

FCC PART 15C & RSS 247 TEST REPORT No. I18N00940-BT

for

Spectralink Corp

GSM Quad-band/UMTS five-band/LTE/CA Mobile phone

9553

with

Hardware Version: PIO

Software Version: vF03

FCC ID: IYG95XX

IC: 2128B-95XX

Issued Date: 2018-09-10

Designation Number: CN1210 ISED Assigned Code: 23289

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518026.

Tel: +86(0)755-33322000, Fax: +86(0)755-33322001, Email:yewu@caict.ac.cn.www.cszit.com

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I18N00940-BT	Rev.0	1st edition	2018-09-10

CONTENTS

CONT	ENTS	3
1. Tl	EST LABORATORY	4
1.1.	TESTING LOCATION	
1.2.	TESTING ENVIRONMENT	4
1.3.	Project data	4
1.4.	Signature	4
2. C	LIENT INFORMATION	5
2.1.	APPLICANT INFORMATION	5
2.2.	MANUFACTURER INFORMATION	5
3. E	QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	6
3.1.	ABOUT EUT	6
3.2.	INTERNAL IDENTIFICATION OF EUT	6
3.3.	INTERNAL IDENTIFICATION OF AE	6
3.4.	GENERAL DESCRIPTION	6
4. R	EFERENCE DOCUMENTS	7
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	7
4.2.	REFERENCE DOCUMENTS FOR TESTING	7
5. Tl	EST RESULTS	8
5.1.	SUMMARY OF TEST RESULTS	8
5.2.	STATEMENTS	8
5.3.	TERMS USED IN THE RESULT TABLE	8
5.4.	LABORATORY ENVIRONMENT	9
6. Tl	EST FACILITIES UTILIZED	10
7. M	EASUREMENT UNCERTAINTY	11
ANNE	X A: DETAILED TEST RESULTS	12
A.0 A	Antenna requirement	12
A.1 l	MAXIMUM PEAK OUTPUT POWER	13
A.2 l	BAND EDGES COMPLIANCE	14
A.3 (Conducted Emission	21
A.4 I	Radiated Emission	37
	20dB Bandwidth	
	TIME OF OCCUPANCY (DWELL TIME)	
	NUMBER OF HOPPING CHANNELS	
	CARRIER FREQUENCY SEPARATION	
A.9	AC Power line Conducted Emission	65

1. Test Laboratory

1.1. Testing Location

Location: Shenzhen Academy of Information and Communications Technology
Address: Building G, Shenzhen International Innovation Center, No.1006

Shennan Road, Futian District, Shenzhen, Guangdong Province, China

Postal Code: 518026

Telephone: +86(0)755-33322000 Fax: +86(0)755-33322001

1.2. Testing Environment

Normal Temperature: 15-30°C Relative Humidity: 35-60%

1.3. Project data

Testing Start Date: 2018-06-04
Testing End Date: 2018-06-22

1.4. Signature

An Ran

(Prepared this test report)

Tang Weisheng

(Reviewed this test report)

Zhang Bojun

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: Spectralink Corp

Address: 2560 55th Street Boulder, CO 80301 USA

Contact Person Andrew Duncan

E-Mail Andrew.duncan@spectralink.com

Telephone: +1 720-925-0480

Fax: /

2.2. Manufacturer Information

Company Name: Spectralink Corp

Address: 2560 55th Street Boulder, CO 80301 USA

Contact Person Andrew Duncan

E-Mail Andrew.duncan@spectralink.com

Telephone: +1 720-925-0480

Fax: /

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description GSM Quad-band/UMTS five-band/LTE/CA Mobile phone

Model Name 9553 Market Name Versity

Frequency Band 2400MHz~2483.5MHz

Type of Modulation GFSK/ \pi /4 DQPSK/8DPSK

Number of Channels 79

Antenna Type Integrated
Antenna Gain 0.5dBi

Power Supply 3.7V DC by Battery

FCC ID IYG95XX IC number 2128B-95XX

Condition of EUT as received No abnormality in appearance

Note: Components list, please refer to documents of the manufacturer.

3.2. Internal Identification of EUT

EUT ID*	IMEI	HW Version	SW Version	Receive Date
EUT1	1	PIO	vF03	2018-05-14

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE ID*	Description	Mode	Manufacturer	
AE1	Switching Adapter	ASUC71w-050912300	Aquil Star Precision Industrial	
			(ShenZhen) Co., Ltd	

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4. General Description

The Equipment Under Test (EUT) are a model of Mobile Phone with integrated antenna.

It consists of normal options: travel charger, USB cable.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 15	FCC CFR 47, Part 15, Subpart C:	2016
	15.205 Restricted bands of operation;	
	15.209 Radiated emission limits, general requirements;	
	15.247 Operation within the bands 902-928MHz,	
	2400-2483.5 MHz, and 5725-5850 MHz	
ANSI C63.10	American National Standard of Procedures for Compliance	2013
	Testing of Unlicensed Wireless Devices	
DOC 047	Spectrum Management and Talegammunications Radio	lagua 0
RSS-247	Spectrum Management and Telecommunications Radio	Issue 2
KSS-247	Standards Specification	February,
RSS-247		
RSS-247	Standards Specification	February,
RSS-247	Standards Specification Digital Transmission Systems (DTSs), Frequency Hopping	February,
RSS-247	Standards Specification Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network	February,
	Standards Specification Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices	February, 2017
	Standards Specification Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices Spectrum Management and Telecommunications Radio	February, 2017

5. Test Results

5.1. Summary of Test Results

No	Test cases	Sub-clause of Part 15C	Sub-clause of IC	Verdict
0	Antenna Requirement	15.203	/	Р
1	Maximum Peak Output Power	15.247 (b)	RSS-247 section 5.4	Р
2	Band Edges Compliance	15.247 (d)	RSS-247 section 5.1	Р
3	Conducted Spurious Emission	15.247 (d)	RSS-247 section 5.5/ RSS-Gen section 6.13	Р
4	Radiated Spurious Emission	15.247,15.205,15.209	RSS-247 section 5.5/ RSS-Gen section 6.13	Р
5	Occupied 20dB bandwidth	15.247(a)	RSS-247 section 5.1	Р
6	Time of Occupancy (Dwell Time)	15.247(a)	RSS-247 section 5.1	Р
7	Number of Hopping Channel	15.247(a)	RSS-247 section 5.1	Р
8	Carrier Frequency Separation	15.247(a)	RSS-247 section 5.1	Р
9	AC Power line Conducted Emission	15.107,15.207	RSS-Gen section 8.8	Р

See ANNEX A and below for details.

