

SAR EVALUATION REPORT FCC 2.1093 & IEEE 1528:2003

For

SpectraLink Corporation

5755 Central Ave. Boulder, Colorado 80301

MODEL: 703X

This Report Concerns:		Product Name:				
🛛 Original Rep	ort	802.11a/b/g 2.4/5GHz Phone				
Test Engineer:	Eric Hong / Danie	Deng Howa would				
Report No.:						
Report Date:	2006-05-10					
Reviewed By:						
Ŭ	U					
Prepared By:	Bay Area Complia 1274 Anvilwood	ance Laboratory Corporation (BACL) Ave.				
	Sunnyvale, CA 94089 Tel: (408) 732-9162					
	Fax: (408) 732 9164					

Note: This test report is specially limited to the above client company and this particular sample only. It may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the U.S. Government.

SpectraLink Corporation

DECLARATION OF CO	DECLARATION OF COMPLIANCE SAR EVALUATION				
Rule Part(s):	FCC §2.1093 & IEEE 1528:2003				
Test Procedure(s):	FCC OET Bulletin 65 Supplement C & IEEE 1528				
Device Type:	802.11a/b/g Phone				
Model:	703X				
Modulation:	DSSS (802.11a/b/g)				
	2412–2462MHz				
	5150 – 5250MHZ				
TX Frequency Range:	5250-5350MHZ				
	5725-5825MHz				
Max. Conducted Power Tested:	0.086W				
Antenna Type(s):	Internal Antenna				
Body-Worn Accessories: Headset					

0.193 mw/g (Body-Worn, 802.11b mode); 0.076 mw/g (Body-Worn, 802.11g Mode); 0.393mw/g (Body-Worn, 802.11a Mode);0.220 mw/g (Head, 802.11b mode); 0.093 mw/g (Head, 802.11g mode) ; 0.399 mw/g (Head, 802.11a mode)

BACL Corp. declares under its sole responsibility that this wireless portable device has been determined to be in compliance for localized specific absorption rate (SAR) for uncontrolled exposure and general population exposure limits specified in FCC OET Bulletin 65 Supplement C and has been tested in accordance with the measurement procedures specified in ANSI IEEE C95.3:2002 & IEEE 1528.

All measurements reported herein were performed under my supervision and believed to be accurate to the best of my knowledge. I further attest for the completeness of these measurements and vouch for the qualifications any and all personnel performing such measurements.

The results and statements contained in this report pertain only to the device(s) evaluated.

/signature/

Hong

Eric Hong Bay Area Compliance Laboratory Corp.

TABLE OF CONTENTS	
REFERENCE, STANDARDS, AND GUILDELINES	
SAR LIMITS	5
EUT DESCRIPTION	6
DESCRIPTION OF TEST SYSTEM	7
Measurement System Diagram System Components	
TESTING EQUIPMENT Equipments List & Calibration Info	
SAR MEASUREMENT SYSTEM VERIFICATION	
SYSTEM ACCURACY VERIFICATION	
EUT TEST STRATEGY AND METHODOLOGY SAR Evaluation Procedure	
CONCLUSION	
SAR BODY & HEAD WORST-CASE TEST DATA	
APPENDIX A – MEASUREMENT UNCERTAINTY	
APPENDIX B – PROBE CALIBRATION CERTIFICATES	
APPENDIX C – DIPOLE CALIBRATION CERTIFICATES	
APPENDIX D - TEST SYSTEM VERIFICATIONS SCANS	
LIQUID MEASUREMENT RESULT	
APPENDIX E - EUT SCANS	
APPENDIX F – CONDUCTED OUTPUT POWER MEASUREMENT	
PROVISION APPLICABLE	
Test Procedure Test equipment	
TEST RESULTS	
APPENDIX G – Z-AXIS PLOT	
APPENDIX H – EUT TEST POSITION PHOTOS	
MODEL 703X 1.5 CM SEPARATION FROM FLAT PHANTOM WITH ACCESSORIES PHT200	
MODEL 703X 1.5 CM SEPARATION FROM FLAT PHANTOM WITH ACCESSORIES PHT300 MODEL 703X 1.5 CM SEPARATION FROM FLAT PHANTOM	
MODEL 703X 1.5 CM SEPARATION FROM FLAT PHANTOM	
MODEL 703X LEFT HEAD TOUCH POSITION	
MODEL 703X RIGHT HEAD TILT POSITION MODEL 703X RIGHT HEAD TOUCH POSITION	
APPENDIX I – EUT & ACCESSORIES PHOTOS	
EUT – FRONT VIEW	
EUT – REAR VIEW	
HEADSET PHT200	
HEADSET PHT300	
APPENDIX J - INFORMATIVE REFERENCES	

REFERENCE, STANDARDS, AND GUILDELINES

FCC:

The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mw/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mw/g average over 1 gram of tissue mass.

CE:

The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mw/g as recommended by the EN50360 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mw/g average over 10 gram of tissue mass.

The test configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device.

There was no SAR of any concern measured on the device for any of the investigated configurations.

SAR Limits

FCC Limit (1g)

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)		
Spatial Average (averaged over the whole body)	0.08	0.4		
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0		
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0		

CE Limit (10g)

	SAR	(W/kg)
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average (averaged over the whole body)	0.08	0.4
Spatial Peak (averaged over any 1 g of tissue)	2.0	10
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

General Population/Uncontrolled environments Spatial Peak limit 1.6 w/kg(FCC) & 2 w/kg (CE) applied to the EUT.

EUT DESCRIPTION

The *SpectraLink Corporation* product, MODEL: 703X or the "EUT" as referred to in this report is a 802.11a/b/g phone, which measures approximately 145 mm (L) x 52 mm (W) x 22 mm (H). The EUT operates at the frequency range of 2412–2462MHz (802.11b/g), 5150-5250MHz (802.11a), 5250-5350MHz (802.11a), and 5725-5825MHz (802.11a).

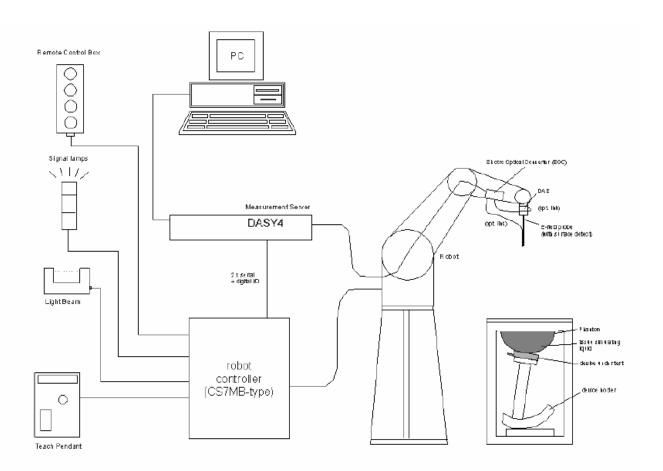
* The test data gathered are from production sample, serial number: 03-1, provided by the manufacturer.

DESCRIPTION OF TEST SYSTEM

These measurements were performed with the automated near-field scanning system DASY4 from Schmid & Partner Engineering AG (SPEAG) which is the fourth generation of the system shown in the figure hereinafter:

The system is based on a high precision robot (working range greater than 0.9m), which positions the probes with a positional repeatability of better than ± 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit.

The SAR measurements were conducted with the dosimetric probe ET3DV6 SN: 1604 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure with accuracy of better than $\pm 10\%$. The spherical isotropy was evaluated with the procedure and found to be better than ± 0.25 dB.


The phantom used was the Generic Twin Phantom. The ear was simulated as a spacer of 4 mm thickness between the earpiece of the phone and the tissue simulating liquid. The Tissue simulation liquid used for each test is in according with the FCC OET65 supplement C as listed below.

Ingredients	Frequency (MHz)									
(% by weight)	45	0	83	35	9	15	19	00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (Nacl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton x-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (s/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

IEEE SCC-34/SC-2 P1528 Recommended Tissue Dielectric Parameters

Frequency	Head		E	Body
(MHz)	٤ _r	O' (S/m)	٤ _r	O' (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

Measurement System Diagram

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.

• DASY4 software.

- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

System Components

- DASY4 Measurement Server
- Data Acquisition Electronics
- Probes
- Light Beam Unit
- Medium
- SAM Twin Phantom
- Device Holder for SAM Twin Phantom
- System Validation Kits
- •Robot

DASY4 Measurement Server

The DASY4 measurement server is based on a PC/104 CPU board with a 166MHz low-power Pentium, 32MB chip disk and 64MB RAM. The necessary circuits for communication with either the DAE4 (or DAE3) electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY4 I/O-board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. The PC-operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with two expansion slots which are reserved for future applications. Please note that the expansion slots do not have a standardized pinout and therefore only the expansion cards provided by SPEAG can be inserted. Expansion cards from any other supplier could seriously damage the measurement server.

Data Acquisition Electronics

The data acquisition electronics DAE3 consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

Probes

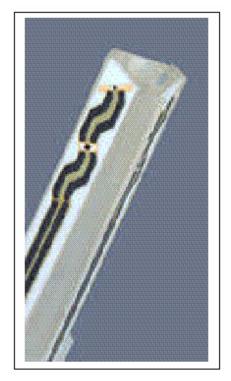
The DASY system can support many different probe types.

Dosimetric Probes: These probes are specially designed and calibrated for use in liquids with high permittivities. They should not be used in air, since the spherical isotropy in air is poor (± 2 dB). The dosimetric probes have special calibrations in various liquids at different frequencies.

Free Space Probes: These are electric and magnetic field probes specially designed for measurements in free space. The z-sensor is aligned to the probe axis and the rotation angle of the x-sensor is specified. This allows the DASY system to automatically align the probe to the measurement grid for field component measurement. The free space probes are generally not calibrated in liquid. (The H-field probes can be used in liquids without any change of parameters.)

Temperature Probes: Small and sensitive temperature probes for general use. They use a completely different parameter set and different evaluation procedures. Temperature rise features allow direct SAR evaluations with these probes.

ET3DV6 Probe Specification


Construction Symmetrical design with triangular core Built-in optical fiber for surface detection System Built-in shielding against static charges Calibration In air from 10 MHz to 2.5 GHz In brain and muscle simulating tissue at Frequencies of 450 MHz, 900 MHz and 1.8 GHz (accuracy \pm 8%) Frequency 10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz) Directivity ± 0.2 dB in brain tissue (rotation around probe axis) ± 0.4 dB in brain tissue (rotation normal probe axis) Dynamic 5 mw/g to > 100 mw/g; Range Linearity: $\pm 0.2 \text{ dB}$ Surface ± 0.2 mm repeatability in air and clear liquids Detection over diffuse reflecting surfaces. Dimensions Overall length: 330 mm Tip length: 16 mm

Photograph of the probe

Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm Application General dosimetric up to 3 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms

The SAR measurements were conducted with the dosimetric probe ET3DV6 designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique: with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY3 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped when reaching the maximum.

Inside view of ET3DV6 E-field Probe

E-Field Probe Calibration Process

Each probe is calibrated according to a dosimetric assessment procedure described in [6] with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure described in [7] and found to be better than +/-0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

Data Evaluation

The DASY4 postprocessing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity

Normi, ai0, ai1, ai2 ConvFi

- Diode compression point dcpi

- Conversion factor

Device parameters: - Frequency	f
- Crest factor	cf
Media parameters: - Conductivity	σ
- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i (i = x, y, z)

Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

 $dcp_i = diode compression point (DASY parameter)$

From the compensated input signals the primary field data for each channel can be evaluated:

$$\begin{split} \mathbf{E}-\text{fieldprobes}: \qquad & E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}\\ \mathbf{H}-\text{fieldprobes}: \qquad & H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f} \end{split}$$

With Vi = compensated signal of channel i (i =x, y, z) Norm_i = sensor sensitivity of channel i (i =x, y, z) $\mu V/(V/m)^2$ for E-field probes ConF = sensitivity enhancement in solution a_{ij} = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] Ei = electric field strength of channel in V/m H_i = diode compression point (DASY parameter)

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

Report #R0604066S-FCC

- With SAR = local specific absorption rate in mw/g
 - E_{tot} = total field strength in V/m
 - σ = conductivity in [mho/m] or [Siemens/m]
 - ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1, to account for actual brain density rather than the density of the simulation liquid.

Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, so that the robot coordinates are valid for the probe tip. The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

Medium

Parameters

The parameters of the tissue simulating liquid strongly influence the SAR in the liquid. The parameters for the different frequencies are defined in the corresponding compliance standards (e.g., EN 50361, IEEE 1528-2003).

Parameter measurements

Several measurement systems are available for measuring the dielectric parameters of liquids:

- The open coax test method (e.g., HP85070 dielectric probe kit) is easy to use, but has only moderate accuracy. It is calibrated with open, short, and deionized water and the calibrations a critical process.
- The transmission line method (e.g., model 1500T from DAMASKOS, INC.) measures the transmission and reflection in a liquid filled high precision line. It needs standard two port calibration and is probably more accurate than the open coax method.
- The reflection line method measures the reflection in a liquid filled shorted precision lined. The method is not suitable for these liquids because of its low sensitivity.
- The slotted line method scans the field magnitude and phase along a liquid filled line. The evaluation is straight forward and only needs a simple response calibration. The method is very accurate, but can only be used in high loss liquids and at frequencies above 100 to 200MHz. Cleaning the line can be tedious.

SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left hand
- Right hand
- Flat phantom

The phantom table comes in two sizes: A 100 x 50 x 85 cm (L x W x H) table for use with free standing robots (DASY4 professional system option) or as a second phantom and a 100 x 75 x 85 cm(L x W x H) table with reinforcements for table mounted robots (DASY4 compact system option).

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different liquids) A white cover is provided to tap the phantom during o_-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The phantom can be used with the following tissue simulating liquids:

- Water-sugar based liquids can be left permanently in the phantom. Always cover the liquid if the system is not used, otherwise the parameters will change due to water evaporation.
- Glycol based liquids should be used with care. As glycol is a softener for most plastics, the liquid should be taken out of the phantom and the phantom should be dried when the system is not used (desirable at least once a week).
- Do not use other organic solvents without previously testing the phantom resistiveness.

Device Holder for SAM Twin Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. An accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions, in which the devices must be measured, are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity "=3 and loss tangent _=0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

System Validation Kits

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. For that purpose a well defined SAR distribution in the flat section of the SAM twin phantom is produced.

System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder. Dipoles are available for the variety of frequencies between 300MHz and 6 GHz (dipoles for other frequencies or media and other calibration conditions are available upon request).

The dipoles are highly symmetric and matched at the center frequency for the specified liquid and distance to the flat phantom (or flat section of the SAM-twin phantom). The accurate distance between the liquid surface and the dipole center is achieved with a distance holder that snaps on the dipole.

Robot

The DASY4 system uses the high precision industrial robots RX60L, RX90 and RX90L, as well as the RX60BL and RX90BL types out of the newer series from Stäubli SA (France). The RX robot series offers many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance-free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (the closed metallic construction shields against motor control fields)

For the newly delivered DASY4 systems as well as for the older DASY3 systems delivered since 1999, the CS7MB robot controller version from Stäubli is used. Previously delivered systems have either a CS7 or CS7M controller; the differences to the CS7MB are mainly in the hardware, but some procedures in the robot software from Stäubli are also not completely the same. The following descriptions about robot hard-and software correspond to CS7MB controller with software version 13.1 (edit S5). The actual commands, procedures and configurations, also including details in hardware, might differ if an older robot controller is in use. In this case please also refer to the Stäubli manuals for further information.

