To: FCC 47 CFR Part15.247 & IC RSS-210

Test Report Serial No.: POLY19-U1 Rev A

To FCC 47 CFR Part15.247 & IC RSS-210

Test Report Serial No.: POLY19-U1 Rev A

This report supersedes: None

Manufacturer: Polycom Corporation

4750 Willow Road

Pleasanton

California 94588, USA

Product Function: 915 MHz Wireless IP Phone

Copy No: pdf Issue Date: 8th March 2011

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc.

440 Boulder Court, Suite 200 Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304

Fax: +1 (925) 462-0306

www.micomlabs.com

TESTING CERTIFICATE #2381.01

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 3 of 67

This page has been left intentionally blank

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 4 of 67

TABLE OF CONTENTS

AC	CREDITATION, LISTINGS & RECOGNITION	5
	TESTING ACCREDITATION	
	RECOGNITION	6
	PRODUCT CERTIFICATION	
1.	TEST RESULT CERTIFICATE	9
2.	REFERENCES AND MEASUREMENT UNCERTAINTY	10
	2.1. Normative References	10
	2.2. Test and Uncertainty Procedures	10
3.	PRODUCT DETAILS AND TEST CONFIGURATIONS	11
	3.1. Technical Details	11
	3.2. Scope of Test Program	
	3.3. Equipment Model(s) and Serial Number(s)	
	3.4. Antenna Details	
	3.5. Cabling and I/O Ports	
	3.6. Test Configurations	
	3.7. Equipment Modifications	
	3.9. Subcontracted Testing or Third Party Data	
4.	TEST SUMMARY	
5.	TEST RESULTS	19
_	5.1. Device Characteristics	19
	5.1.1. 20 dB Bandwidth	
	5.1.2. Transmitter Channels - Channel Spacing	24
	5.1.3. Transmitter Channels	
	5.1.4. Output Power	
	5.1.5. Maximum Permissible Exposure	
	5.1.6. Conducted Spurious Emissions Transmitter	38
	5.1.7. Transmitter Radiated Spurious Emissions (above 1 GHz)	40 52
	5.1.9. Radiated Spurious Emissions (30M-1 GHz)	
	5.1.10. AC Wireline Conducted Emissions (150 kHz – 30 MHz)	
6.	PHOTOGRAPHS	
	6.1. General Measurement Test Set-up	63
	6.2. Radiated Emissions >1 GHz	
	6.3. Radiated Emissions <1 GHz	65
7	TEST FOLIPMENT DETAILS	66

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 5 of 67

ACCREDITATION, LISTINGS & RECOGNITION

TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. available Labs test MiCOM schedule following http://www.a2la.org/scopepdf/2381-01.pdf

The American Association for Laboratory Accreditation

Accredited Laboratory

A2LA has accredited

MICOM LABS

Pleasanton, CA for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 14th day of April 2010.

President & CEO For the Accreditation Council Certificate Number 2381.01 Valid to November 30, 2011

For the tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 6 of 67

RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	тсв	-	Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	Listing #: 4143A
Japan	VCCI	-	-	No. 2959
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong Office of the Telecommunication Author (OFTA)		CAB	APEC MRA 1	
Ministry of Information and Korea Communication Radio Research Laboratory (RRL)		CAB	APEC MRA 1	US0159
Singapore Infocomm Development Authority (IDA)		CAB	APEC MRA 1	030139
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

^{**}APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

N/A - Not Applicable

Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

**NB - Notified Body

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

^{**}EU MRA – European Union Mutual Recognition Agreement.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 7 of 67

PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC Guide 65. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org/scopepdf/2381-02.pdf

The American Association for Laboratory Accreditation

World Class Accreditation

Accredited Product Certification Body

A2LA has accredited

MICOM LABS

Pleasanton, CA for technical competence as a

Product Certification Body

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC Guide 65:1996

General requirements for bodies operating product certification systems. This accreditation demonstrates technical competence for a defined scope and the operation of a quality management system for a Telecommunications Certification Body (TCB) meeting FCC (U.S.), and IC (Canada) requirements.

Presented this 24th day of June 2010.

President & CEO
For the Accreditation Council
Certificate Number 2381.02
Valid to November 30, 2011

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation.

<u>United States of America – Telecommunication Certification Body (TCB)</u>

TCB Identifier - US0159

<u>Industry Canada – Certification Body</u>

CAB Identifier - US0159

<u>Europe – Notified Body</u>

Notified Body Identifier - 2280

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 8 of 67

DOCUMENT HISTORY

Document History			
Revision	Date	Comments	
Draft			
Rev A	8th March 2011	Initial Release	

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 9 of 67

1. TEST RESULT CERTIFICATE

Manufacturer: Polycom Corporation Tested By: MiCOM Labs, Inc.

> 4750 Willow Road 440 Boulder Court

Suite 200 Pleasanton California 94588, USA Pleasanton

California, 94566, USA

EUT: 915 MHz Wireless IP Phone Telephone: +1 925 462 0304

602X Model: Fax: +1 925 462 0306

S/N: Conducted: 907350556.

Radiated: 907351559

27th -28th February 2011 Website: Test Date(s): www.micomlabs.com

> STANDARD(S) **TEST RESULTS**

FCC 47 CFR Part15.247 & IC RSS-210 **EQUIPMENT COMPLIES**

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

TESTING CERTIFICATE #2381.01

Graeme Grieve

Quality Manager MiCOM Labs,

Gordon Hurst

dent & CEO MiCOM Labs, Inc.