5.2. Statements

SAICT has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.1 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.

5.3. Terms used in the result table

Terms used in Verdict column

Р	Pass
NA	Not Available
F	Fail

Abbreviations

AC	Alternating Current	
AFH	Adaptive Frequency Hopping	
BW	Band Width	
E.I.R.P.	equivalent isotropic radiated power	
ISM	Industrial, Scientific and Medical	
R&TTE	Radio and Telecommunications Terminal Equipment	
RF	Radio Frequency	
Tx	Transmitter	

5.4. <u>Laboratory Environment</u>

Semi-anechoic chamber did not exceed following limits along the EMC testing

Min. = 15 °C, Max. = 30 °C				
Min. = 35 %, Max. = 60 %				
0.014MHz - 1MHz, >60dB;				
1MHz - 1000MHz, >90dB.				
> 2 MΩ				
< 4Ω				
$<$ \pm 4dB, 3m/10m distance, from 30 to 1000 MHz				
Between 0 and 6 dB, from 80 to 3000 MHz				

Shielded room did not exceed following limits along the EMC testing

Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 35 %, Max. = 60 %
Shielding effectiveness	0.014MHz - 1MHz, >60dB;
	1MHz - 1000MHz, >90dB.
Electrical insulation	> 2 MΩ
Ground system resistance	< 4 Ω

Fully-anechoic chamber did not exceed following limits along the EMC testing

Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 35 %, Max. = 60 %
Shielding effectiveness	0.014MHz - 1MHz, >60dB;
	1MHz - 1000MHz, >90dB.
Electrical insulation	> 2 MΩ
Ground system resistance	< 4Ω
Voltage Standing Wave Ratio	≤6dB, from 1 to 18 GHz,3m distance
(VSWR)	

6. Test Facilities Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period
1	Vector Signal	FSV40	100903	Rohde &	2019.01.17	1 year
ı	Analyzer	F3V40	100903	Schwarz	2019.01.17	1 year
2	Bluetooth Tester	CBT32	100584	Rohde &	2019.01.03	1 year
	Didelootii iestei	CD132	100364	Schwarz		
3	Test Receiver	ESCI	100702	Rohde &	2010 06 21	1 year
3	Test Neceiver	ESCI	100702	Schwarz	2019.06.21	1 year
4	LISN	ENV216	102067	Rohde &	2018.07.19	1 year
4	LION	LINVZIO	102007	Schwarz	2010.07.19	1 year

Radiated emission test system

No.	Equipment	Model	Serial	Manufacturer	Calibration	Calibration
NO.			Number	Manufacturer	Due date	Period
1	Chamber	FACT3-2.0	1285	ETS-Lindgren	2019.11.27	3 years
2	Test Receiver	ESR7	101676	Rohde & Schwarz	2018.11.29	1 year
3	Spectrum Analyser	FSV40	101192	Rohde & Schwarz	2019.05.22	1 year
4	BiLog Antenna	VULB9163	9163 329	Schwarzbeck	2020.02.27	3 years
5	Horn Antenna	3117	00066577	ETS-Lindgren	2019.04.05	3 years
6	Loop Antenna	HLA6120	35779	TESEQ	2019.05.02	3 years
7	Horn Antenna	QSH-SL-1	17012	Oper	2020.01.15	2 voore
		8-26-S-20	17013	Q-par		3 years

Test software

No.	Equipment	Manufacturer	Version
1	TechMgr Software	CAICT	2.1.1
2	EMC32	Rohde & Schwarz	8.53.0
3	EMC32	Rohde & Schwarz	10.01.00

EUT is engineering software provided by the customer to control the transmitting signal.

The EUT was programmed to be in continuously transmitting mode.

Anechoic chamber

Fully anechoic chamber by ETS-Lindgren

7. Measurement Uncertainty

Test Name	Uncertainty		
RF Output Power - Conducted	±1.32dB		
2. Time of Occupancy - Conducted	±0.58ms		
3.Occupied channel bandwidth - Conducted	±66	Hz	
	30MHz≶f≶1GHz	±1.41dB	
4 Transmitter Spurious Emission, Conducted	1GHz≤f≤7GHz	±1.92dB	
4 Transmitter Spurious Emission - Conducted	7GHz≤f≤13GHz	±2.31dB	
	13GHz≤f≤26GHz	±2.61dB	
	9kHz≤f≤30MHz	±1.84dB	
5 Transmitter Courious Emission Redicted	30MHz≤f≤1GHz	±4.90dB	
5. Transmitter Spurious Emission - Radiated	1GHz≤f≤18GHz	±5.32dB	
	18GHz≤f≤40GHz	±4.66dB	
6. AC Power line Conducted Emission	150kHz≤f≤30MHz	±2.72dB	

ANNEX A: Detailed Test Results

A.0 Antenna requirement

Measurement Limit:

Standard	Requirement
	An intentional radiator shall be designed to ensure that no antenna other than that
	furnished by the responsible party shall be used with the device. The use of a
	permanently attached antenna or of an antenna that uses a unique coupling to the
	intentional radiator shall be considered sufficient to comply with the provisions of
	this section. The manufacturer may design the unit so that a broken antenna can
	be replaced by the user, but the use of a standard antenna jack or electrical
FCC CRF Part	connector is prohibited. This requirement does not apply to carrier current devices
15.203	or to devices operated under the provisions of §15.211, §15.213, §15.217,
	§15.219, or §15.221. Further, this requirement does not apply to intentional
	radiators that must be professionally installed, such as perimeter protection
	systems and some field disturbance sensors, or to other intentional radiators
	which, in accordance with §15.31(d), must be measured at the installation site.
	However, the installer shall be responsible for ensuring that the proper antenna is
	employed so that the limits in this part are not exceeded.

Conclusion: The Directional gains of antenna used for transmitting is 0.5dBi.