TESTING EQUIPMENT

Equipments List & Calibration Info

Type / Model	Cal. Date	S/N:
DASY4 Professional server	N/A	N/A
Robot RX60L	N/A	F00/5H31A1/A/01
Robot Controller	N/A	F01/5J72A1/A/01
Dell Computer Dimension 3000	N/A	N/A
Pentium(R) 4CPU 3.00GHz, Windows XP	N/A	N/A
SPEAG EDC3	N/A	N/A
SPEAG DAE3	2006-06-01	456
Probe, SAR Sensor ET3DV6	2006-03-18	1604
Probe, SAR Sensor EX3DV4	2006-04-20	3576
SPEAG Generic Twin Phantom	N/A	N/A
SPEAG Light Alignment Sensor	N/A	278
Antenna Dipole D-2450-S-1 (2450MHz)	2005-03-04	BCL-141
Antenna Dipole D5100V2 (5GHz)	2006-05-03	1001
Brain Equivalent Matter (2450MHz)	Each Use	N/A
Muscle Equivalent Matter (2450MHz)	Each Use	N/A
Brain Equivalent Matter (5GHz)	Each Use	N/A
Muscle Equivalent Matter (5GHz)	Each Use	N/A
Robot Table	Each Use	N/A
Phone Holder	Each Use	N/A
Phantom Cover	Each Use	N/A
HP Spectrum Analyzer HP8566A	N/R	2240A01930
Power Meter Agilent E4419B	2005-08-31	MY4121511
Power Sensor Agilent E4412A	2005-09-08	US38488542
Dielectric Probe Kit HP85070A	Each Use	US99360201
Signal Generator HP-83650B	2005-05-10	3614A00276
Amplifier, ST181-20	N/R	E012-0101

SAR MEASUREMENT SYSTEM VERIFICATION

System Accuracy Verification

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

IEEE P1528 recommended reference value for head

Frequency (MHz)	1 g SAR	10 g SAR	Local SAR at surface (above feed point)	Local SAR at surface (v=2cm offset from feed point)
300	3.0	2.0	4.4	2.1
450	4.9	3.3	7.2	3.2
835	9.5	6.2	14.1	4.9
900	10.8	6.9	16.4	5.4
1450	29.0	16.0	50.2	6.5
1800	38.1	19.8	69.5	6.8
1900	39.7	20.5	72.1	6.6
2000	41.1	21.1	74.6	6.5
2450	52.4	24.0	104.2	7.7
3000	63.8	25.7	140.2	9.5

Validation Dipole SAR Reference Test Result for Body (2450 MHz)

Validation Measurement	SAR @ 0.025mW Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.025mW Input averaged over 10g	SAR @ 1W Input averaged over 10g
Test 1	14.2	56.80	6.33	25.32
Test 2	14.3	57.20	6.34	25.36
Test 3	14.2	56.80	6.33	25.32
Test 4	14.1	56.40	6.32	25.28
Test 5	14.3	57.20	6.33	25.32
Test 6	14.0	56.00	6.31	25.24
Test 7	14.2	56.80	6.33	25.32
Test 8	14.2	56.80	6.33	25.32
Test 9	14.4	57.60	6.34	25.36
Test 10	14.2	56.80	6.32	25.28
Average	14.21	56.84	6.32	25.31

Tissue Simulating Liquids

f (CHz)	Head Tissue		Body	Reference	
f (GHz)	ε _r	σ (s/m)	ε _r	σ (s/m)	Kelefence
3.0	38.5	2.40	52.0	2.73	Standard
5.8	35.3	5.27	48.2	6.00	Standard
5.0	36.2	4.45	49.3	5.07	Interpolated
5.1	36.1	4.55	49.1	5.18	Interpolated
5.2	36.0	4.66	49.0	5.30	Interpolated
5.3	35.9	4.76	48.9	5.42	Interpolated
5.4	35.8	4.86	48.7	5.53	Interpolated
5.5	35.6	4.96	48.6	5.65	Interpolated
5.6	35.5	5.07	48.5	5.77	Interpolated
5.7	35.4	5.17	48.3	5.88	Interpolated

Reference SAR Values

f (GHz)		Head Tissue		Body Tissue				
	SAR lg	SAR 10g	SAR peak	SAR lg	SAR 10g	SAR peak		
5.0	72.9	20.7	285.6	68.1	19.2	260.3		
5.1	74.6	21.1	297.5	78.8	19.6	272.3		
5.2	76.5	21.6	310.3	71.8	20.1	284.7		
5.5	83.3	23.4	349.4	79.1	22.0	326.3		
5.8	78.0	21.9	340.9	74.1	20.5	324.7		

EUT TEST STRATEGY AND METHODOLOGY

SAR Evaluation Procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the head or EUT and the horizontal grid spacing was 20 mm x 20 mm. Based on these data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Around this point, a volume of 32 mm x 32 mm x 34 mm was assessed by measuring 5 x 5 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

- 1. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm [11]. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
- 2. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three onedimensional splines with the "Not a knot"-condition (in x, y and z-directions) [11], [12]. The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
- 3. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

CONCLUSION

This page summarizes the results of the performed dosimetric evaluation. The plots with the corresponding SAR distributions, which reveal information about the location of the maximum SAR with respect to the device could be found in Appendix E.

SAR Body & Head Worst-Case Test Data

Environmental Conditions

Ambient Temperature:	21° C
Relative Humidity:	52%
ATM Pressure:	1016 mbar

* Testing was performed by Eric Hong from 2006-04-04

802.11b Mode 2412-2462 MHz

EUT position	Frequency (MHz)	Conducted Power (W)	Battery (mAH)	Test Type	Liquid	Phantom	Notes / Accessories	Measured (mw/g) (1 g)	Limit (mw/g)	Plot #
1.5cm	2437	0.086	850	Body worn	body	flat	Headset PHT200	0.142	1.6	1
1.5cm	2437	0.086	850	Body worn	body	flat	Headset PHT300	0.167	1.6	2
1.5cm	2437	0.086	1100	Body worn	body	flat	Headset PHT200	0.137	1.6	3
1.5cm	2437	0.086	1100	Body worn	body	flat	Headset PHT300	0.142	1.6	4
1.5cm	2437	0.086	1600	Body worn	body	flat	Headset PHT200	0.193	1.6	5
1.5cm	2437	0.086	1600	Body worn	body	flat	Headset PHT300	0.174	1.6	6
Left Head Tilted	2437	0.086	850	Head	Head	left	none	0.190	1.6	7
Left Head Touch	2437	0.086	850	Head	Head	left	none	0.170	1.6	8
Right Head Tilted	2437	0.086	850	Head	Head	right	none	0.165	1.6	9
Right Head Touch	2437	0.086	850	Head	Head	right	none	0.178	1.6	10
Left Head Tilted	2437	0.086	1100	Head	Head	left	none	0.195	1.6	11
Left Head Touch	2437	0.086	1100	Head	Head	left	none	0.172	1.6	12
Right Head Tilted	2437	0.086	1100	Head	Head	right	none	0.165	1.6	13
Right Head Touch	2437	0.086	1100	Head	Head	right	none	0.181	1.6	14
Left Head Tilted	2437	0.086	1600	Head	Head	left	none	0.184	1.6	15
Left Head Touch	2437	0.086	1600	Head	Head	left	none	0.220	1.6	16
Right Head Tilted	2437	0.086	1600	Head	Head	right	none	0.163	1.6	17
Right Head Touch	2437	0.086	1600	Head	Head	right	none	0.161	1.6	18

Report #R0604066S-FCC

802.11g Mode 2412-2462 MHz

EUT position	Frequency (MHz)	Conducted Power (W)		Test Type	Liquid	Phantom	Notes / Accessories	Measured (mw/g) (1 g)	Limit (mw/g)	Plot #
1.5cm	2437	0.067	850	Body worn	body	flat	Headset PHT200	0.073	1.6	19
1.5cm	2437	0.067	850	Body worn	body	flat	Headset PHT300	0.073	1.6	20
1.5cm	2437	0.067	1100	Body worn	body	flat	Headset PHT200	0.076	1.6	21
1.5cm	2437	0.067	1100	Body worn	body	flat	Headset PHT300	0.076	1.6	22
1.5cm	2437	0.067	1600	Body worn	body	flat	Headset PHT200	0.063	1.6	23
1.5cm	2437	0.067	1600	Body worn	body	flat	Headset PHT300	0.074	1.6	24
Left Head Tilted	2437	0.067	850	Head	Head	left	none	0.071	1.6	25
Left Head Touch	2437	0.067	850	Head	Head	left	none	0.079	1.6	26
Right Head Tilted	2437	0.067	850	Head	Head	right	none	0.075	1.6	27
Right Head Touch	2437	0.067	850	Head	Head	right	none	0.081	1.6	28
Left Head Tilted	2437	0.067	1100	Head	Head	left	none	0.077	1.6	29
Left Head Touch	2437	0.067	1100	Head	Head	left	none	0.082	1.6	30
Right Head Tilted	2437	0.067	1100	Head	Head	right	none	0.073	1.6	31
Right Head Touch	2437	0.067	1100	Head	Head	right	none	0.081	1.6	32
Left Head Tilted	2437	0.067	1600	Head	Head	left	none	0.082	1.6	33
Left Head Touch	2437	0.067	1600	Head	Head	left	none	0.093	1.6	34
Right Head Tilted	2437	0.067	1600	Head	Head	right	none	0.078	1.6	35
Right Head Touch	2437	0.067	1600	Head	Head	right	none	0.081	1.6	36