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 10 of 67

2. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

2.1. Normative References

Ref.	Publication	Year	Title
(i)	FCC 47 CFR Part 15.247	2010	Code of Federal Regulations
(ii)	Industry Canada RSS-210	Issue 8 Dec 2010	Low Power License-Exempt Radiocommunication Devices (All Frequency Bands)
(iii)	Industry Canada RSS-Gen	Issue 3 Dec 2010	General Requirements and Information for the Certification of Radiocommunication Equipment.
(iv)	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(v)	CISPR 22/ EN 55022	2008 2006+A1:2007	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(vi)	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
(vii)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(viii)	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(ix)	A2LA	9th June 2010	Reference to A2LA Accreditation Status – A2LA Advertising Policy

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 11 of 67

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. **Technical Details**

Details	Description
Purpose:	Test of the Polycom SpectraLink 602X Wireless Phone
	to FCC Part 15.247 and Industry Canada RSS-210
	regulations
Applicant:	Polycom Corporation
	4750 Willow Road
	Pleasanton
	California 94588, USA
Manufacturer:	As Applicant
Laboratory performing the tests:	MiCOM Labs, Inc.
	440 Boulder Court, Suite 200
	Pleasanton, California 94566 USA
Test report reference number:	POLY19-U1 Rev A
Date EUT received:	24 th February 2011
Standard(s) applied:	FCC 47 CFR Part15.247 & IC RSS-210
Dates of test (from - to):	27th -28th February 2011
No of Units Tested:	Two (1xConducted and 1xRadiated Testing)
Type of Equipment:	915 MHz Wireless IP Phone
Manufacturers Trade Name:	602X
Model:	602X
Location for use:	
Antenna:	Internal
Declared Frequency Range(s):	902 - 928 MHz
Declared Nominal Output Power:	+20 dBm
EUT Modes of Operation:	FHSS (Frequency Hopping Spread Spectrum)
Transmit/Receive Operation:	Transceiver, Simplex
Rated Input Voltage and Current:	Battery: 4.2 Vdc, 1.6Ah
Operating Temperature Range:	Client declared range : 0°C to +50°C
Frequency Stability:	Client declared : ±20ppm
EUT Dimensions:	5.4" x 2.0" x 0.9"
EUT Weight :	4.8 oz
Primary function of equipment:	Wireless IP Phone

Serial #: POLY19-U1 Rev A

Issue Date: 8th March 2011

Page: 12 of 67

3.2. Scope of Test Program

The scope of the test program was to perform a Class II Permissive Change for the Polycom SpectraLink 602X Wireless Phone in the frequency ranges 902 - 928 MHz against FCC 47 CFR Part 15.247 and Industry Canada RSS-210 specifications for radiated and conducted emissions for intentional radiators.

Change to the product which initiated the Class II Permissive Change was;

Change of RF buffer amplifier (U43 & U44). New device is manufactured by RF Micro Device, part number RF2373.

The intentional radiator was tested in a simulated typical installation to demonstrate compliance with the stated standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of the EUT, orientation of the power and I/O cabling, antenna search height and antenna polarization.

Every effort was made to perform an impartial test using appropriate test equipment of known calibration.

The Polycom SpectraLink 602X Wireless Phone (EUT) reader is a Frequency Hoping Spread Spectrum (FHSS) transceiver. The EUT required modification to bring it into compliance, see Section 3.7 "Equipment Modifications".

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 13 of 67

Polycom Spectralink 915 MHz Wireless IP Phone 602X

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 14 of 67

Polycom Spectralink 915 MHz Wireless IP Phone 602X Miscellaneous

Serial #: POLY19-U1 Rev A

Issue Date: 8th March 2011

Page: 15 of 67

3.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	915 MHz Wireless IP Phone (used for conducted testing)	Polycom	602X	911631873
EUT	915 MHz Wireless IP Phone (used for radiated testing)	Polycom	602X	911631854
EUT	Ultra-Extended battery pack	Polycom	PBP1850	N/A
Support	Dual charging stand	Hon-Kwang	PCD1850	N/A

3.4. Antenna Details

1. Integral antenna, Gain 0 dBi

3.5. Cabling and I/O Ports

Number and type of I/O ports

1. NONE

3.6. Test Configurations

Test configurations

Operating Channel	Frequencies (MHz)
0	902.4817
26	914.7370
52	927.4826

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 16 of 67

3.7. **Equipment Modifications**

The following modifications were required to bring the equipment into compliance:

1. NONE

3.8. **Deviations from the Test Standard**

The following deviations from the test standard were required in order to complete the test program:

2. NONE

Subcontracted Testing or Third Party Data 3.9.

The following tests were performed by a MiCOM Labs approved test facility;-

1. NONE

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 17 of 67

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.247, Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(a)(1) A8.1	20 dB BW	20 dB BW	Conducted	Complies	5.1.1
15.247(a)(1) A8.1	Transmitter Channels	Channel Spacing	Conducted	Complies	5.1.2
15.247(a)(1) A8.1	Transmitter Channels	Number of Channels	Conducted	Complies	5.1.3.1
		Channel Occupancy	Conducted	Complies	5.1.3.2
15.247(b)(2) A8.4	Output Power	Transmit Power	Conducted	Complies	5.1.4
15.247(i) 5.5	Maximum Permissible Exposure	Exposure to radio frequency energy levels	Conducted	Complies	5.1.5
15.247(d) A8.5	Conducted Spurious Emissions	Band Edge	Conducted	Complies	5.1.6
		Spurious Emissions Transmitter	Conducted	Complies	
		(1 to 10 GHz)			

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 18 of 67

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.247, Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(d) 15.205 15.209 A8.5 2.2 2.6 4.9	Transmitter Radiated Spurious Emissions (above 1GHz)	Transmitter	Radiated	Complies	5.1.7
4.10 §7.2.3		Standby	Radiated	Not Tested	5.1.8
15.247(d) 15.205 15.209 A8.5 2.2 2.6	Radiated Emissions below 1 GHz		Radiated	Complies (Class B)	5.1.9
15.207 7.2.2	Conducted	AC Wireline Conducted Emissions	Conducted	Not Tested	5.1.10

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 3.7 - Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

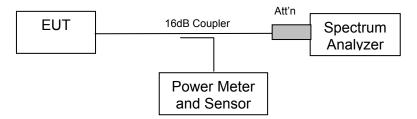
To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 19 of 67

5. TEST RESULTS

5.1. Device Characteristics


5.1.1. 20 dB Bandwidth

FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §A8.1

Test Procedure

The 20 dB bandwidth is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

Test Measurement Set up

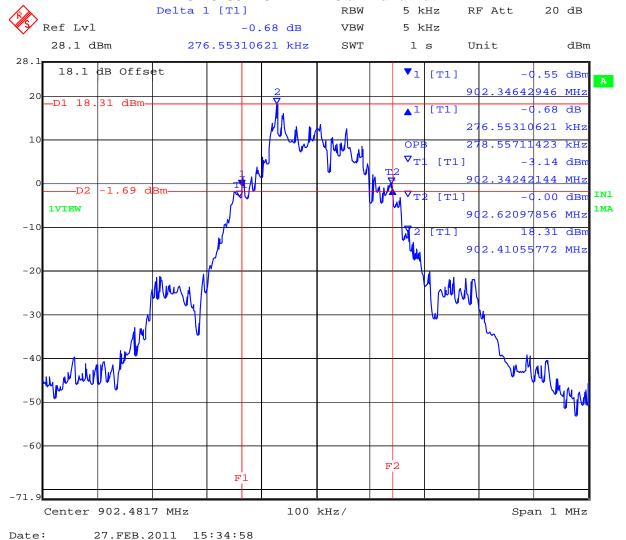
Measurement set up for 20 dB bandwidth test

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 20 of 67

Test Results for 20 dB Bandwidth


Ambient conditions.

