.59, 5.59, 5.59); Calibrated: 30.06.2016, ConvF(5.14, 5.14, 5.14); Calibrated: 30.06.2016, ConvF(5.02, 5.02, 5.02); Calibrated: 30.06.2016, ConvF(4.89, 4.89, 4.89); Calibrated: 30.06.2016, ConvF(4.85, 4.85, 4.85); Calibrated: 30.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.35 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 7.76 W/kg; SAR(10 g) = 2.22 W/kgMaximum value of SAR (measured) = 17.9 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.80 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 31.1 W/kg

SAR(1 g) = 8.38 W/kg; SAR(10 g) = 2.4 W/kg

Maximum value of SAR (measured) = 19.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.90 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 31.9 W/kg

SAR(1 g) = 8.21 W/kg; SAR(10 g) = 2.34 W/kgMaximum value of SAR (measured) = 19.5 W/kg

Certificate No: D5GHzV2-1238_Sep16

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 71.51 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 32.8 W/kg

SAR(1 g) = 8.38 W/kg; SAR(10 g) = 2.39 W/kg

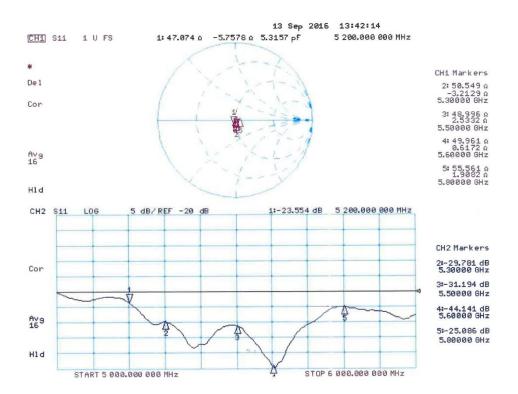
Maximum value of SAR (measured) = 20.0 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 69.07 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 32.5 W/kg


SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.26 W/kg

Maximum value of SAR (measured) = 19.4 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 20.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1238

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500

MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.45$ S/m; $\varepsilon_r = 47.5$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5300 MHz; $\sigma = 5.59 \text{ S/m}$; $\varepsilon_r = 47.3$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: f = 5500 MHz; $\sigma = 5.86 \text{ S/m}$; $\varepsilon_r = 47.0$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: f = 5600 MHz; $\sigma = 6.00 \text{ S/m}$; $\varepsilon_r = 46.8$; $\rho = 1000 \text{ kg/m}^3$

Medium parameters used: f = 5800 MHz; $\sigma = 6.29 \text{ S/m}$; $\varepsilon_r = 46.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.99, 4.99, 4.99); Calibrated: 30.06.2016, ConvF(4.75, 4.75, 4.75); Calibrated: 30.06.2016, ConvF(4.4, 4.4, 4.4); Calibrated: 30.06.2016, ConvF(4.35, 4.35, 4.35); Calibrated: 30.06.2016, ConvF(4.27, 4.27, 4.27); Calibrated: 30.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.67 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 7.48 W/kg; SAR(10 g) = 2.1 W/kg

Maximum value of SAR (measured) = 17.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.01 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 29.4 W/kg

SAR(1 g) = 7.69 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 18.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.20 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 32.4 W/kg

SAR(1 g) = 8.03 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 19.2 W/kg

Certificate No: D5GHzV2-1238_Sep16

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

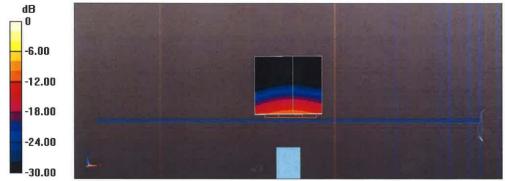
Reference Value = 66.47 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 32.7 W/kg