802.11a 5150 - 5250 MHz

EUT position	Frequency (MHz)	Conducted Power (W)		Test Type	Liquid	Phantom	Notes / Accessories	Measured (mw/g) (1 g)	Limit (mw/g)	Plot #
1.5cm	5180	0.038	850	Body worn	body	flat	Headset PHT200	0.387	1.6	37
1.5cm	5180	0.038	850	Body worn	body	flat	Headset PHT300	0.396	1.6	38
1.5cm	5180	0.038	1100	Body worn	body	flat	Headset PHT200	0.356	1.6	39
1.5cm	5180	0.038	1100	Body worn	body	flat	Headset PHT300	0.396	1.6	40
1.5cm	5180	0.038	1600	Body worn	body	flat	Headset PHT200	0.365	1.6	41
1.5cm	5180	0.038	1600	Body worn	body	flat	Headset PHT300	0.372	1.6	42
Left Head Tilted	5180	0.038	850	Head	Head	left	none	0.393	1.6	43
Left Head Touch	5180	0.038	850	Head	Head	left	none	0.286	1.6	44
Right Head Tilted	5180	0.038	850	Head	Head	right	none	0.186	1.6	45
Right Head Touch	5180	0.038	850	Head	Head	right	none	0.393	1.6	46
Left Head Tilted	5180	0.038	1100	Head	Head	left	none	0.318	1.6	47
Left Head Touch	5180	0.038	1100	Head	Head	left	none	0.351	1.6	48
Right Head Tilted	5180	0.038	1100	Head	Head	right	none	0.165	1.6	49
Right Head Touch	5180	0.038	1100	Head	Head	right	none	0.118	1.6	50
Left Head Tilted	5180	0.038	1600	Head	Head	left	none	0.236	1.6	51
Left Head Touch	5180	0.038	1600	Head	Head	left	none	0.388	1.6	52
Right Head Tilted	5180	0.038	1600	Head	Head	right	none	0.239	1.6	53
Right Head Touch	5180	0.038	1600	Head	Head	right	none	0.172	1.6	54

802.11a 5250 – 5350 MHz

EUT position	Frequency (MHz)	Conducted Power (W)		Test Type	Liquid	Phantom	Notes / Accessories	Measured (mw/g) (1 g)	Limit (mw/g)	Plot #
1.5cm	5260	0.037	850	Body worn	body	flat	Headset PHT200	0.204	1.6	55
1.5cm	5260	0.037	850	Body worn	body	flat	Headset PHT300	0.175	1.6	56
1.5cm	5260	0.037	1100	Body worn	body	flat	Headset PHT200	0.221	1.6	57
1.5cm	5260	0.037	1100	Body worn	body	flat	Headset PHT300	0.192	1.6	58
1.5cm	5260	0.037	1600	Body worn	body	flat	Headset PHT200	0.189	1.6	59
1.5cm	5260	0.037	1600	Body worn	body	flat	Headset PHT300	0.181	1.6	60
Left Head Tilted	5260	0.037	850	Head	Head	left	none	0.306	1.6	61
Left Head Touch	5260	0.037	850	Head	Head	left	none	0.296	1.6	62
Right Head Tilted	5260	0.037	850	Head	Head	right	none	0.152	1.6	63
Right Head Touch	5260	0.037	850	Head	Head	right	none	0.154	1.6	64
Left Head Tilted	5260	0.037	1100	Head	Head	left	none	0.361	1.6	65
Left Head Touch	5260	0.037	1100	Head	Head	left	none	0.311	1.6	66
Right Head Tilted	5260	0.037	1100	Head	Head	right	none	0.187	1.6	67
Right Head Touch	5260	0.037	1100	Head	Head	right	none	0.180	1.6	68
Left Head Tilted	5260	0.037	1600	Head	Head	left	none	0.312	1.6	69
Left Head Touch	5260	0.037	1600	Head	Head	left	none	0.239	1.6	70
Right Head Tilted	5260	0.037	1600	Head	Head	right	none	0.164	1.6	71
Right Head Touch	5260	0.037	1600	Head	Head	right	none	0.102	1.6	72

802.11a 5725 – 5825 MHz

EUT position	Frequency (MHz)	Conducted Power (W)	Battery (mAH)	Test Type	Liquid	Phantom	Notes / Accessories	Measured (mw/g) (1 g)	Limit (mw/g)	Plot #
1.5cm	5805	0.052	850	Body worn	body	flat	Headset PHT200	0.271	1.6	91
1.5cm	5805	0.052	850	Body worn	body	flat	Headset PHT300	0.271	1.6	92
1.5cm	5805	0.052	1100	Body worn	body	flat	Headset PHT200	0.266	1.6	93
1.5cm	5805	0.052	1100	Body worn	body	flat	Headset PHT300	0.261	1.6	94
1.5cm	5805	0.052	1600	Body worn	body	flat	Headset PHT200	0.250	1.6	95
1.5cm	5805	0.052	1600	Body worn	body	flat	Headset PHT300	0.254	1.6	96
Left Head Tilted	5805	0.052	850	Head	Head	left	none	0.260	1.6	97
Left Head Touch	5805	0.052	850	Head	Head	left	none	0.286	1.6	98
Right Head Tilted	5805	0.052	850	Head	Head	right	none	0.152	1.6	99
Right Head Touch	5805	0.052	850	Head	Head	right	none	0.214	1.6	100
Left Head Tilted	5805	0.052	1100	Head	Head	left	none	0.213	1.6	101
Left Head Touch	5805	0.052	1100	Head	Head	left	none	0.208	1.6	102
Right Head Tilted	5805	0.052	1100	Head	Head	right	none	0.199	1.6	103
Right Head Touch	5805	0.052	1100	Head	Head	right	none	0.192	1.6	104
Left Head Tilted	5805	0.052	1600	Head	Head	left	none	0.347	1.6	105
Left Head Touch	5805	0.052	1600	Head	Head	left	none	0.143	1.6	106
Right Head Tilted	5805	0.052	1600	Head	Head	right	none	0.251	1.6	107
Right Head Touch	5805	0.052	1600	Head	Head	right	none	0.221	1.6	108

APPENDIX A – MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the DASY4 measurement system and is given in the following Table.

DASY4 Uncertainty Budget According to IEEE 1528 [1]										
	Uncertainty	Prob.	Div.	(c_i)	(c_i)	Std. Unc.	Std. Unc.	(v_i)		
Error Description	value	Dist.		1g	10g	(1g)	(10g)	v_{eff}		
Measurement System										
Probe Calibration	$\pm 5.9 \%$	N	1	1	1	$\pm 5.9~\%$	$\pm 5.9~\%$	∞ –		
Axial Isotropy	$\pm4.7~\%$	R	$\sqrt{3}$	0.7	0.7	$\pm 1.9~\%$	$\pm 1.9~\%$	∞ –		
Hemispherical Isotropy	$\pm 9.6 \%$	R	$\sqrt{3}$	0.7	0.7	$\pm 3.9~\%$	$\pm 3.9~\%$	∞		
Boundary Effects	$\pm 1.0 \%$	R	$\sqrt{3}$	1	1	$\pm 0.6~\%$	$\pm 0.6~\%$	∞		
Linearity	$\pm 4.7 \%$	R	$\sqrt{3}$	1	1	$\pm 2.7~\%$	$\pm 2.7~\%$	∞ –		
System Detection Limits	$\pm 1.0 \%$	R	$\sqrt{3}$	1	1	$\pm 0.6~\%$	$\pm 0.6~\%$	∞		
Readout Electronics	$\pm 0.3 \%$	N	1	1	1	$\pm 0.3 \%$	$\pm 0.3 \%$	∞		
Response Time	$\pm 0.8 \%$	R	$\sqrt{3}$	1	1	$\pm 0.5 \%$	$\pm 0.5 \%$	∞		
Integration Time	$\pm 2.6\%$	R	$\sqrt{3}$	1	1	$\pm 1.5 \%$	$\pm 1.5 \%$	∞		
RF Ambient Conditions	$\pm 3.0 \%$	R	$\sqrt{3}$	1	1	$\pm 1.7~\%$	$\pm 1.7~\%$	∞		
Probe Positioner	$\pm 0.4 \%$	R	$\sqrt{3}$	1	1	$\pm 0.2 \%$	$\pm 0.2 \%$	∞		
Probe Positioning	$\pm 2.9 \%$	R	$\sqrt{3}$	1	1	$\pm 1.7~\%$	$\pm 1.7~\%$	∞		
Max. SAR Eval.	$\pm 1.0 \%$	R	$\sqrt{3}$	1	1	$\pm 0.6~\%$	$\pm 0.6~\%$	∞		
Test Sample Related										
Device Positioning	$\pm 2.9\%$	N	1	1	1	$\pm 2.9~\%$	$\pm 2.9\%$	145		
Device Holder	$\pm 3.6 \%$	N	1	1	1	$\pm 3.6~\%$	$\pm 3.6\%$	5		
Power Drift	$\pm 5.0 \%$	R	$\sqrt{3}$	1	1	$\pm 2.9~\%$	$\pm 2.9\%$	∞		
Phantom and Setup										
Phantom Uncertainty	$\pm 4.0 \%$	R	$\sqrt{3}$	1	1	$\pm 2.3 \%$	$\pm 2.3\%$	∞		
Liquid Conductivity (target)	$\pm 5.0 \%$	R	$\sqrt{3}$	0.64	0.43	$\pm 1.8 \%$	$\pm 1.2~\%$	∞		
Liquid Conductivity (meas.)	$\pm 2.5 \%$	N	1	0.64	0.43	$\pm 1.6~\%$	$\pm 1.1 \%$	∞		
Liquid Permittivity (target)	$\pm 5.0 \%$	R	$\sqrt{3}$	0.6	0.49	$\pm 1.7~\%$	$\pm 1.4~\%$	∞		
Liquid Permittivity (meas.)	$\pm 2.5 \%$	Ν	1	0.6	0.49	$\pm 1.5 \%$	$\pm 1.2~\%$	∞		
Combined Std. Uncertainty						$\pm 10.8 \%$	$\pm 10.6\%$	-330		
Expanded STD Uncertain	ty					$\pm 21.6\%$	$\pm 21.1\%$			