The RF transmitter uses an integrate antenna without connector.

A.1 Maximum Peak Output Power

Method of Measurement: See ANSI C63.10-clause 7.8.5.

Use the following spectrum analyzer settings:

- a) Set Span = 6 MHz.
- b) Set RBW = 3 MHz.
- c) Set VBW = 3 MHz.
- d) Sweep time = auto.
- e) Detector = peak.
- f) Trace = max hold.
- g) Allow trace to stabilize.
- h) Use the marker-to-peak function to set the marker to the peak of the emission.
- I) The indicated level is the peak output power.

Measurement Limit:

Standard	Limit (dBm)
FCC CRF Part 15.247(b)(1) &	- 24
RSS-247 Section 5.4	< 21

Measurement Results:

	Peak Conducted Output Power (dBm)			
Mode	2402MHz	2441MHz	2480 MHz (Ch78)	
	(Ch0)	(Ch39)		
GFSK	9.99	9.29	9.71	
π/4 DQPSK	9.42	8.55	9.31	
8DPSK	9.70	8.90	9.51	

See below for test graphs.

Conclusion: Pass

A.2 Band Edges Compliance

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d) &	. 20
RSS-247 Section 5.5	> 20

Measurement Result:

Mode	Channel	Hopping	Test Results	Conclusion
GFSK	0	ON	Fig.1	Р
GFSK	78	ON	Fig.2	Р
π /4 DQPSK	0	ON	Fig.3	Р
174 DQPSK	78	ON	Fig.4	Р
ODDON	0	ON	Fig.5	Р
8DPSK	78	ON	Fig.6	Р

Mode	Channel	Hopping	Test Results	Conclusion
GFSK	0	OFF	Fig.7	Р
GFSK	78	OFF	Fig.8	Р
π /4 DQPSK	0	OFF	Fig.9	Р
174 DQPSK	78	OFF	Fig.10	Р
8DPSK	0	OFF	Fig.11	Р
	78	OFF	Fig.12	Р

See below for test graphs.

Conclusion: Pass

Fig. 1 Band Edges (GFSK, Ch 0, Hopping ON)

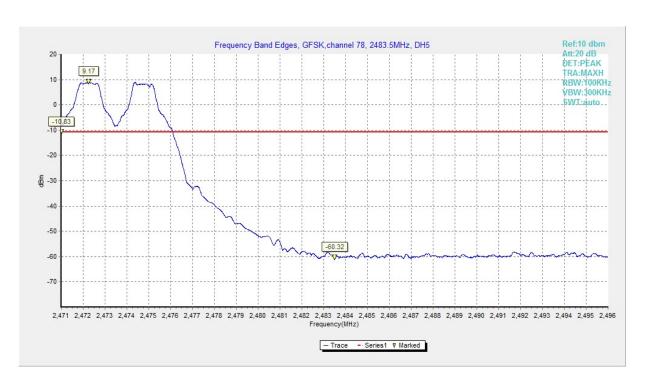


Fig. 2 Band Edges (GFSK, Ch 78, Hopping ON)

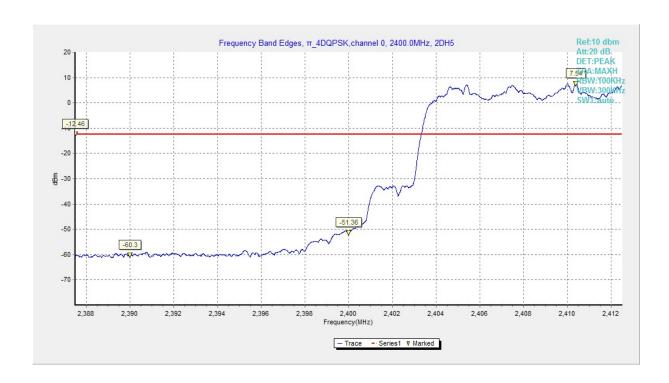


Fig. 3 Band Edges (π /4 DQPSK, Ch 0, Hopping ON)

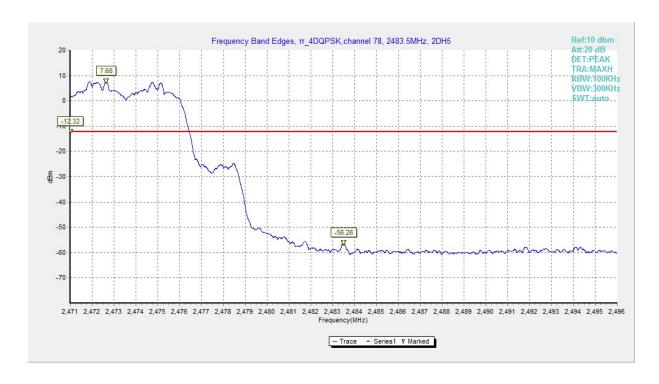


Fig. 4 Band Edges (π/4 DQPSK, Ch 78, Hopping ON)

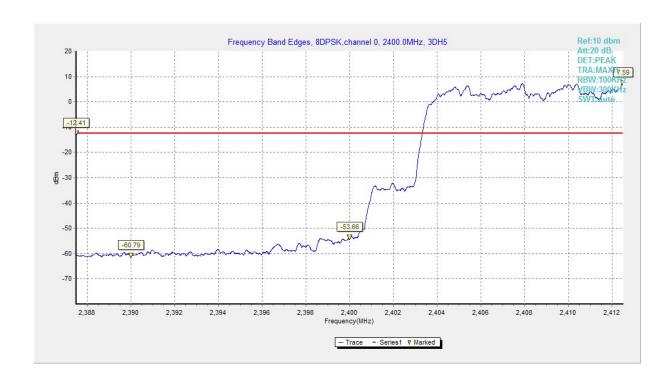


Fig. 5 Band Edges (8DPSK, Ch 0, Hopping ON)