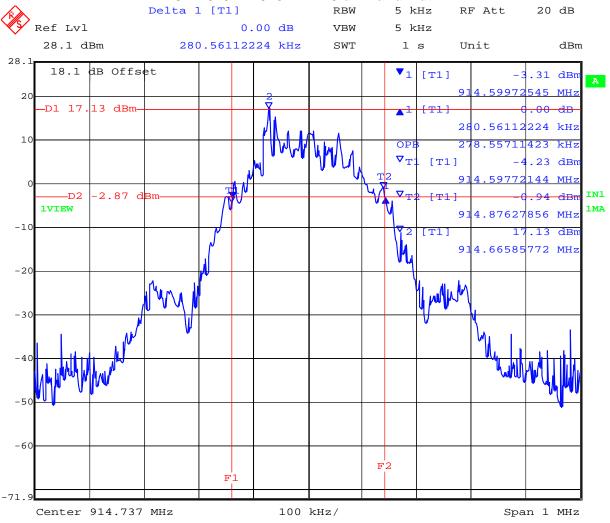
Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS

Channel #	Center Frequency (MHz)	20 dB Bandwidth (kHz)	99% Bandwidth (kHz)	Specification (kHz)
0	902.4817	276.553	278.557	
26	914.7370	280.561	278.557	<500
52	927.4826	278.557	278.557	

CH 0 902.4817 MHz 20 dB Bandwidth

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

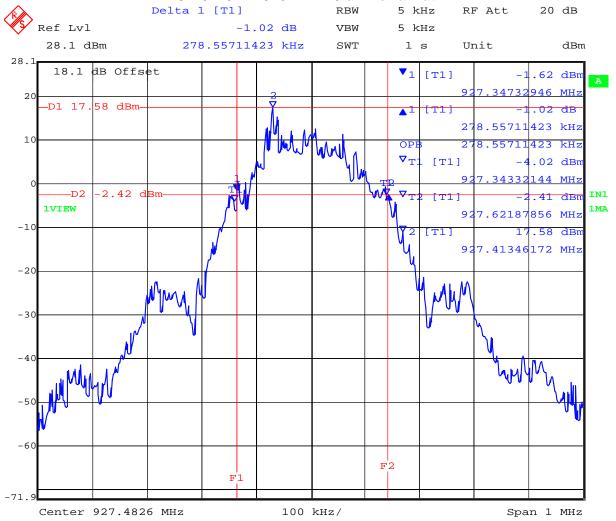


To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 21 of 67

CH 26 914.7370 MHz 20 dB Bandwidth



To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 22 of 67

CH 52 927.4826 MHz 20 dB Bandwidth

Date: 27.FEB.2011 15:42:25

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 23 of 67

Specification

Limits

FCC §15.247 (a)(1) Industry Canada RSS-210 §8.1

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement uncertainty	±2.81 dB
-------------------------	----------

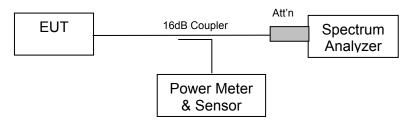
Traceability

Method	Test Equipment Used
Measurements were made per work	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117
instruction WI-03 'Measurement of RF	
Spectrum Mask'	

Serial #: POLY19-U1 Rev A

Issue Date: 8th March 2011

Page: 24 of 67


5.1.2. <u>Transmitter Channels - Channel Spacing</u>

FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §8.1(2)

Test Procedure

The channel spacing is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

Test Measurement Set up

Measurement set up for Channel Spacing Test

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 25 of 67

Ambient conditions.

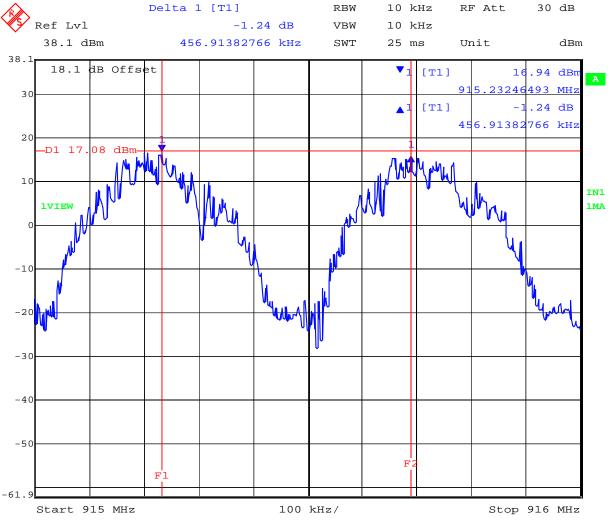

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS

Channel(s)	Channel Spacing (KHz)	Specification
27-28	456.914	Greater than maximum 20 dB Bandwidth

Maximum 20 dB bandwidth = 280.160 kHz

Channel Spacing for CH 27 - CH 28

Date: 27.FEB.2011 15:48:22

Serial #: POLY19-U1 Rev A

Issue Date: 8th March 2011
Page: 26 of 67

Specification for Channel Spacing

Limits

FCC §15.247 (a)(1)

Industry Canada RSS-210 §A8.1(2)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Laboratory Uncertainty for Frequency Measurements

Measurement uncertainty	±0.86ppm
-------------------------	----------

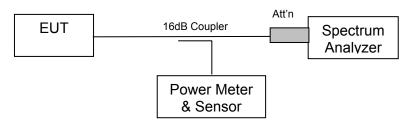
Traceability

Method	Test Equipment Used
Measurements were made per work	0078, 0134, 0158, 0184, 0193, 0250,0252
instruction WI-02 'Frequency Measurement"	0310, 0312.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 27 of 67