]	DASY4 U According to							
	Uncertainty	Prob.	Div.	(c_i)	(c_i)	Std. Unc.	Std. Unc.	(v_i)
Error Description	value	Dist.		1g	-10g	(1g)	(10g)	v_{eff}
Measurement Equipment						- 01	- 01	
Probe Calibration	$\pm 5.9\%$	Ν	1	1	1	$\pm 5.9\%$	$\pm 5.9 \%$	∞ —
Axial Isotropy	$\pm 4.7\%$	R	$\sqrt{3}$	0.7	0.7	$\pm 1.9\%$	$\pm 1.9 \%$	∞ —
Spherical Isotropy	$\pm 9.6\%$	R	$\sqrt{3}$	0.7	0.7	$\pm 3.9\%$	$\pm 3.9\%$	∞ —
Probe Linearity	$\pm 4.7 \%$	R	$\sqrt{3}$	1	1	$\pm 2.7\%$	$\pm 2.7 \%$	∞ —
Detection Limit	$\pm 1.0 \%$	R	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6 \%$	∞ .
Boundary Effects	$\pm 1.0 \%$	R	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6 \%$	∞
Readout Electronics	$\pm 0.3 \%$	Ν	1	1	1	$\pm 0.3\%$	$\pm 0.3 \%$	∞ .
Response Time	$\pm 0.8 \%$	Ν	1	1	1	$\pm 0.8 \%$	$\pm 0.8 \%$	∞ .
Noise	$\pm 0\%$	Ν	1	1	1	±0%	±0%	∞ .
Integration Time	$\pm 2.6\%$	Ν	1	1	1	$\pm 2.6\%$	$\pm 2.6.\%$	∞ —
Mechanical Constraints								
Scanning System	$\pm 0.4 \%$	R	$\sqrt{3}$	1	1	$\pm 0.2\%$	$\pm 0.2 \%$	∞ —
Phantom Shell	$\pm 4.0 \%$	R	$\sqrt{3}$	1	1	$\pm 2.3\%$	$\pm 2.3 \%$	∞ .
Probe Positioning	$\pm 2.9 \%$	R	$\sqrt{3}$	1	1	$\pm 1.7 \%$	$\pm 1.7 \%$	∞
Device Positioning	$\pm 2.9\%$	Ν	1	1	1	$\pm 2.9,\%$	$\pm 2.9 \%$	145
Physical Parameters								
Liquid Conductivity (target)	$\pm 5.0\%$	R	$\sqrt{3}$	0.7	0.5	$\pm 2.0\%$	$\pm 1.4\%$	∞
Liquid Conductivity (meas.)	$\pm 4.3\%$	R	$\sqrt{3}$	0.7	0.5	$\pm 1.7 \%$	$\pm 1.2 \%$	∞
Liquid Permittivity (target)	$\pm 5.0 \%$	R	$\sqrt{3}$	0.6	0.5	$\pm 1.7 \%$	$\pm 1.4\%$	∞
Liquid Permittivity (meas.)	$\pm 4.3\%$	R	$\sqrt{3}$	0.6	0.5	$\pm 1.5 \%$	$\pm 1.2 \%$	∞
Power Drift	$\pm 5.0 \%$	R	$\sqrt{3}$	1	1	$\pm 2.9\%$	$\pm 2.9 \%$	∞
RF Ambient Conditions	$\pm 3.0\%$	R	$\sqrt{3}$	1	1	$\pm 1.7 \%$	$\pm 1.7 \%$	∞
Post-Processing								
Extrap. and Integration	$\pm 1.0\%$	R	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6 \%$	\propto
Combined Std. Uncertainty						$\pm \ 10.9 \%$	$\pm 10.6 \%$	18125
Expanded Std. Uncertaint	y					$\pm 21.7\%$	$\pm 12.1~\%$	

APPENDIX B – PROBE CALIBRATION CERTIFICATES

Engineering AG Zeughausstrasse 43, 8004 Zur	ory of	(g U z) c	ichweizerischer Kalibrierdienst iervice suisse d'étalonnage iervizio svizzero di taratura wiiss Calibration Service				
Accredited by the Swiss Federal The Swiss Accreditation Servi Multilateral Agreement for the	ice is one of the signator	ries to the EA	Accreditation No.: SCS 108				
Client Bay Area		Certificate No: E	ET3-1604_Mar05				
CALIBRATION	CERTIFICAT	E					
Object	ET3DV6 - SN:1	604					
Calibration procedure(s)		and QA CAL-12.v4 edure for dosimetric E-field probes					
Calibration date:	March 18, 2005						
Condition of the calibrated item	In Tolerance						
Calibration Equipment used (M8	TE critical for calibration)						
Drimon, Standarde	Lip #		Charles College				
	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration				
Power meter E4419B	GB41293874	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388)	May-05				
Power meter E4419B Power sensor E4412A	GB41293874 MY41495277	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388)	May-05 May-05				
Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator	GB41293874 MY41495277 SN: S5054 (3c)	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403)	Мау-05 Мау-05 Аџд-05				
Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	GB41293874 MY41495277	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389)	Мау-05 Мау-05 Ашр-05 Мау-05				
Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403)	Мау-05 Мау-05 Аџд-05				
Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV/2	GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00404)	May-05 May-05 Aug-05 May-05 Aug-05				
Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 617	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house)	May-05 May-05 Aug-05 May-05 Aug-05 Jan-06				
Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV/2 DAE4 Secondary Standards Power sensor HP 8481A	GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 617 ID # MY41092180	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00409) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. E83-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03)	May-05 May-05 Aug-05 May-05 Aug-05 Jan-06 Jan-06 Scheduled Check In house check: Oct 05				
Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C	GB41293874 MY41495277 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 3013 SN: 617 ID # MY41092180 US3642U01700	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00403) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-09 (SPEAG, in house check Dec-03)	May-05 May-05 Aug-05 May-05 Aug-05 Jan-06 Jan-06 Scheduled Check In house check: Oct 05 In house check: Dec-05				
Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV/2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C	GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 617 ID # MY41092180	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00409) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. E83-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03)	May-05 May-05 Aug-05 May-05 Aug-05 Jan-06 Jan-06 Scheduled Check In house check: Oct 05				
Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C Network Analyzer HP 8753E	GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 617 ID # MY41092180 US3642U01700 US37390685 Name	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-86 (SPEAG, in house check Nov-04) FURCIION	May-05 May-05 Aug-05 May-05 Aug-05 Jan-06 Jan-06 Scheduled Check In house check: Oct 05 In house check: Dec-05				
Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C Network Analyzer HP 8753E	GB41293874 MY41495277 SN: S5054 (3c) SN: S5068 (20b) SN: S5129 (30b) SN: 3013 SN: 617 ID # MY41092180 US3642U01700 US37390585	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-09 (SPEAG, in house check Nov-04)	May-05 May-05 Aug-05 May-05 Jan-06 Jan-06 Jan-06 Scheduled Check In house check: Oct 05 In house check: Dec-05 In house check: Dec-05				
Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 617 ID # MY41092180 US3642U01700 US37390685 Name	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-86 (SPEAG, in house check Nov-04) FURCIION	May-05 May-05 Aug-05 Aug-05 Jan-06 Jan-06 Jan-06 Scheduled Check In house check: Oct 05 In house check: Dec-05 In house check: Nov 05 Signature				
Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C Network Analyzer HP 8753E Calibrated by: Approved by:	GB41293874 MY41495277 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 617 ID # MY41092180 US3642U01700 US3642U01700 US37390665 Name Nico Vetterii Kaţia Pokovic	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house) 18-Sep-02 (SPEAG, in house check Dec-03) 18-Oct-01 (SPEAG, in house check Nov-04) Function Laboratory Technician	May-05 May-05 Aug-05 Aug-05 Jan-06 Jan-06 Jan-06 Scheduled Check In house check: Oct 05 In house check: Dec-05 In house check: Nov 05 Signature				