SAR(1 g) = 7.95 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 19.1 W/kg

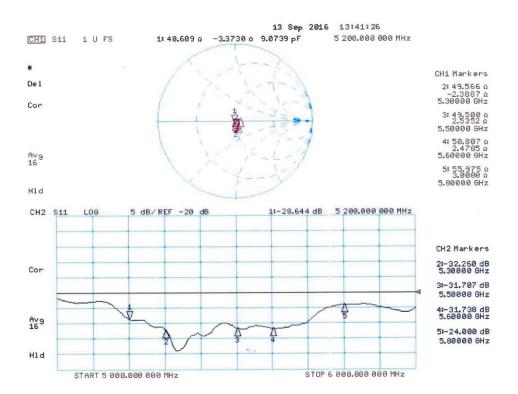
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.40 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 33.2 W/kg

SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.13 W/kg


Maximum value of SAR (measured) = 18.8 W/kg

0 dB = 17.3 W/kg = 12.38 dBW/kg

Impedance Measurement Plot for Body TSL

ANNEX J Extended Calibration SAR Dipole

Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dBm, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Justification of Extended Calibration SAR Dipole D2450V2- serial no.873

Head						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2015-10-30	-26.6		53.4		3.42	
2016-10-20	-25.1	5.6	55.1	1.7	2.91	0.51
2017-10-18	-25.7	3.4	54.6	0.8	3.04	0.38

Body						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2015-10-30	-23.7		50.5		6.53	
2016-10-20	-24.9	5.1	49.2	1.3	7.28	0.75
2017-10-18	-25.5	7.6	49.6	0.9	7.11	0.58

Justification of Extended Calibration SAR Dipole D5GHzV2- serial no.1238

Head							
Date of Measurement	Frequency	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2016-9-21	5200MHz	-23.6		47.1		5.8	
2017-9-20	5200MHz	-21.7	8.1	48.3	1.2	2.38	2.42
2016-9-21	5300MHz	-29.8		50.5		3.2	
2017-9-20	5300MHz	-27.8	6.7	51.9	1.4	4.51	1.31
2016-9-21	5500MHz	-31.2		49.0		2.5	
2017-9-20	5500MHz	-29.5	5.4	50.3	1.3	1.24	1.26
2016-9-21	5600MHz	-44.1		50.0		0.6	
2017-9-20	5600MHz	-42.6	3.4	51.5	1.5	2.55	1.95
2016-9-21	5800MHz	-25.1		55.6		1.9	
2017-9-20	5800MHz	-23.8	5.2	56.9	1.3	3.04	1.14

Body							
Date of Measurement	Frequency	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2016-9-21	5200MHz	-28.6		48.6		3.4	
2017-9-20	5200MHz	-26.4	7.7	50.0	1.4	3.72	0.32
2016-9-21	5300MHz	-32.3		49.6		2.4	
2017-9-20	5300MHz	-30.5	5.6	51.3	1.7	3.64	1.24
2016-9-21	5500MHz	-31.7		49.5		2.5	
2017-9-20	5500MHz	-29.8	6.0	51.4	1.9	4.25	1.75
2016-9-21	5600MHz	-31.7		50.8		2.5	
2017-9-20	5600MHz	-29.5	6.9	52.3	1.5	2.91	0.41
2016-9-21	5800MHz	-24.0		56.0		3.0	
2017-9-20	5800MHz	-22.8	5.0	57.3	1.3	4.23	1.23

The Return-Loss is <-20dB, and within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the value result should support extended c.

ANNEX K Spot Check Test

As the test lab for 9540 from Spectralink Corp, we, Shenzhen Academy of Information and Communications Technology, declare on our sole responsibility that, according to "Justification Letter" provided by applicant, only the Spot check test should be performed. The test results are as below.