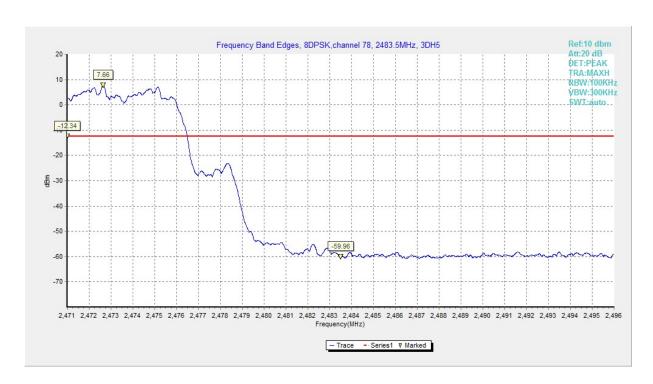


Fig. 6 Band Edges (8DPSK, Ch 78, Hopping ON)

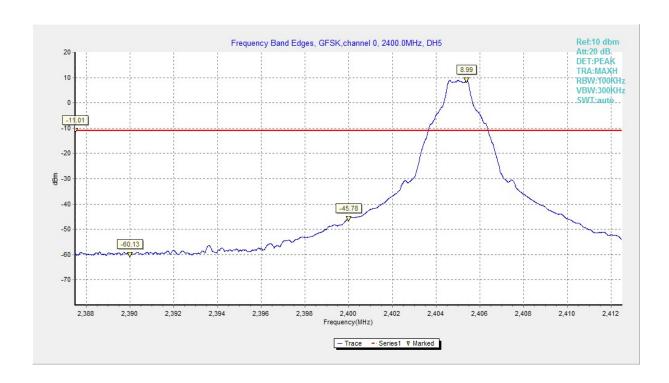


Fig. 7 Band Edges (GFSK, Ch 0, Hopping OFF)

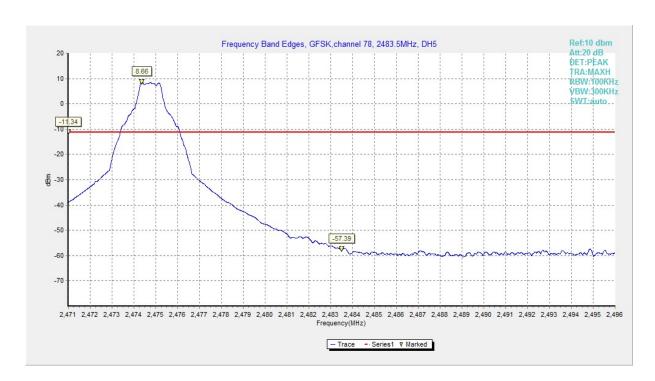


Fig. 8 Band Edges (GFSK, Ch 78, Hopping OFF)

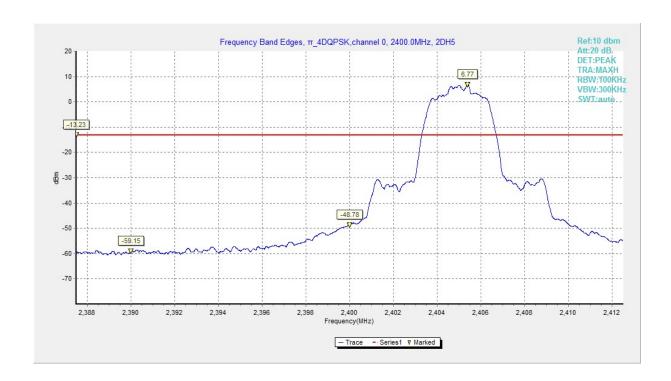


Fig. 9 Band Edges (π /4 DQPSK, Ch 0, Hopping OFF)

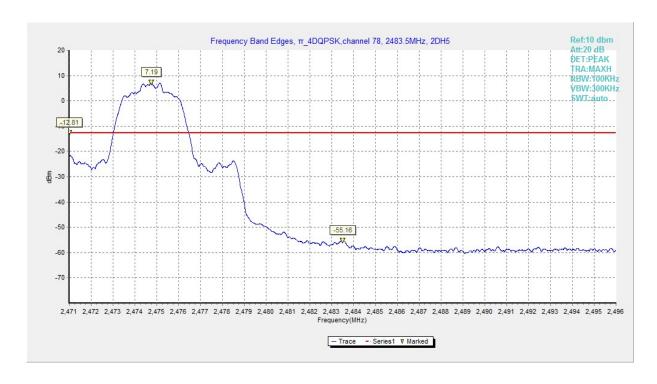


Fig. 10 Band Edges (π/4 DQPSK, Ch 78, Hopping OFF)

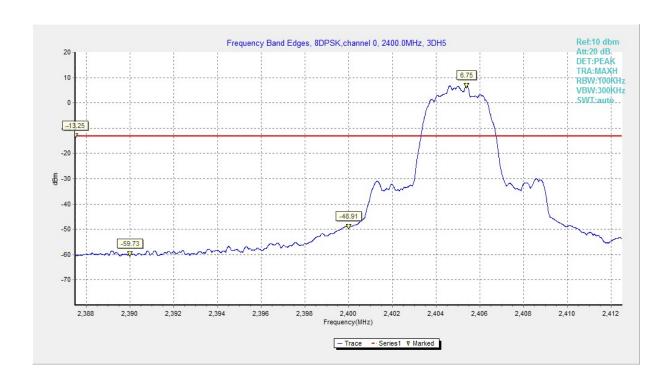


Fig. 11 Band Edges (8DPSK, Ch 0, Hopping OFF)

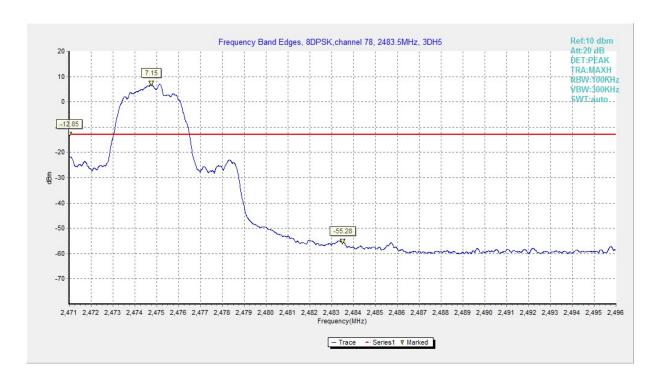


Fig. 12 Band Edges (8DPSK, Ch 78, Hopping OFF)