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the IEA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization ϕ	φ rotation around probe axis
Polarization 8	9 rotation around an axis that is in the plane normal to probe axis (at
	measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of
 power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1604_Mar05

Page 2 of 9

March 18, 2005

Probe ET3DV6

SN:1604

Manufactured: Last calibrated: Recalibrated: July 30, 2001 July 10, 2004 March 18, 2005

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1604_Mar05

Page 3 of 9

DASY - Parameters of Probe: ET3DV6 SN:1604 Sensitivity in Free Space ^A Diode Compression NormX 1.88 ± 10.1% µV/(V/m) ² DCP X 93 mV NormY 1.79 ± 10.1% µV/(V/m) ² DCP Y 93 mV NormZ 1.91 ± 10.1% µV/(V/m) ² DCP Z 93 mV NormZ 1.91 ± 10.1% µV/(V/m) ² DCP Z 93 mV Sensitivity in Tissue Simulating Liquid (Conversion Factors) Please see Page 8. Boundary Effect Sensor Center to Phantom Surface Distance 3.7 mm 4.7 mm SAR _{be} (%) Without Correction Algorithm 8.5 4.5 SAR _{be} (%) With Correction Algorithm 0.0 0.2 TSL 1810 MHz Typical SAR gradient: 10 % per mm Sensor Center to Phantom Surface Distance 3.7 mm 4.7 mm SAR _{be} (%) Without Correction Algorithm 13.2 9.0 SAR _{be} (%) With Correction Algorithm 1.0 0.0 Sensor Center to Phantom Surface Distance 3.7 mm 4.7 mm	18, 2005
NormX 1.88 ± 10.1% μV/(V/m)² DCP X 93 mV NormY 1.79 ± 10.1% μV/(V/m)² DCP Y 93 mV NormZ 1.91 ± 10.1% μV/(V/m)² DCP Z 93 mV Sensitivity in Tissue Simulating Liquid (Conversion Factors) Please see Page 8. Boundary Effect TsL 900 MHz Typical SAR gradient: 5 % per mm Sensor Certer to Phantom Surface Distance 3.7 mm 4.7 mm SAR _{be} [%] Without Correction Algorithm 8.5 4.5 SAR _{be} [%] With Correction Algorithm 0.0 0.2 TsL 1810 MHz Typical SAR gradient: 10 % per mm Sensor Center to Phantom Surface Distance 3.7 mm 4.7 mm SAR _{be} [%] Without Correction Algorithm 13.2 9.0 SAR _{be} [%] Without Correction Algorithm 13.2 9.0 SAR _{be} [%] With Correction Algorithm 1.0 0.0 Sensor Offset 2.7 mm 2.7 mm	
NormY 1.79 ± 10.1% μV/(V/m) ² DCP Y 93 mV NormZ 1.91 ± 10.1% μV/(V/m) ² DCP Z 93 mV Sensitivity in Tissue Simulating Liquid (Conversion Factors) Please see Page 8. Boundary Effect TSL 900 MHz Typical SAR gradient: 5 % per mm Sensor Cerifér to Phantom Surface Distance 3.7 mm 4.7 mm SAR _{be} [%] Without Correction Algorithm 8.5 4.5 SAR _{be} [%] With Correction Algorithm 0.0 0.2 TSL 1810 MHz Typical SAR gradient: 10 % per mm Sensor Center to Phantom Surface Distance 3.7 mm 4.7 mm SAR _{be} [%] Without Correction Algorithm 13.2 9.0 SAR _{be} [%] Without Correction Algorithm 13.2 9.0 SAR _{be} [%] With Correction Algorithm 1.0 0.0 Sensor Offset Probe Tip to Sensor Center 2.7 mm	ion ^B
Please see Page 8. Boundary Effect TSL 900 MHz Typical SAR gradient: 5 % per mm Sensor Center to Phantom Surface Distance 3.7 mm 4.7 mm SAR _{be} [%] Without Correction Algorithm 8.5 4.5 SAR _{be} [%] With Correction Algorithm 0.0 0.2 TSL 1810 MHz Typical SAR gradient: 10 % per mm Sensor Center to Phantom Surface Distance 3.7 mm 4.7 mm SAR _{be} [%] Without Correction Algorithm 13.2 9.0 SAR _{be} [%] Without Correction Algorithm 13.2 9.0 SAR _{be} [%] With Correction Algorithm 1.0 0.0 Sensor Center to Phantom Surface Distance 3.7 mm 4.7 mm SAR _{be} [%] With Correction Algorithm 13.2 9.0 SAR _{be} [%] With Correction Algorithm 1.0 0.0 Sensor Offset 2.7 mm 2.7 mm	
Boundary Effect TSL 900 MHz Typical SAR gradient: 5 % per mm Sensor Center to Phantom Surface Distance 3.7 mm 4.7 mm SAR _{bes} [%] Without Correction Algorithm 8.5 4.5 SAR _{bes} [%] With Correction Algorithm 0.0 0.2 TSL 1810 MHz Typical SAR gradient: 10 % per mm Sensor Center to Phantom Surface Distance 3.7 mm 4.7 mm SAR _{bes} [%] Without Correction Algorithm 13.2 9.0 SAR _{bes} [%] Without Correction Algorithm 1.0 0.0 Sensor Center to Phantom Surface Distance 3.7 mm 4.7 mm SAR _{bes} [%] Without Correction Algorithm 13.2 9.0 SAR _{bes} [%] With Correction Algorithm 1.0 0.0 Sensor Offset Probe Tip to Sensor Center 2.7 mm	
TSL 900 MHz Typical SAR gradient: 5 % per mm Sensor Center to Phantom Surface Distance 3.7 mm 4.7 mm SAR _{be} [%] Without Correction Algorithm 8.5 4.5 SAR _{be} [%] With Correction Algorithm 0.0 0.2 TSL 1810 MHz Typical SAR gradient: 10 % per mm Sensor Center to Phantom Surface Distance 3.7 mm 4.7 mm SAR _{be} [%] Without Correction Algorithm 13.2 9.0 SAR _{be} [%] With Correction Algorithm 1.0 0.0 Sensor Center to Phantom Surface Distance 3.7 mm 4.7 mm SAR _{be} [%] Without Correction Algorithm 13.2 9.0 SAR _{be} [%] With Correction Algorithm 1.0 0.0 Sensor Offset Probe Tip to Sensor Center 2.7 mm	
Sensor Center to Phantom Surface Distance 3.7 mm 4.7 mm SAR _{be} [%] Without Correction Algorithm 8.5 4.5 SAR _{be} [%] With Correction Algorithm 0.0 0.2 TSL 1810 MHz Typical SAR gradient: 10 % per mm Sensor Center to Phantom Surface Distance 3.7 mm 4.7 mm SAR _{be} [%] Without Correction Algorithm 13.2 9.0 SAR _{be} [%] Without Correction Algorithm 13.2 9.0 SAR _{be} [%] With Correction Algorithm 1.0 0.0 Sensor Offset Probe Tip to Sensor Center 2.7 mm	
Sensor Center to Phantom Surface Distance 8.5 4.5 SAR _{be} [%] With Correction Algorithm 8.5 4.5 SAR _{be} [%] With Correction Algorithm 0.0 0.2 TSL 1810 MHz Typical SAR gradient: 10 % per mm Sensor Center to Phantom Surface Distance 3.7 mm 4.7 mm SAR _{be} [%] Without Correction Algorithm 13.2 9.0 SAR _{be} [%] With Correction Algorithm 1.0 0.0 SAR _{be} [%] With Correction Algorithm 1.0 0.0 Sensor Offset Probe Tip to Sensor Center 2.7 mm	
Sensor Center to Phantom Surface Distance 3.7 mm 4.7 mm SAR _{be} [%] Without Correction Algorithm 13.2 9.0 SAR _{be} [%] With Correction Algorithm 1.0 0.0 Sensor Offset Probe Tip to Sensor Center 2.7 mm	
Sensor Center to Phantom Surface Distance SAR _{be} [%] Without Correction Algorithm 13.2 9.0 SAR _{be} [%] With Correction Algorithm 1.0 0.0 Sensor Offset Probe Tip to Sensor Center 2.7 mm	
Probe Tip to Sensor Center 2.7 mm	
Probe Tip to Sensor Center	
The reported uncertainty of measurement is stated as the standard uncertainty	
measurement multiplied by the coverage factor k=2, which for a normal distribu- corresponds to a coverage probability of approximately 95%.	of ition
^A The uncertainties of NormX,Y,Z do not affect the E ² -field uncertainty inside TSL (see Page 8). ⁸ Numerical linearization parameter: uncertainty not required.	