5.1.3. <u>Transmitter Channels</u>

5.1.3.1. Number of Channels FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §A8.1

Test Procedure

The number of channels and channel occupancy is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

Test Measurement Set up

Test set up to measure the number of channels and channel occupancy

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 28 of 67

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS

Number of Channels	Specification
50	Minimum of 50 hopping channels

Number of Transmission Channels

Date: 27.FEB.2011 16:00:22

To: FCC 47 CFR Part15.247 & IC RSS-210

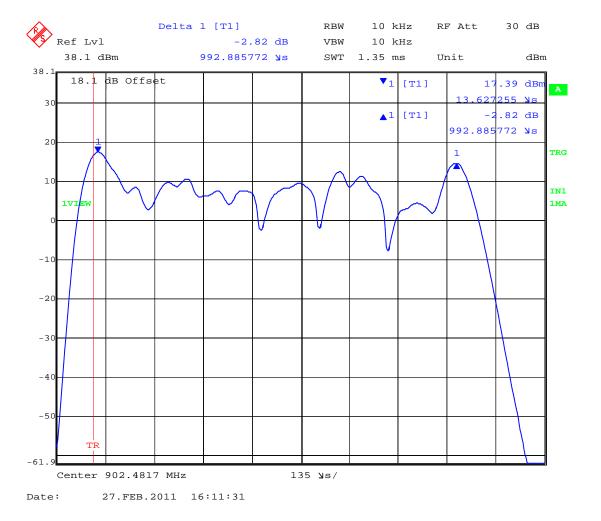
Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 29 of 67

5.1.3.2. Channel Occupancy FCC, Part 15 Subpart C §15.247(a)(1)

Industry Canada RSS-210 §A8.1

Ambient conditions.


Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Channel Dwell Time

TABLE OF RESULTS

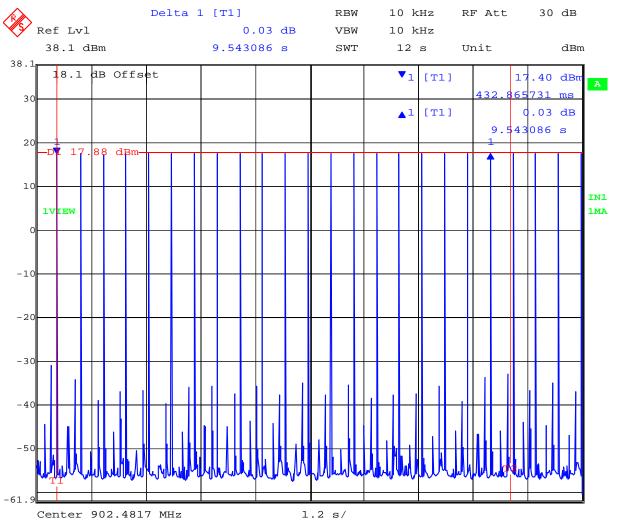
Channel #	Center Frequency (MHz)	Channel Dwell Time (single channel) (mSecs)
26	902.4817	0.9929

Channel dwell time Ch 26 914.7370 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Serial #: POLY19-U1 Rev A

Issue Date: 8th March 2011


Page: 30 of 67

Channel Occupancy

TABLE OF RESULTS

Center Frequency (MHz)	# of Transmissions within 10 sec Period	Dwell Time (mS)	Channel Occupancy within 10 Second Period (mSeconds)	Limit (mS)
902.4817	20	0.9929	19.858	400

Channel Occupancy 914.7370 MHz

Date: 27.FEB.2011 16:06:50

Serial #: POLY19-U1 Rev A

Issue Date: 8th March 2011
Page: 31 of 67

Specification for Number of Channels and Channel Occupancy

Limits

FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §A8.1

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Laboratory Uncertainty for Frequency Measurements

Measurement uncertainty	±0.86ppm
-------------------------	----------

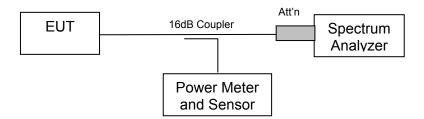
Traceability

Method	Test Equipment Used
Measurements were made per work	0078, 0134, 0158, 0184, 0193, 0250,
instruction WI-02 'Frequency Measurement"	0252 0310, 0312.

0: FCC 47 CFR Pail 13.247 & 1C RSS

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 32 of 67


5.1.4. Output Power

FCC, Part 15 Subpart C §15.247(b)(2) Industry Canada RSS-210 §A8.4

Test Procedure

The transmitter terminal of EUT was set for CW (continuous wave) operation and connected to the input of the power meter which was calibrated to measure power. The value of measured power including antenna cable loss was reported.

Test Measurement Set up

Measurement set up for Transmitter Output Power

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 33 of 67

Measurement Results for Output Power

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS

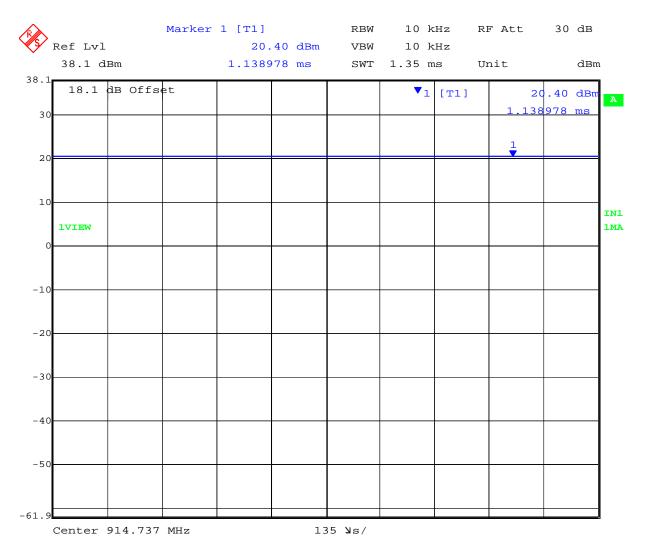
Channel #	Center Frequency (MHz)	Average Power (dBm)
0	902.4817	+20.96
26	914.7370	+20.40
52	927.4826	+20.18