A.3 Conducted Emission

Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247 (d) &	20dB below peak output power in 100 kHz	
RSS-247 Section 5.5	bandwidth	

Measurement Results:

MODE	Channel	Frequency Range	Test Results	Conclusion
	0	2.402 GHz	Fig.13	Р
		1GHz-3GHz	Fig.14	Р
		3GHz-10GHz	Fig.15	Р
		2.441 GHz	Fig.16	Р
GFSK	39	1GHz-3GHz	Fig.17	Р
		3GHz-10GHz	Fig.18	Р
		2.480 GHz	Fig.19	Р
	78	1GHz-3GHz	Fig.20	Р
		3GHz-10GHz	Fig.21	Р
		2.402 GHz	Fig.22	Р
	0	1GHz-3GHz	Fig.23	Р
		3GHz-10GHz	Fig.24	Р
- /4		2.441 GHz	Fig.25	Р
π/4 DQPSK	39	1GHz-3Ghz	Fig.26	Р
DQPSK		3GHz-10GHz	Fig.27	Р
	78	2.480 GHz	Fig.28	Р
		1GHz-3Ghz	Fig.29	Р
		3GHz-10GHz	Fig.30	Р
		2.402 GHz	Fig.31	Р
	0	1GHz-3GHz	Fig.32	Р
		3GHz-10GHz	Fig.33	Р
		2.441 GHz	Fig.34	Р
8DPSK	39	1GHz-3GHz	Fig.35	Р
ODPSK		3GHz-10GHz	Fig.36	Р
		2.480 GHz	Fig.37	Р
	78	1GHz-3GHz	Fig.38	Р
		3GHz-10GHz	Fig.39	Р
,	All channels	30 MHz-1GHz	Fig.40	Р
/		10GHz-26GHz	Fig.41	Р

See below for test graphs.

Conclusion: Pass

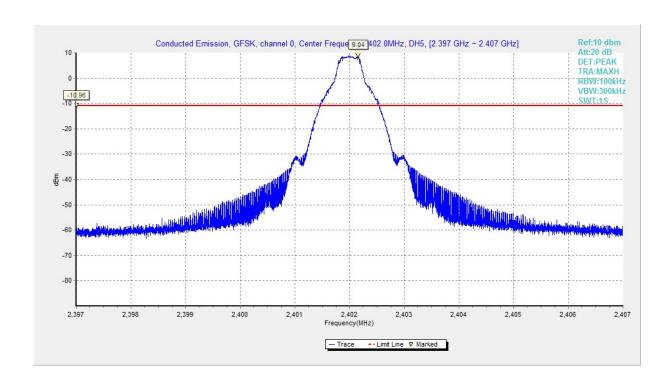


Fig. 13 Conducted Spurious Emission (GFSK, Ch0, 2.402GHz)

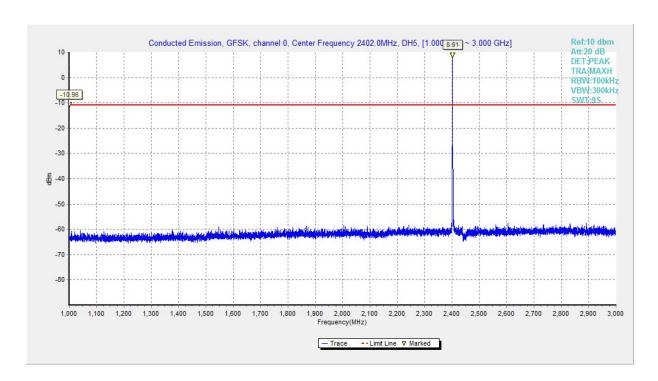


Fig. 14 Conducted Spurious Emission (GFSK, Ch0, 1 GHz-3 GHz)

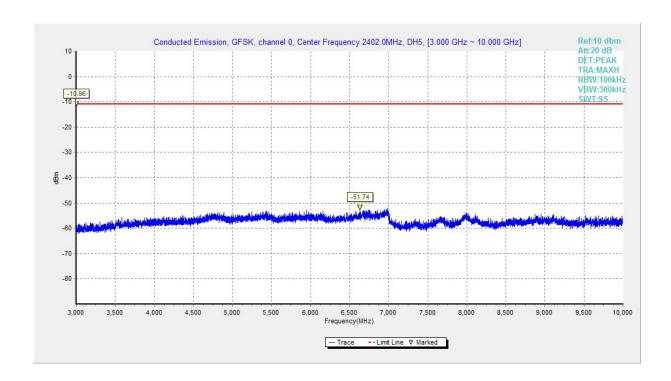


Fig. 15 Conducted Spurious Emission (GFSK, Ch0, 3GHz-10 GHz)

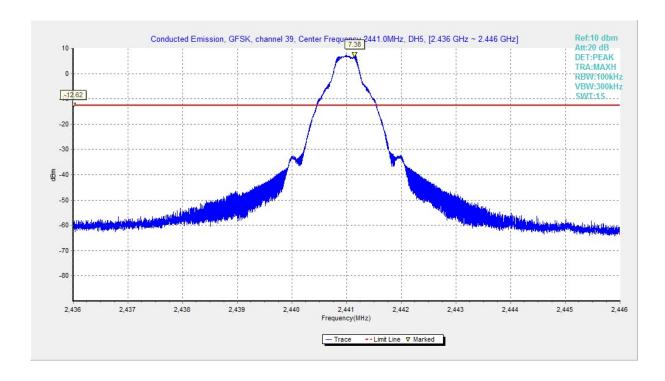


Fig. 16 Conducted Spurious Emission (GFSK, Ch39, 2.441GHz)

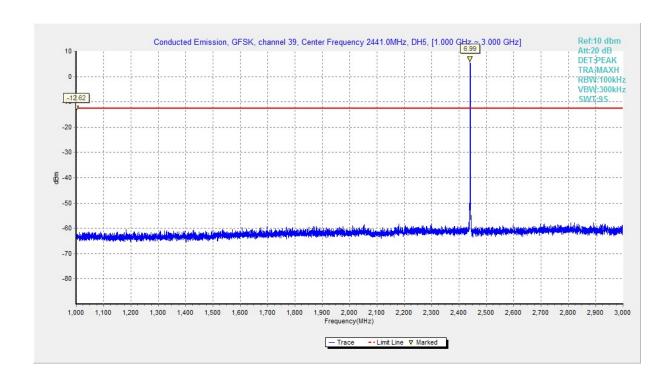


Fig. 17 Conducted Spurious Emission (GFSK, Ch39, 1GHz-3 GHz)