K.1 Internal Identification of EUT used during the spot check test

EUT ID*	mac	HW Version	SW Version
EUT3	00:90:7A:A7:DA:CE	PIO	vF03

K.2 Measurement results

SAR Values (WLAN 2.4G)

Frequency				SAR(1g) (W/kg)				
MHz Ch.	Ch	Test Position		Spot che	Original data			
IVITZ CII.				Measured SAR	Reported SAR	Original data		
Main anter	Main antenna							
2437	6	Head	Left Touch	0.542	0.62	0.50		
2437	6	Body	Rear	0.226	0.26	0.27		
Second antenna								
2462	11	Head	Right Touch	0.447	0.49	0.43		
2462	11	Body	Rear	0.247	0.27	0.19		
MIMO								
2412	1	Head	Left Tilt	0.212	0.25	0.30		
2412	1	Body	Rear	0.067	0.08	0.14		

SAR Values (WLAN 5G)

Frequency				SAR(1g) (W/kg)			
MHz	Ch.	Test Position		Spot che	Ovisional data		
MHZ Cn.				Measured SAR	Reported SAR	Original data	
Main antenna						•	
5260	52	Head	Left Touch	0.507	0.68	0.22	
5700	140		Left Tilt	0.438	0.61	0.30	
5825	165		Left Touch	0.325	0.48	0.13	
5260	52	Body	Rear	0.099	0.13	0.19	
5700	140		Rear	0.193	0.27	0.24	
5825	165		Rear	0.132	0.19	0.31	
Second antenna							
5260	52	Head	Right Touch	0.241	0.33	0.51	
5500	100		Right Tilt	0.415	0.55	0.73	
5785	157		Right Tilt	0.521	0.74	0.49	
5260	52		Left	0.143	0.20	0.33	
5500	100	Body	Тор	0.098	0.13	0.33	
5785	157		Тор	0.117	0.17	0.17	
MIMO						•	
5260	52	Head	Left Tilt	0.673	0.91	0.36	
5500	100		Right Touch	0.607	0.76	0.62	
5825	165		Right Tilt	0.633	0.77	0.40	
5260	52		Тор	0.139	0.19	0.36	
5500	100	Body	Тор	0.432	0.54	0.35	
5785	157		Rear	0.235	0.26	0.18	

Wi-Fi 2.4G Head

Date: 2018-7-27

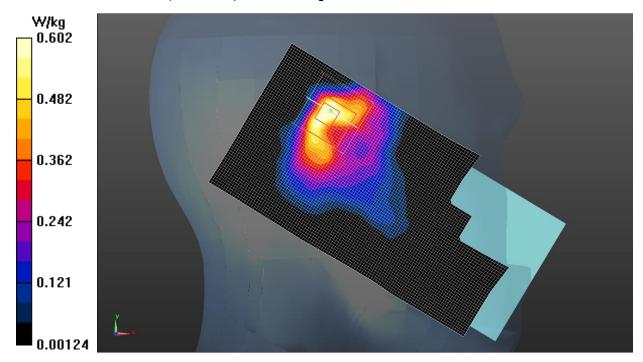
Electronics: DAE4 Sn786 Medium: Head 2450 MHz

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.831 \text{ S/m}$; $\varepsilon_r = 38.644$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WiFi (0) Frequency: 2437 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (7.42, 7.42, 7.42)


Left Cheek Middle/Area Scan (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.646 W/kg

Left Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.32 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.17 W/kg

SAR(1 g) = 0.542 W/kg; SAR(10 g) = 0.253 W/kg

Maximum value of SAR (measured) = 0.602 W/kg

Wi-Fi 2.4G Body

Date: 2018-7-27

Electronics: DAE4 Sn786 Medium: Body 2450 MHz

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.920 \text{ S/m}$; $\varepsilon_r = 53.825$; $\rho = 1000 \text{ kg/m}^3$

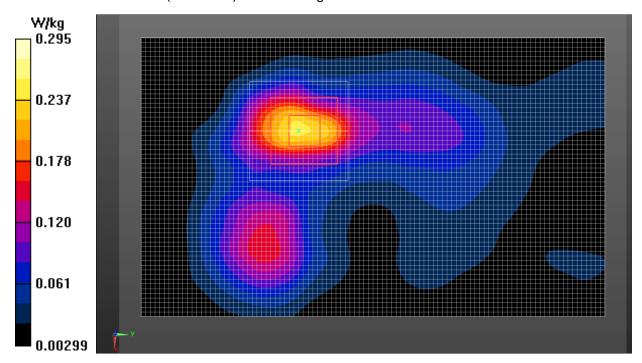
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WiFi (0) Frequency: 2462 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (7.47, 7.47, 7.47)