Power 902.4817 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

27.FEB.2011 16:15:36

Date:



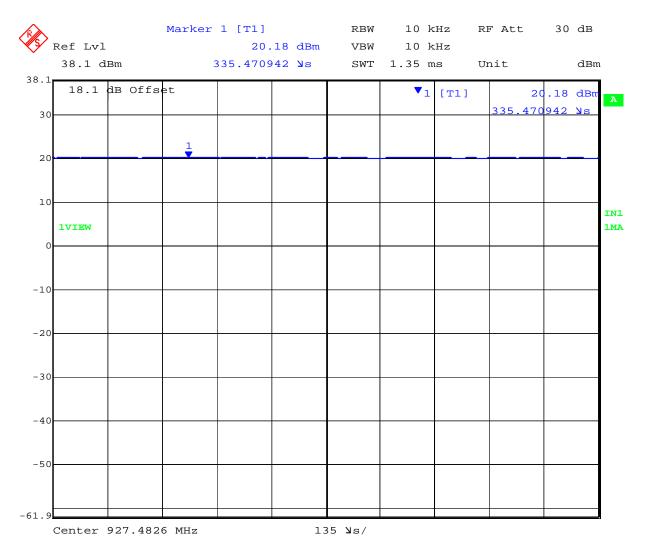
To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 34 of 67

Power 914.7370 MHz

Date: 27.FEB.2011 16:17:06



To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 35 of 67

Power 927.4826 MHz

Date: 27.FEB.2011 16:18:16

Serial #: POLY19-U1 Rev A

Issue Date: 8th March 2011

Page: 36 of 67

Specification

Limits

FCC, Part 15 Subpart C §15.247 (b)(2) The maximum output power of the intentional radiator shall not exceed the following:

(2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Industry Canada RSS-210 §A8.4

For frequency hopping systems operating in the 902 - 928 MHz band, the maximum peak conducted power output power is not to succeed 1.0 W if the hopset uses 50 or more hopping channels and 0.25 W if the hopset uses less than 50 hopping channels.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 37 of 67

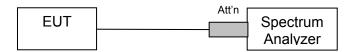
5.1.5. Maximum Permissible Exposure

FCC, Part 15 Subpart C §15.247(i) Industry Canada RSS-Gen §5.5

SAR report exists for this product, report #: R0601092S

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 38 of 67


5.1.6. Conducted Spurious Emissions Transmitter

FCC, Part 15 Subpart C §15.247(d) Industry Canada RSS-210 §A8.5

Test Procedure

Conducted emissions were measured at a limit of 20 dB below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Emissions at the band edge were measured and recorded. Measurements were made while EUT was operating in transmit mode of operation at the appropriate center frequency.

Test Measurement Set up

Band-edge measurement test configuration

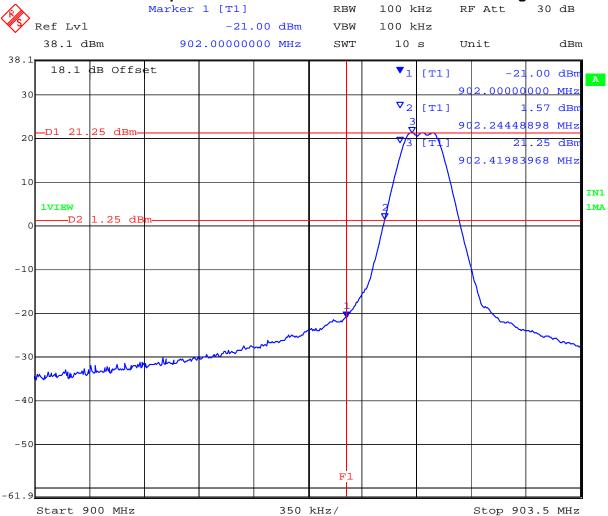
Measurement Results of Conducted Spurious Emissions

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011


Page: 39 of 67

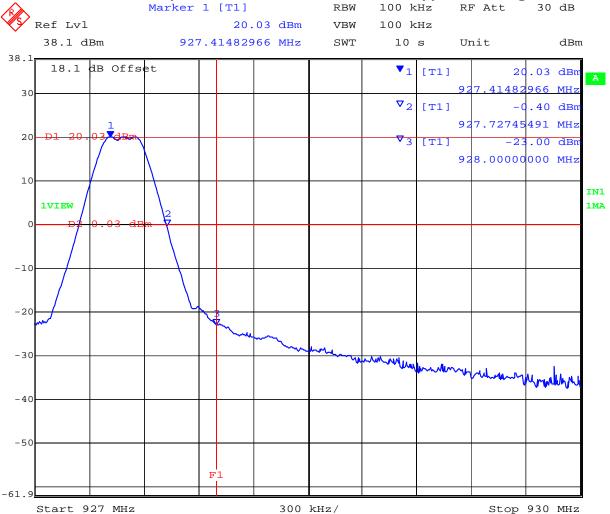
Conducted Band-Edge Results

TABLE OF RESULTS

Channel #	Center Frequency (MHz)	Band-edge Frequency (MHz)	Limit (dBm)	Amplitude @ Band-edge (dBm)	Margin (dB)
0	902.4817	902.0	+1.25	-21.00	-22.25
52	927.4826	928.0	+0.03	-23.00	-23.03

Conducted Spurious Emissions at the 902 MHz Lower Band Edge

27.FEB.2011 16:22:13



To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 40 of 67

Conducted Spurious Emissions at the 928 MHz Upper Band Edge

Date: 27.FEB.2011 16:25:46

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 41 of 67

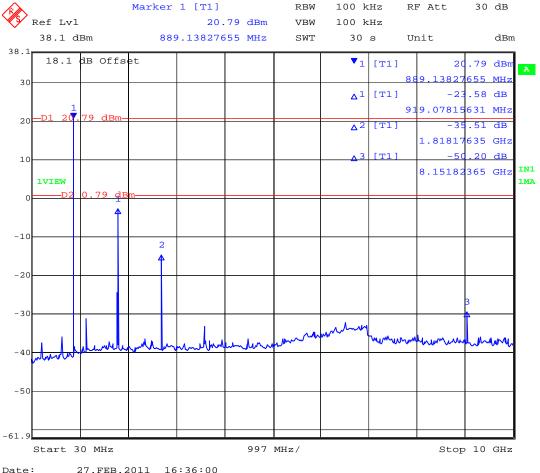
Spurious Emissions (30 – 10,000 MHz)

Conducted spurious emissions (30 - 10,000 MHz) are provided indicated by the following matrix. Measurements were performed with the transmitter tuned to the channel closest to the band-edge being measured. All emissions were maximized during measurement. Limits which were derived from the band-edge measurements provided below are drawn on each plot.