Certificate No: ET3-1604_Mar05

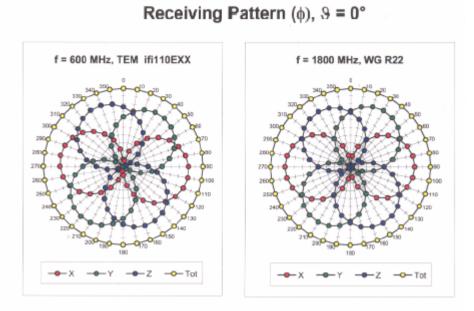
Page 4 of 9

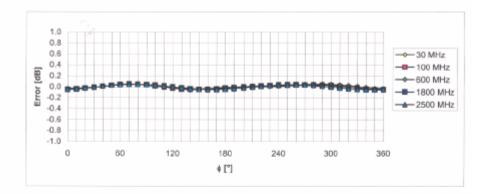
March 18, 2005

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) 1.5 1.4 1.3 Frequency response (normalized) 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0 500 1000 1500 2000 2500 3000

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

-O- R22

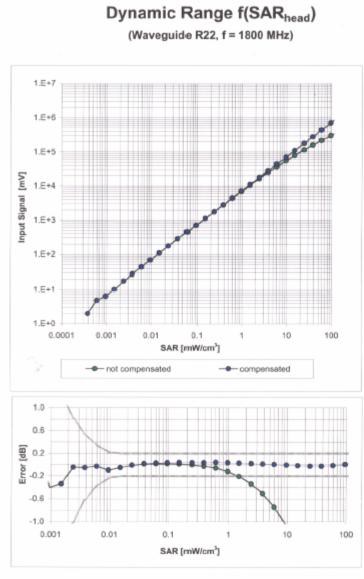

f [MHz]


--- TEM

Certificate No: ET3-1604_Mar05

Page 5 of 9

March 18, 2005



Uncertainty of Axial Is-otropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1604_Mar05

Page 6 of 9

March 18, 2005

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ET3-1604_Mar05

Page 7 of 9

March 18, 2005

ET3DV6 SN:1604

3.5 3.0 h

2.5 2.0 1.5 1.0

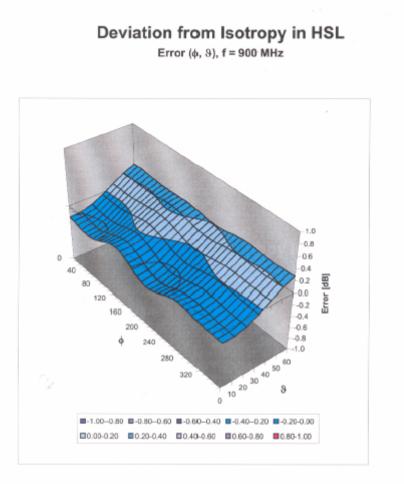
0.5 0.0

0

00000

f = 900 MHz, WGLS R9 (head) f = 1810 MHz, WGLS R22 (head) 30.0 25.0 SAR[mW/cm³] / W 20.0 15.0 10.0 5.0 0.0 20 40 60 20 0 40 60 z[mm] z[mm] -- Analytical -- Measurements -- Analytical

Conversion Factor Assessment


f [MHz]	Validity [MHz] ^G	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
300	± 50 / ± 100	Head	45.3 ± 5%	0.87 ± 5%	0.10	1.14	8.44 ± 13.3% (k=2)
450	± 50 / ± 100	Head	43.5 ± 5%	0.87 ± 5%	0.10	1.10	8.10 ± 13.3% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	$0.97 \pm 5\%$	0.63	1.78	6.62 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	$40.0 \pm 5\%$	$1.40 \pm 5\%$	0.58	2.40	5.19 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	$39.2 \pm 5\%$	$1.80 \pm 5\%$	0.66	2.25	4.58 ± 11.8% (k=2)
450	± 50 / ± 100	Body	$56.7 \pm 5\%$	$0.94 \pm 5\%$	0.06	1.40	7.54 ± 13.3% (k=2)
900	± 50 / ± 100	Body	$55.0\pm5\%$	$1.05 \pm 5\%$	0.53	2.02	6.27 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	$53.3\pm5\%$	1.52 ± 5%	0.55	2.75	4.79 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	$52.7 \pm 5\%$	1.95 ± 5%	0.70	2.13	4.24 ± 11.8% (k=2)

 $^{\rm G}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1604_Mar05

Page 8 of 9

March 18, 2005

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1604_Mar05

Page 9 of 9

SpectraLink Corporation

MODEL: 703X

Schmid 8	Partner	Engineer	ing AG
----------	---------	----------	--------

peag S

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Туре:	ET3DV6
Serial Number:	1604
Place of Assessment:	Zurich
Date of Assessment:	March 21, 2005
Probe Calibration Date:	March 18, 2005

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Page 1 of 2

Assessed by:

Theme Kity

March 21, 2005

ET3DV6-SN:1604

SpectraLink Corporation

Schmid & Partner Engineering AG	S	p	е	а	a
	_		-		

Zeugheusstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1604

Conversion factor (± standard deviation)

f = 150 MHz	ConvF	9.0±10%	$\epsilon_r = 52.3 \pm 5\%$ $\sigma = 0.76 \pm 5\%$ mho/m (head tissue)
f = 150 MHz	ConvF	8.6±10%	$\varepsilon_r = 61.9 \pm 5\%$ $\sigma = 0.80 \pm 5\%$ mho/m (body tissue)
f = 300 MHz	ConvF	7.9±9%	$\epsilon_r = 58.2 \pm 5\%$ $\sigma = 0.92 \pm 5\% \text{ mho/m}$ (body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.