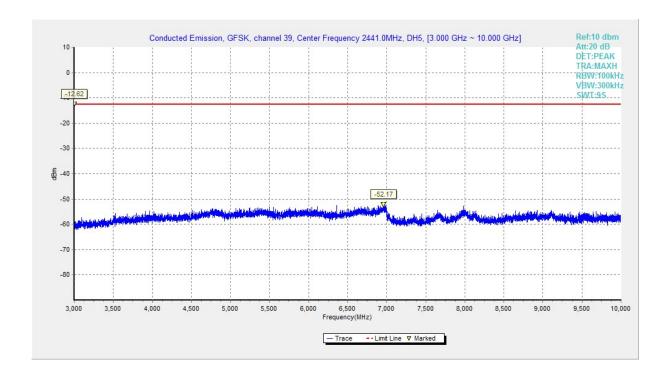


Fig. 18 Conducted Spurious Emission (GFSK, Ch39, 3GHz-10 GHz)

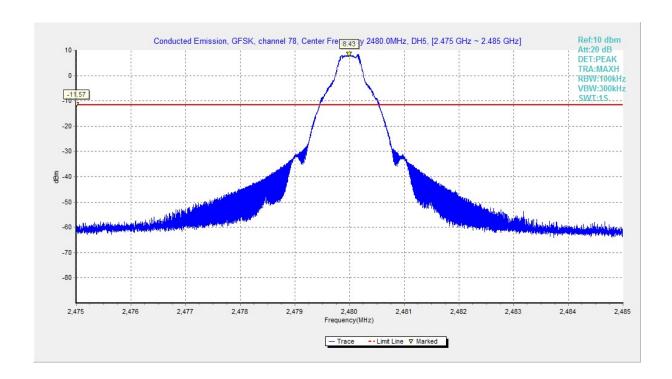


Fig. 19 Conducted Spurious Emission (GFSK, Ch78, 2.480GHz)

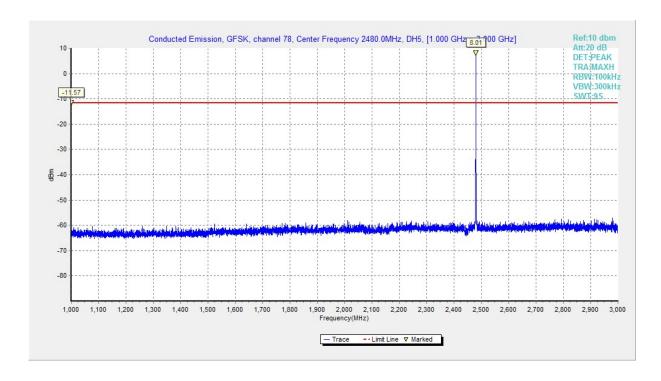


Fig. 20 Conducted Spurious Emission (GFSK, Ch78, 1GHz-3 GHz)

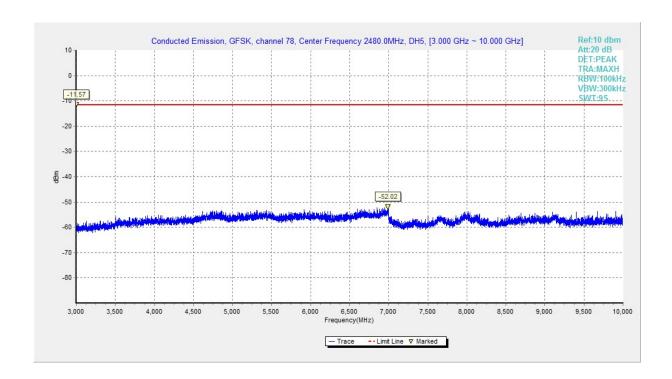


Fig. 21 Conducted Spurious Emission (GFSK, Ch78, 3GHz-10 GHz)

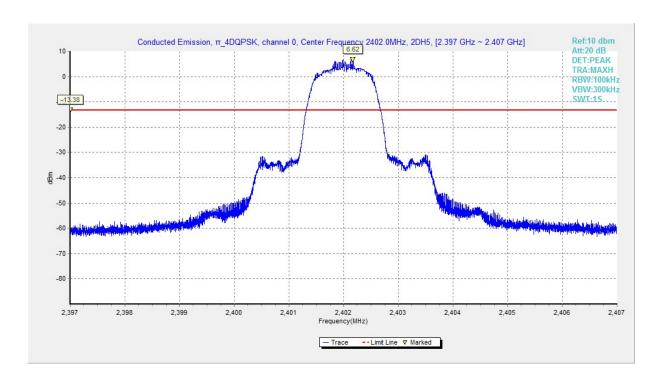


Fig. 22 Conducted Spurious Emission (π/4 DQPSK, Ch0, 2.402GHz)

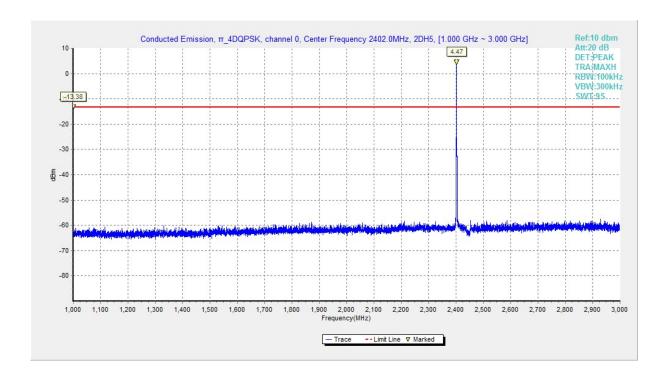


Fig. 23 Conducted Spurious Emission (π/4 DQPSK, Ch0, 1GHz-3 GHz)