TABLE OF RESULTS

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
902.4817	30	10,000	-2.79	+0.79	-3.58

The emission breaking the limit line is the carrier.



To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

> 42 of 67 Page:

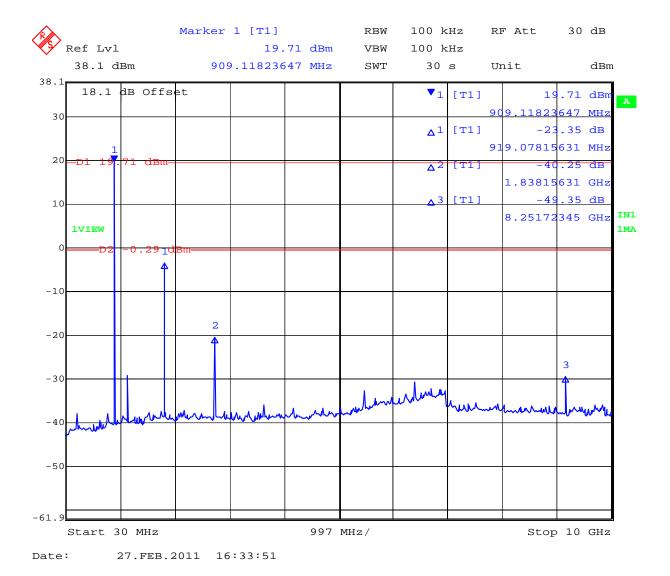
Conducted Transmitter Spurious Emissions Channel 902.4817 MHz 30 to 10,000 MHz

27.FEB.2011 16:36:00

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 43 of 67


TABLE OF RESULTS

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
914.7370	30	10,000	-3.64	-0.29	-3.35

The emission breaking the limit line is the carrier.

Conducted Transmitter Spurious Emissions

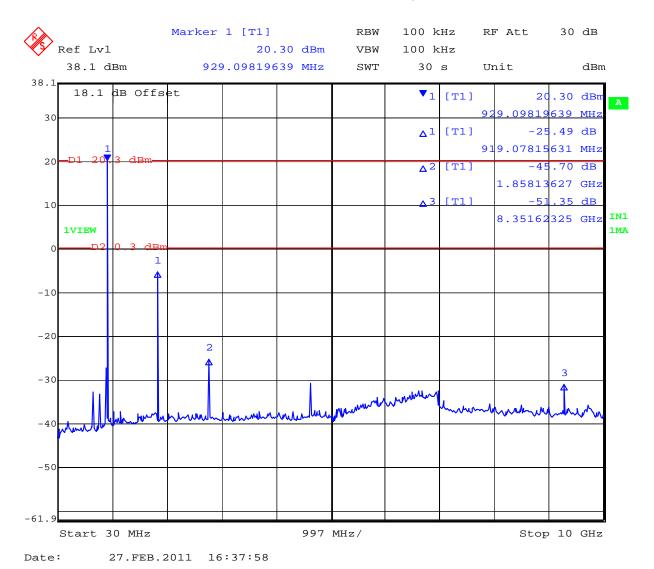
Channel 914.7370 MHz 30 to 10 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 44 of 67


TABLE OF RESULTS

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
927.4826	30	10,000	-5.19	+0.30	-5.49

The emission breaking the limit line is the carrier.

Conducted Transmitter Spurious Emissions

Channel 927.4826 MHz - 30 to 10,000 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 45 of 67

Specification

Limits Band-Edge

Lower Limit Band-edge	Upper Limit Band-edge	Limit below highest level of desired power
902 MHz	928 MHz	≥ 20 dB

FCC, Part 15 Subpart C §15.247(d)

Industry Canada RSS-210 §A.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

Measurement uncertainty ±2.37 dB

Traceability

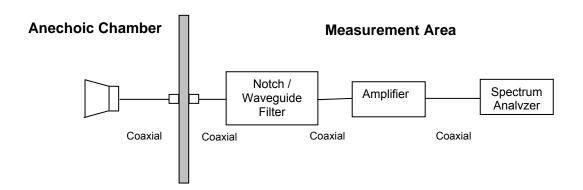
Method	Test Equipment Used
Measurements were made per work instruction WI-05 'Measurement of Spurious Emissions'	0088, 0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 46 of 67

5.1.7. Transmitter Radiated Spurious Emissions (above 1 GHz)


FCC, Part 15 Subpart C §15.247(d) Industry Canada RSS-210 §A8.5

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Test Measurement Set up

Measurement set up for Radiated Emission Test

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 47 of 67

For example:

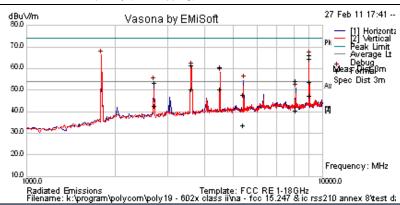
Given receiver input reading of $51.5~dB_{\mu}V$; Antenna Factor of 8.5~dB; Cable Loss of 1.3~dB; Falloff Factor of 0~dB, an Amplifier Gain of 26~dB and Notch Filter Loss of 1~dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level $(dB\mu V/m) = 20 * Log (level (\mu V/m))$

40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m


Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 48 of 67

Ch 0 Radiated Emissions Above 1 GHz (1 – 10 GHz)

Test Freq.	902.4817 MHz	Engineer	GMH				
Variant	FHSS	Temp (°C)	17.5				
Freq. Range	1000 MHz - 10000 MHz	Rel. Hum.(%)	34				
Power Setting	Maximum	Press. (mBars)	1005				
Antenna	Integral	Duty Cycle (%)					
Test Notes 1	Phone in charger during test. Battery fully charged						
Test Notes 2	EUT set for static frequency (non-hopping)						