Rear Side High/Area Scan (61x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.246 W/kg


Rear Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.648 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.455 W/kg

SAR(1 g) = 0.247 W/kg; SAR(10 g) = 0.119 W/kg

Maximum value of SAR (measured) = 0.295 W/kg

Wi-Fi 5G Head

Date: 2018-7-27

Electronics: DAE4 Sn786 Medium: Head 5300 MHz

Medium parameters used: f = 5260 MHz; σ = 4.767 S/m; ϵ_r = 35.562; ρ = 1000 kg/m³

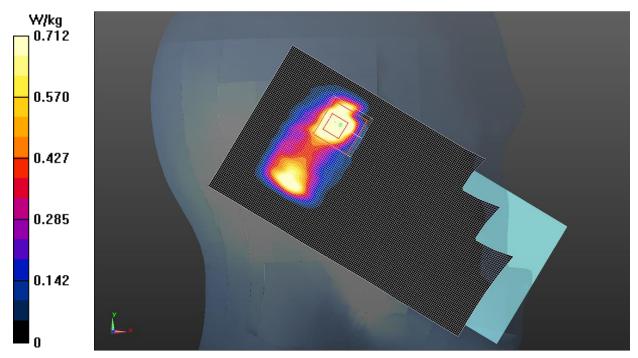
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WIFI 5G (0) Frequency: 5260 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (5.61, 5.61, 5.61)

Left Tilt CH52/Area Scan (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.71 W/kg


Left Tilt CH52/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 4.730 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 2.64 W/kg

SAR(1 g) = 0.673 W/kg; SAR(10 g) = 0.194 W/kg

Maximum value of SAR (measured) = 0.712 W/kg

Wi-Fi 5G Body

Date: 2018-7-27

Electronics: DAE4 Sn786 Medium: Body 5600 MHz

Medium parameters used: f = 5500 MHz; σ = 5.598 S/m; ϵ_r = 48.716; ρ = 1000 kg/m³

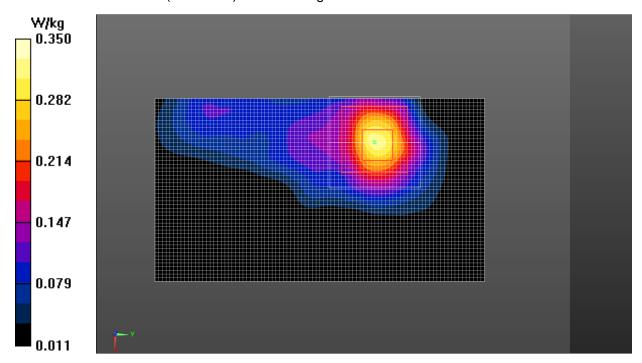
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WIFI 5G (0) Frequency: 5500 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3633 ConvF (4.33, 4.33, 4.33)

Top side CH100/Area Scan (51x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.319 W/kg


Top side CH100/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 5.050 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 2.42 W/kg

SAR(1 g) = 0.432 W/kg; SAR(10 g) = 0.179 W/kg

Maximum value of SAR (measured) = 0.350 W/kg

ANNEX L System Verification Results for Spot Check Test

2450MHz

Date: 2018-7-27

Electronics: DAE4 Sn786 Medium: Head 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.843 \text{ S/m}$; $\varepsilon_r = 38.588$; $\rho = 1000 \text{ kg/m}^3$