ET3DV6-SN:1604

Page 2 of 2

March 21, 2005

hmid & Partner Engineering AG Ighausstrasse 43, 8004 Zurk	r y of ch, Switzerland		Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio avizzero di taratura Swiss Calibration Service
e Swiss Accreditation Service	e is one of the signator	es to the EA	b.: SCS 108
tilateral Agreement for the r	ecognition of calibratio		EX3-3756_Apr06
	CERTIFICAT	ENALATEI	
ject	EX3DV4 - SN:3	576	
libration procedure(s)		and QA CAL-14.v3 edure for dosimetric E-field probes	
	April 20, 2006		
ibration date:	Abur Foi Food	CALL STREET, STREE	
ndition of the calibrated item	In Tolerance	ational standards, which realize the physical units probability are given on the following pages and a	of measurements (SI). are part of the certificato.
ndition of the calibrated Item s calibration certificate docun a measurements and the unc calibrations have been condu	In Tolerance ments the traceability to na entainties with confidence acted in the closed laborat	probability are given on the following pages and a tory facility: environment temperature (22 ± 3)°C a	are part of the certificate.
ndition of the calibrated Item s calibration certificate docun a measurements and the unc calibrations have been condu	In Tolerance nents the traceability to na artainties with confidence acted in the closed laborat TE critical for calibration)	probability are given on the following pages and a tory facility: environment temperature (22±3)°C a	are part of the certificato. nd humidity < 70%.
ndition of the calibrated Item s calibration certificate docun a measurements and the unc calibrations have been condu libration Equipment used (M8 mary Standards	In Tolerance nents the traceability to na artainties with confidence acted in the closed laborat TE critical for calibration)	probability are given on the following pages and a tory facility: environment temperature (22±3)°C a Cal Date (Calibrated by, Cortificate No.)	are part of the certificate.
ndition of the calibrated Item s calibration certificate docun a measurements and the unc calibrations have been condu ibration Equipment used (M8 mary Standards wer meter E4419B	In Tolerance nents the traceability to na artainties with confidence acted in the closed laborat TE critical for calibration)	probability are given on the following pages and a tory facility: environment temperature (22±3)°C a	are part of the certificate. nd humidity < 70%. Scheduled Calibration
ndition of the calibrated Item s calibration certificate docum a measurements and the unc calibrations have been condu ibration Equipment used (M8 mary Standards wer meter E4419B wer sensor E4412A	In Tolerance	probability are given on the following pages and a boy facility: environment temperature (22 ± 3)°C a Cal Date (Calibrated by, Cortificate No.) 5-Apr-06 (METAS, No. 251-00557)	nd humidity < 70%. Schodulod Calibration Apr-07
ndition of the calibrated Item s calibration certificate docum a measurements and the unc calibrations have been condu ibration Equipment used (M8 mary Standards wer meter E4419B wer sensor E4412A wer sensor E4412A	In Tolerance	probability are given on the following pages and a boy facility: environment temperature (22 ± 3)°C a Cal Date (Calibrated by, Cortificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557)	nd humidity < 70%. Schodulod Calibration Apr-07 Apr-07
ndition of the calibrated Item s calibration certificate docum a measurements and the unc calibrations have been condu libration Equipment used (M8 mary Standards wer meter E4419B wer sensor E4412A wer sensor E4412A ference 3 dB Attenuator	In Tolerance	probability are given on the following pages and a bory facility: environment temperature (22 ± 3)°C a Cal Date (Calibrated by, Cortificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 11-Aug-05 (METAS, No. 251-00557) 11-Aug-05 (METAS, No. 251-00558)	Schodulod Calibration Apr-07 Apr-07 Apr-07 Apr-07 Aug-06 Apr-07
ndition of the calibrated Item s calibration certificate docum a measurements and the unc calibrations have been condu- libration Equipment used (M8 mary Standards wer meter E4419B wer sensor E4412A wer sensor E4412A ference 3 dB Attenuator ference 30 dB Attenuator ference 30 dB Attenuator	In Tolerance	probability are given on the following pages and a bory facility: environment temperature (22 ± 3)°C a Cal Date (Calibrated by, Cortificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 11-Aug-05 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00500)	Schodulod Calibration Apr-07 Apr-07 Apr-07 Apr-07 Apr-07 Aug-06 Apr-07 Aug-06 Apr-07 Aug-06
ndition of the calibrated Item s calibration certificate docum a measurements and the unc calibrations have been condu- ibration Equipment used (M8 mary Standards wer meter E4419B wer sensor E4412A wer sensor E4412A ference 3 dB Attenuator ference 30 dB Attenuator ference 9 ob ES3DV2	In Tolerance	probability are given on the following pages and a bory facility: environment temperature (22 ± 3)°C a Cal Date (Calibrated by, Cortificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 11-Aug-05 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06)	Schodulod Calibration Apr-07 Apr-07 Apr-07 Apr-07 Aug-06 Apr-07 Aug-06 Jan-07
ndition of the calibrated Item s calibration certificate docum a measurements and the unc calibrations have been condu- ibration Equipment used (M8 mary Standards wer meter E4419B wer sensor E4412A wer sensor E4412A ference 3 dB Attenuator ference 30 dB Attenuator ference 9 ob ES3DV2	In Tolerance	probability are given on the following pages and a bory facility: environment temperature (22 ± 3)°C a Cal Date (Calibrated by, Cortificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 11-Aug-05 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00500)	Schodulod Calibration Apr-07 Apr-07 Apr-07 Apr-07 Apr-07 Aug-06 Apr-07 Aug-06 Apr-07 Aug-06
ndition of the calibrated Item s calibration certificate docum a measurements and the unc calibrations have been condu- libration Equipment used (M8 mary Standards wer meter E44198 wer sensor E4412A ference 3 dB Attenuator ference 20 dB Attenuator ference 30 dB Attenuator ference Probe ES3DV2 E4	In Tolerance	probability are given on the following pages and a bory facility: environment temperature (22 ± 3)°C a Cal Date (Calibrated by, Cortificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 11-Aug-05 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house)	Schodulod Calibration Apr-07 Apr-07 Apr-07 Aug-06 Apr-07 Aug-06 Jan-07 Feb-07 Scheduled Check
ndition of the calibrated Item s calibration certificate docum a measurements and the unc calibrations have been condu- ibration Equipment used (M8 mary Standards wer meter E4419B wer sensor E4412A ver sensor E4412A ference 3 dB Attenuator ference 30 dB Attenuator ference 9 nobe ES3DV2 E4 condary Standards	In Tolerance	probability are given on the following pages and a bory facility: environment temperature (22 ± 3)°C a Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 11-Aug-05 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05)	Schodulod Calibration Apr-07 Apr-07 Apr-07 Apr-07 Aug-06 Apr-07 Aug-06 Jan-07 Feb-07 Scheduled Check In house check: Nov-07
ndition of the calibrated Item s calibration certificate docum o measurements and the unc calibrations have been condu- libration Equipment used (M8 mary Standards wer meter E4419B wer sensor E4412A wer sensor E4412A ference 3 dB Attenuator ference 3 dB Attenuator ference 3 dB Attenuator ference 3 dB Attenuator ference Probe ES3DV2 E4 condary Standards generator HP 8648C	In Tolerance	probability are given on the following pages and a bory facility: environment temperature (22 ± 3)°C a Cal Date (Calibrated by, Cortificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 11-Aug-05 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house)	Schodulod Calibration Apr-07 Apr-07 Apr-07 Aug-06 Apr-07 Aug-06 Jan-07 Feb-07 Scheduled Check
ndition of the calibrated Item s calibration certificate docum o measurements and the unc calibrations have been condu- libration Equipment used (M8 mary Standards wer meter E4419B wer sensor E4412A wer sensor E4412A ference 3 dB Attenuator ference 3 dB Attenuator ference 3 dB Attenuator ference 3 dB Attenuator ference Probe ES3DV2 E4 condary Standards generator HP 8648C	In Tolerance	probability are given on the following pages and a bory facility: environment temperature (22 ± 3)°C a Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 11-Aug-05 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05)	Schodulod Calibration Apr-07 Apr-07 Apr-07 Apr-07 Aug-06 Apr-07 Aug-06 Jan-07 Feb-07 Scheduled Check In house check: Nov-07
ndition of the calibrated Item s calibration certificate docum a measurements and the unc calibrations have been condu- libration Equipment used (M8 mary Standards wer meter E44198 wer sensor E4412A wer sensor E4412A ference 3 dB Attenuator ference 3 dB Attenuator ference 9 od B Attenuator ference Probe ES3DV2 E4 condary Standards generator HP 8648C twork Analyzer HP 8753E	In Tolerance	probability are given on the following pages and a bory facility: environment temperature (22 ± 3)°C a Cal Date (Calibrated by, Cortificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 11-Aug-05 (METAS, No. 251-00557) 11-Aug-05 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	see part of the certificato. Ind humidity < 70%. Schoduled Calibration Apr-07 Apr-07 Apr-07 Aug-06 Apr-07 Aug-06 Jan-07 Feb-07 Scheduled Check In house check: Nov-07 In house check: Nov 05
e measurements and the unc	In Tolerance	probability are given on the following pages and a bory facility: environment temperature (22 ± 3)°C a Cal Date (Calibrated by, Cortificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 11-Aug-05 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00508) 2-Jan-06 (SPEAG, No. 251-00500) 2-Jan-06 (SPEAG, No. 251-00500) 2-Jan-06 (SPEAG, No. 253-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) Function	see part of the certificato. Ind humidity < 70%. Schoduled Calibration Apr-07 Apr-07 Apr-07 Aug-06 Apr-07 Aug-06 Jan-07 Feb-07 Scheduled Check In house check: Nov-07 In house check: Nov 05