Formally measured emission peaks

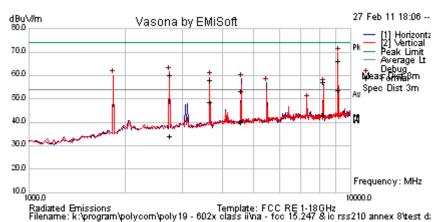
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
3610.051	68.5	3.7	-10.7	61.5	Peak Max	٧	198	159	74.0	-12.5	Pass	RB
4512.372	66.0	4.2	-9.7	60.5	Peak Max	Н	168	146	74.0	-13.5	Pass	RB
5414.917	52.4	4.6	-9.2	47.9	Peak Max	Н	100	0	74	-26.1	Pass	RB
2707.338	61.2	3.2	-11.2	53.2	Peak Max	Н	99	16	74	-20.8	Pass	RB
8121.819	52.6	5.7	-4.0	54.2	Peak Max	Н	100	346	74	-19.8	Pass	RB
9024.146	63.7	6.2	-3.7	66.2	Peak Max	V	98	76	74	-7.8	Pass	RB
9025.492	61.9	6.2	-3.7	64.5	Peak Max	٧	98	88	74	-9.6	Pass	RB
3610.051	57.3	3.7	-10.7	50.2	Average Max	V	198	159	54	-3.8	Pass	RB
4512.372	55.9	4.2	-9.7	50.4	Average Max	Н	168	146	54	-3.6	Pass	RB
5414.917	38.0	4.6	-9.2	33.4	Average Max	Н	100	0	54	-20.6	Pass	RB
2707.338	50.5	3.2	-11.2	42.5	Average Max	Н	99	16	54	-11.5	Pass	RB
8121.819	38.7	5.7	-4.0	40.3	Average Max	Н	100	346	54	-13.7	Pass	RB
9024.146	51.3	6.2	-3.7	53.8	Average Max	V	98	76	54	-0.2	Pass	RB
9025.492	45.0	6.2	-3.7	47.5	Average Max	V	98	88	54	-6.5	Pass	RB
1793.587	76.4	2.6	-12.8	66.2	Peak [Scan]	V					Pass	NRB

Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011


Page: 49 of 67

Ch 26 (914.7370) MHz Radiated Emissions Above 1 GHz (1 – 10 GHz)

Test Freq.	914.737 MHz	Engineer	GMH				
Variant	FHSS	Temp (°C)	17.5				
Freq. Range	1000 MHz - 10000 MHz	Rel. Hum.(%)	34				
Power Setting	Maximum	Press. (mBars)	1005				
Antenna	Integral	Duty Cycle (%)					
Test Notes 1	Phone in charger during test. Battery fully charged						
Test Notes 2	EUT set for static frequency (non-hopping)						

Legend:

Formally measured emission peaks

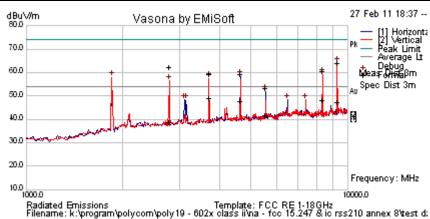
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
9146.666	63.4	6.2	-3.4	66.3	Peak Max	V	99	300	74.0	-7.7	Pass	RB
2744.131	68.4	3.2	-11.6	60.1	Peak Max	V	130	312	74.0	-14.0	Pass	RB
3658.994	65.1	3.7	-10.7	58.2	Peak Max	V	201	165	74	-15.8	Pass	RB
4574.001	59.2	4.2	-10.1	53.4	Peak Max	Н	126	167	74	-20.6	Pass	RB
8232.572	55.2	5.7	-3.6	57.4	Peak Max	Н	104	66	74	-16.6	Pass	RB
9146.666	50.8	6.2	-3.4	53.6	Average Max	V	99	300	54	-0.4	Pass	RB
2744.131	42.2	3.2	-11.6	33.8	Average Max	V	130	312	54	-20.2	Pass	RB
3658.994	55.4	3.7	-10.7	48.4	Average Max	V	201	165	54	-5.6	Pass	RB
4574.001	46.0	4.2	-10.1	40.2	Average Max	Н	126	167	54	-13.8	Pass	RB
8232.572	40.9	5.7	-3.6	43.0	Average Max	Н	104	66	54	-11.0	Pass	RB
1829.659	70.3	2.6	-12.8	60.2	Peak [Scan]	V					Pass	NRB
5490.982	61.1	4.6	-8.8	57.0	Peak [Scan]	Н					Pass	NRB
						•						

This test report may be reproduced in full only. The document may only be updated by MiCOM

TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011


> 50 of 67 Page:

Ch 52 (927.4826) MHz Radiated Emissions Above 1 GHz (1 – 10 GHz)

Test Freq.	927.4826 MHz	Engineer	GMH				
Variant	FHSS	Temp (°C)	17.5				
Freq. Range	1000 MHz - 10000 MHz	Rel. Hum.(%)	34				
Power Setting	Maximum	Press. (mBars)	1005				
Antenna	Integral	Duty Cycle (%)					
Test Notes 1	Phone in charger during test. Battery fully charged						
Test Notes 2	EUT set for static frequency (non-hopping)						

Legend:

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
9275.483	60.5	6.2	-2.9	63.9	Peak Max	V	135	83	74.0	-10.2	Pass	RB
8346.747	58.4	5.8	-3.7	60.5	Peak Max	V	99	0	74.0	-13.5	Pass	RB
4637.380	64.7	4.3	-9.9	59.2	Peak Max	Н	113	272	74	-14.9	Pass	RB
3709.919	66.4	3.7	-10.6	59.5	Peak Max	V	174	128	74	-14.5	Pass	RB
2782.484	70.7	3.2	-11.6	62.3	Peak Max	V	124	300	74	-11.7	Pass	RB
5564.637	57.0	4.7	-8.5	53.2	Peak Max	Н	180	175	74	-20.8	Pass	RB
9275.483	44.0	6.2	-2.9	47.3	Average Max	V	135	83	54	-6.7	Pass	RB
8346.747	46.1	5.8	-3.7	48.2	Average Max	V	99	0	54	-5.8	Pass	RB
4637.380	53.2	4.3	-9.9	47.6	Average Max	Н	113	272	54	-6.5	Pass	RB
3709.919	56.0	3.7	-10.6	49.1	Average Max	٧	174	128	54	-4.9	Pass	RB
2782.484	47.1	3.2	-11.6	38.7	Average Max	V	124	300	54	-15.3	Pass	RB
5564.637	45.5	4.7	-8.5	41.7	Average Max	Н	180	175	54	-12.3	Pass	RB
1847.695	67.9	2.7	-12.6	57.9	Peak [Scan]	٧					Pass	NRB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 51 of 67