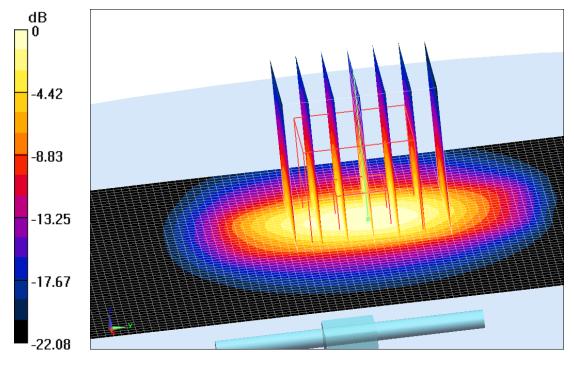
Ambient Temperature: 22.0°C Liquid Temperature: 21.6°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (7.42, 7.42, 7.42);

System Validation /Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 90.454 V/m; Power Drift = 0.11 dB

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.11 W/kg Maximum value of SAR (interpolated) = 15.1 W/kg


The sum of the control of the contro

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.454 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 24.8 W/kg

SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.14 W/kg Maximum value of SAR (measured) = 15.4 W/kg

0 dB = 15.4 W/kg = 11.88 dB W/kg

Date: 2018-7-27

Electronics: DAE4 Sn786 Medium: Body 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.907 \text{ S/m}$; $\varepsilon_r = 53.862$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.6°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

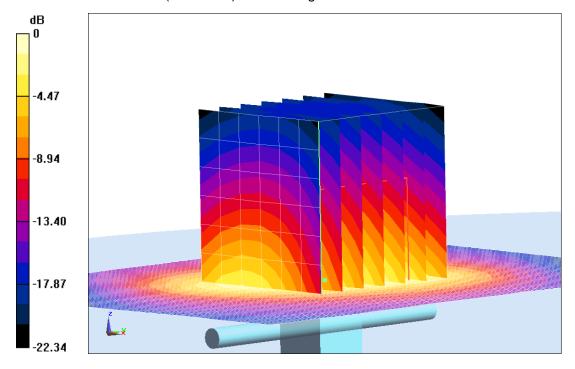
Probe: EX3DV4 - SN3633 ConvF (7.47, 7.47, 7.47);

System Validation/Area Scan (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 86.225 V/m; Power Drift = -0.07 dB

SAR(1 g) = 12.7 W/kg; SAR(10 g) = 6.05 W/kg

Maximum value of SAR (interpolated) = 14.0 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.225 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 22.5 W/kg

SAR(1 g) = 12.5 W/kg; SAR(10 g) = 5.97 W/kg

Maximum value of SAR (measured) = 13.8 W/kg

0 dB = 13.8 W/kg = 11.40 dB W/kg

Date: 2018-7-27

Electronics: DAE4 Sn786 Medium: Head 5300 MHz

Medium parameters used: f = 5300 MHz; $\sigma = 4.832 \text{ S/m}$; $\varepsilon_r = 35.44$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 5300 MHz Duty Cycle: 1:1

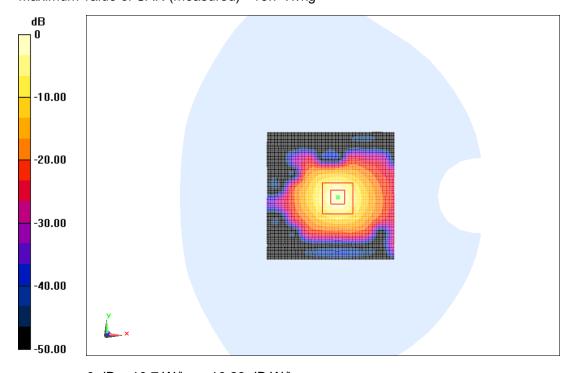
Probe: EX3DV4 - SN3633 ConvF (5.61, 5.61, 5.61);

System Validation /Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 58.962 V/m; Power Drift = 0.02 dB

SAR(1 g) = 8.58 W/kg; SAR(10 g) = 2.42 W/kg

Maximum value of SAR (interpolated) =10.5 W/kg


System Validation/Zoom Scan (8x8x8)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 58.962 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 32.3 W/kg