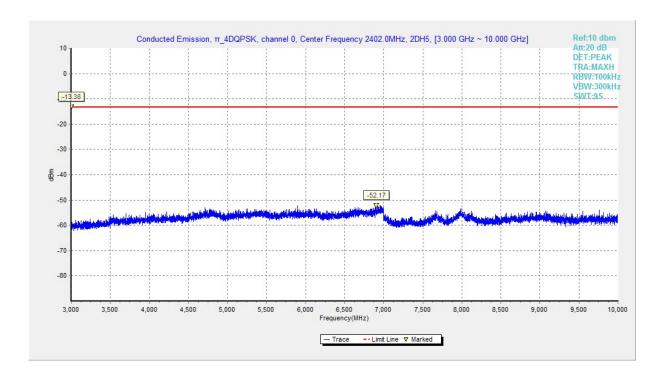


Fig. 24 Conducted Spurious Emission (π/4 DQPSK, Ch0, 3GHz-10 GHz)

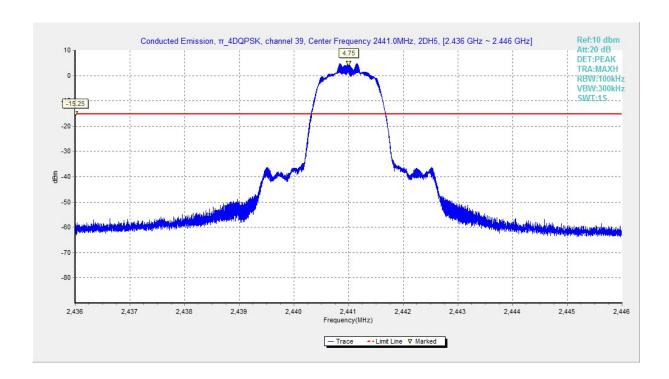


Fig. 25 Conducted Spurious Emission (π /4 DQPSK, Ch39, 2.441GHz)

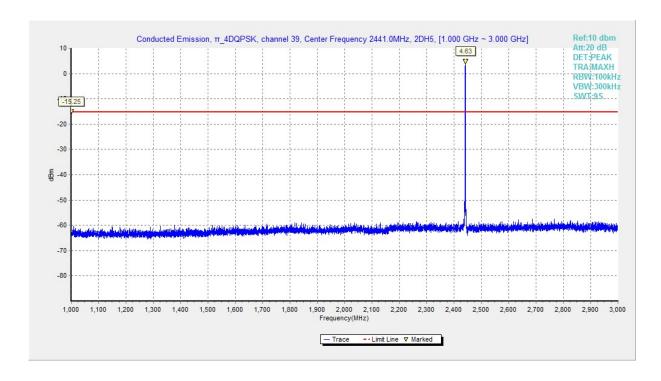


Fig. 26 Conducted Spurious Emission (π/4 DQPSK, Ch39, 1GHz-3 GHz)

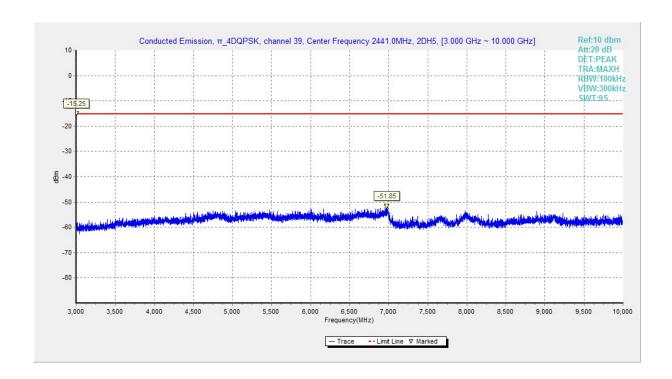


Fig. 27 Conducted Spurious Emission (π/4 DQPSK, Ch39, 3GHz-10 GHz)

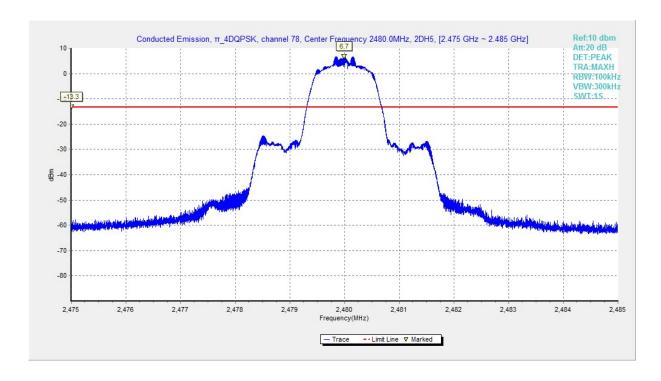


Fig. 28 Conducted Spurious Emission (π /4 DQPSK, Ch78, 2.480GHz)

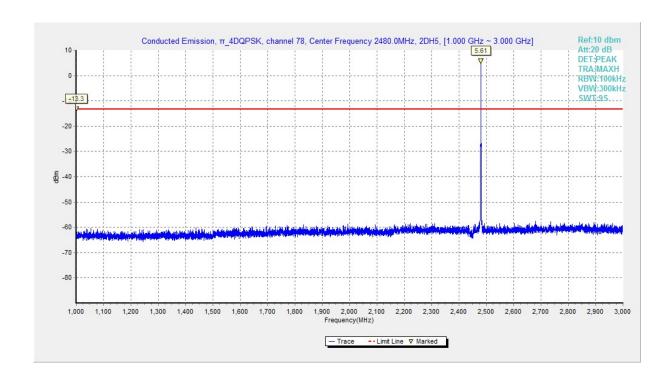


Fig. 29 Conducted Spurious Emission (π/4 DQPSK, Ch78, 1GHz-3 GHz)

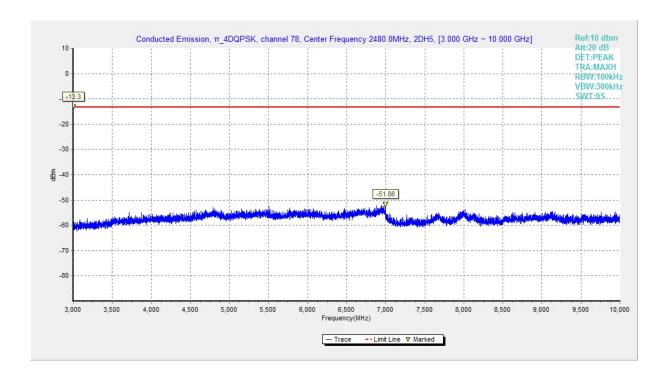


Fig. 30 Conducted Spurious Emission (π/4 DQPSK, Ch78, 3GHz-10 GHz)