SAR(1 g) = 8.64 W/kg; SAR(10 g) = 2.44 W/kg

Maximum value of SAR (measured) =10.7 W/kg

0 dB = 10.7 W/kg = 10.29 dB W/kg

Date: 2018-7-27

Electronics: DAE4 Sn786 Medium: Body 5300 MHz

Medium parameters used: f = 5300 MHz; $\sigma = 5.368 \text{ S/m}$; $\varepsilon_r = 50.193$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 5300 MHz Duty Cycle: 1:1

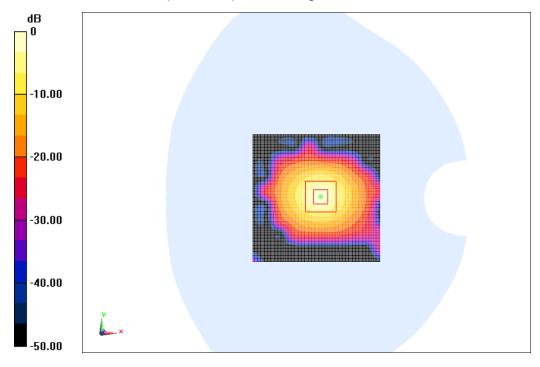
Probe: EX3DV4 - SN3633 ConvF (5.15, 5.15, 5.15);

System Validation /Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 56.488 V/m; Power Drift = -0.03 dB

SAR(1 g) = 7.42 W/kg; SAR(10 g) = 2.14 W/kg

Maximum value of SAR (interpolated) = 9.79 W/kg


System Validation/Zoom Scan (8x8x8)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 56.488 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 26.9 W/kg

SAR(1 g) = 7.38 W/kg; SAR(10 g) = 2.11 W/kg

Maximum value of SAR (measured) = 9.74 W/kg

0 dB = 9.74 W/kg = 9.89 dB W/kg

Date: 2018-7-27

Electronics: DAE4 Sn786 Medium: Head 5600 MHz

Medium parameters used: f = 5600 MHz; $\sigma = 5.224 \text{ S/m}$; $\varepsilon_r = 34.546$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 5600 MHz Duty Cycle: 1:1

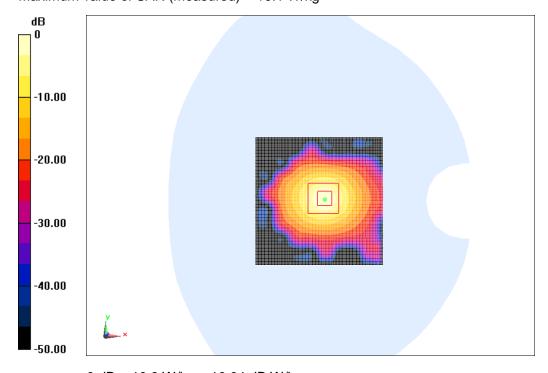
Probe: EX3DV4 - SN3633 ConvF (4.86, 4.86, 4.86);

System Validation /Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 68.042 V/m; Power Drift = 0.08 dB

SAR(1 g) = 8.49 W/kg; SAR(10 g) = 2.37 W/kg

Maximum value of SAR (interpolated) =10.0 W/kg


System Validation/Zoom Scan (8x8x8)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 68.042 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 30.2 W/kg

SAR(1 g) = 8.57 W/kg; SAR(10 g) = 2.39 W/kg

Maximum value of SAR (measured) = 10.1 W/kg

0 dB = 10.3 W/kg = 10.04 dB W/kg

Date: 2018-7-27

Electronics: DAE4 Sn786 Medium: Body 5600 MHz

Medium parameters used: f = 5600 MHz; $\sigma = 5.805 \text{ S/m}$; $\varepsilon_r = 48.122$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 5600 MHz Duty Cycle: 1:1

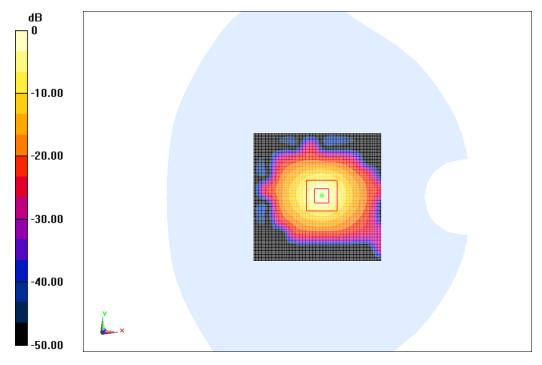
Probe: EX3DV4 - SN3633 ConvF (4.33, 4.33, 4.33);