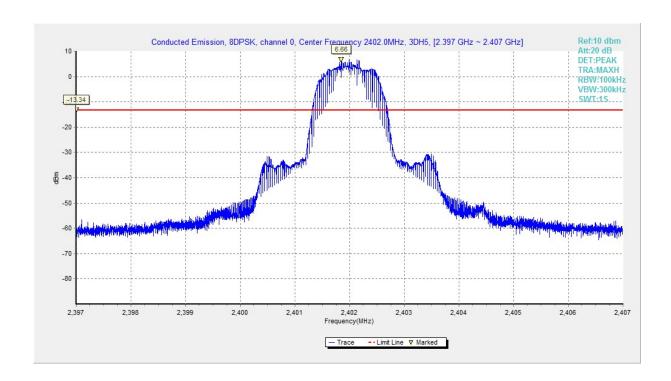


Fig. 31 Conducted Spurious Emission (8DPSK, Ch0, 2.402GHz)

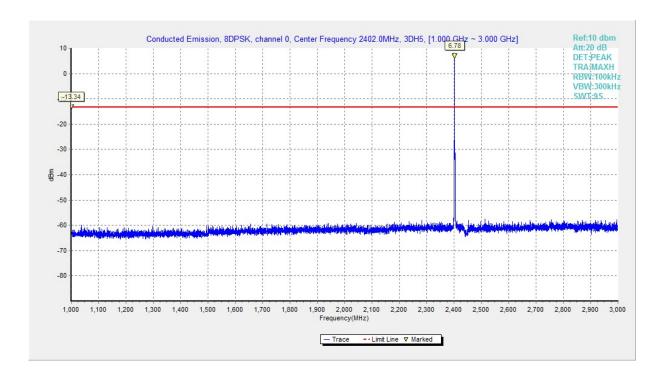


Fig. 32 Conducted Spurious Emission (8DPSK, Ch0, 1GHz-3 GHz)

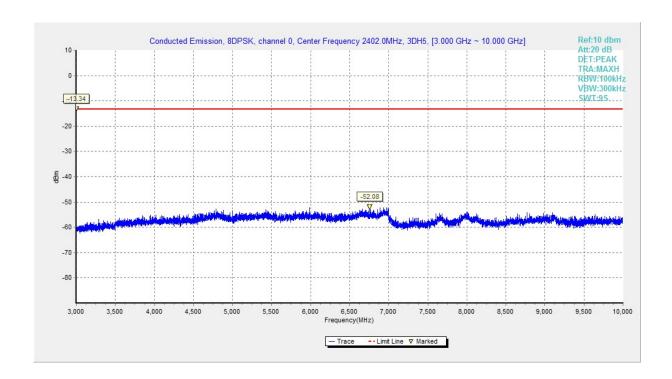


Fig. 33 Conducted Spurious Emission (8DPSK, Ch0, 3GHz-10 GHz)

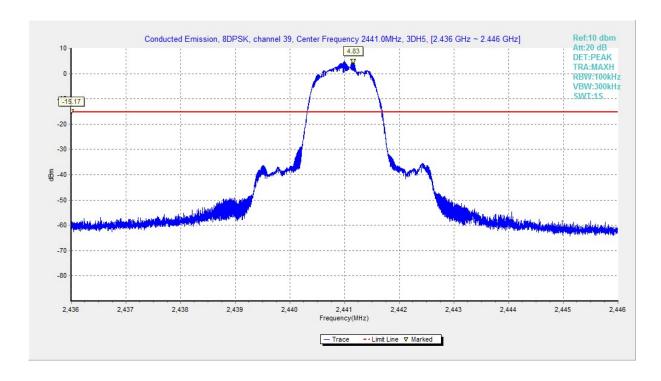


Fig. 34 Conducted Spurious Emission (8DPSK, Ch39, 2.441GHz)

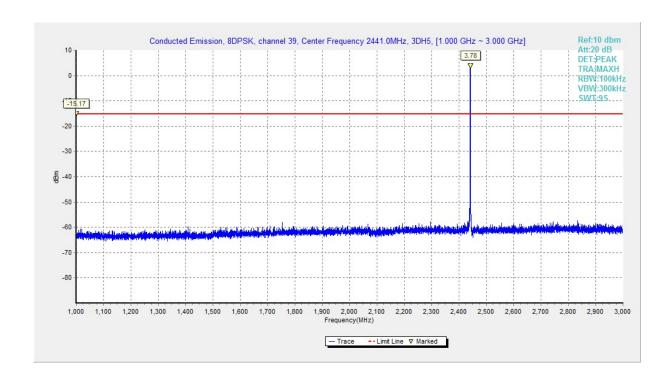


Fig. 35 Conducted Spurious Emission (8DPSK, Ch39, 1GHz-3 GHz)

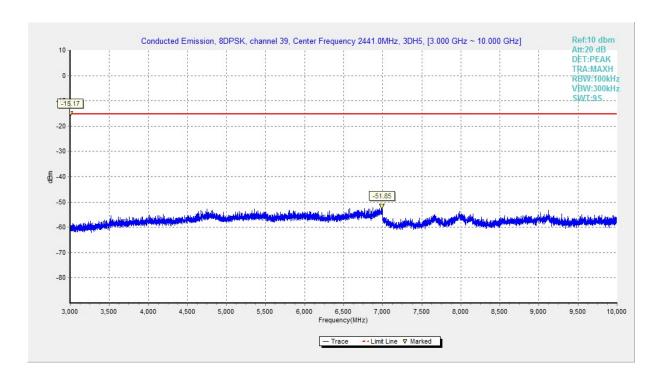


Fig. 36 Conducted Spurious Emission (8DPSK, Ch39, 3GHz-10 GHz)