System Validation /Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 60.756 V/m; Power Drift = 0.01 dB

SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.22 W/kg

Maximum value of SAR (interpolated) =9.88 W/kg


System Validation/Zoom Scan (8x8x8)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 60.756 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 28.2 W/kg

SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.26 W/kg

Maximum value of SAR (measured) = 9.92 W/kg

0 dB = 9.92 W/kg = 9.97 dB W/kg

Date: 2018-7-27

Electronics: DAE4 Sn786 Medium: Head 5800 MHz

Medium parameters used: f = 5800 MHz; $\sigma = 5.326 \text{ S/m}$; $\varepsilon_r = 34.68$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 5800 MHz Duty Cycle: 1:1

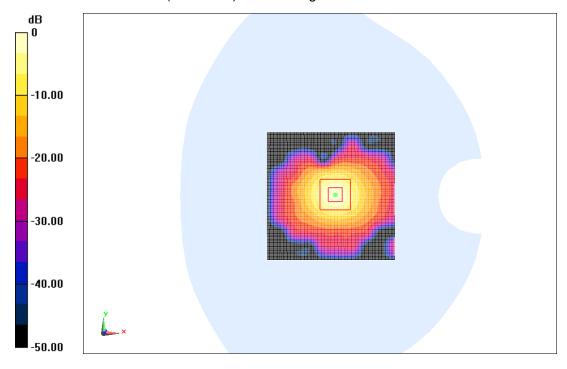
Probe: EX3DV4 - SN3633 ConvF (4.81, 4.81, 4.81);

System Validation/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 59.825 V/m; Power Drift = -0.09 dB

SAR(1 g) = 7.70 W/kg; SAR(10 g) = 2.22 W/kg

Maximum value of SAR (interpolated) =9.73 W/kg


System Validation/Zoom Scan (8x8x8)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 59.825 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 27.7 W/kg

SAR(1 g) = 7.62 W/kg; SAR(10 g) = 2.19 W/kg

Maximum value of SAR (measured) = 9.66 W/kg

0 dB = 9.66 W/kg = 9.85 dB W/kg

Date: 2018-7-27

Electronics: DAE4 Sn786 Medium: Body 5800 MHz

Medium parameters used: f = 5800 MHz; $\sigma = 6.108 \text{ S/m}$; $\varepsilon_r = 47.538$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 5800 MHz Duty Cycle: 1:1

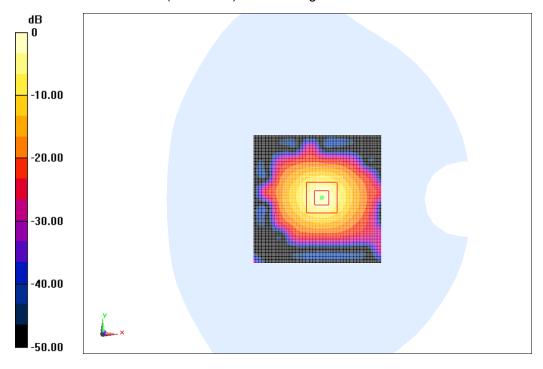
Probe: EX3DV4 - SN3633 ConvF (4.48, 4.48, 4.48);

System Validation/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 60.982 V/m; Power Drift = 0.12 dB

SAR(1 g) = 7.69 W/kg; SAR(10 g) = 2.10 W/kg

Maximum value of SAR (interpolated) =9.81 W/kg


System Validation/Zoom Scan (8x8x8)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 60.982 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 28.0 W/kg

SAR(1 g) = 7.78 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 9.86 W/kg

0 dB = 9.86 W/kg = 9.94 dB W/kg