FCC, Part 15 Subpart C §15.247(d) Industry Canada RSS-210 §A8.5

Specification

FCC Part 15 Subpart C §15.247(d)

Industry Canada §A8.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

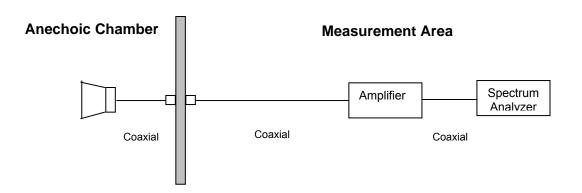
Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

Serial #: POLY19-U1 Rev A

Issue Date: 8th March 2011

Page: 52 of 67


5.1.8. Receiver Radiated Spurious Emissions

Industry Canada RSS-Gen §7.2.3

Test Procedure

Receiver emissions were measured on the device on the mid channel. The EUT was placed in Receiver mode and emissions were measured 0.03 – 10 GHz.

Test Measurement Set up

Spurious emissions test configuration

Measurement Results of Stand -By Spurious Emissions

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

NOT TESTED AS PART OF THIS CLASS II PERMISSIVE CHANGE

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 53 of 67

Specification

Antenna Conducted Measurement Industry Canada RSS-Gen §7.2.3

If the device has a detachable antenna of known antenna impedance, then the antenna conducted method is permitted in lieu of a radiated measurement.

Receiver spurious emissions at any discrete frequency shall not exceed 2 nanowatts

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

(-57 dBm) in the band 30-1000 MHz, or 5 nanowatts (-53 dBm) above 1 GHz.

Measurement uncertainty	±2.37 dB
-------------------------	----------

Traceability

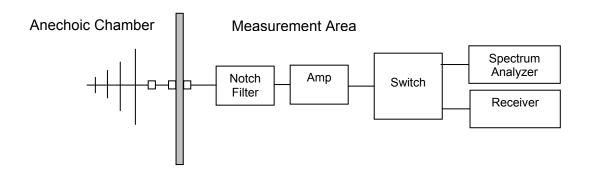
Method	Test Equipment Used
Measurements were made per work instruction WI-05 'Measurement of Spurious Emissions'	0088, 0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 54 of 67

5.1.9. Radiated Spurious Emissions (30M-1 GHz)


FCC, Part 15 Subpart C §15.247(d), §15.205, 15.209 Industry Canada RSS-210 §A8.5, 2.2, 2.6.

Test Procedure

Preliminary radiated emissions were measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarity. The emissions are recorded with a CISPR compliant spectrum analyzer in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. A photograph of the test set-up in the anechoic chamber in Section 6 Test Set-Up Photographs.

A notch filter with >70 dB of rejection was used to remove the fundamental frequency.

Test Measurement Set up

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

FS = R + AF + CORR

where:

FS = Field Strength
R = Measured Receiver Input Amplitude
AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss AG = Amplifier Gain

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 55 of 67

For example:

Given a Receiver input reading of 51.5dBμV; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

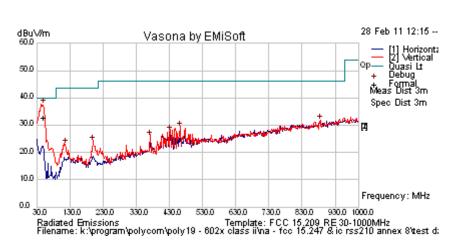
$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level $(dB\mu V/m) = 20 * Log (level (\mu V/m))$

 $40 \text{ dB}\mu\text{V/m} = 100\mu\text{V/m}$ $48 \text{ dB}_{\mu}\text{V/m} = 250_{\mu}\text{V/m}$

To: FCC 47 CFR Part15.247 & IC RSS-210


Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 56 of 67

Digital Emissions 0.03 - 1 GHz

Test Freq.	N/A	Engineer	EVF					
Variant	Digital Emissions	Temp (°C)	18					
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	34					
Power Setting	N/A	Press. (mBars)	1011					
Antenna	integral							
Test Notes 1	Handset (Spectralink Model: 6020) with battery, while charging in dock with power supply (Model: HK-J-120A050-CP); Battery fully charged							
Test Notes 2	Rx: Ch. 26							

Formally measured emission peaks

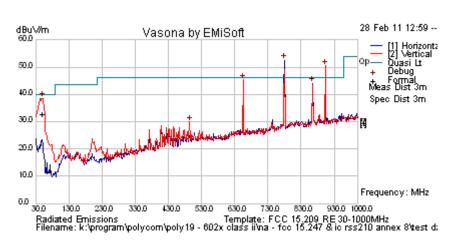
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
51.307	52.4	3.7	-23.3	32.8	Quasi Max	٧	113	25	40	-7.2	Pass	
116.504	36.3	4.3	-17.6	23.0	Peak [Scan]	V	98	0	43.5	-20.5	Pass	
200.458	37.2	4.8	-17.9	24.1	Peak [Scan]	٧	98	0	43.5	-19.4	Pass	
372.240	35.6	5.6	-15.3	25.9	Peak [Scan]	V	98	0	46.0	-20.1	Pass	
431.540	35.6	5.8	-13.8	27.5	Peak [Scan]	٧	98	0	46.0	-18.5	Pass	
462.095	36.7	5.9	-13.3	29.3	Peak [Scan]	٧	98	0	46.0	-16.8	Pass	
884.908	31.8	7.3	-7.3	31.8	Peak [Scan]	٧	98	0	46.0	-14.3	Pass	

Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency

NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011


Page: 57 of 67

Transmitter Emissions Below 1 GHz

Channel 902.4817 Transmitter Emissions 0.03 - 1 GHz

Test Freq.	902.4817 MHz	Engineer	EVF					
Variant	FHSS	Temp (°C)	17.5					
Freq. Range	30 - 1000 MHz	Rel. Hum.(%)	33					
Power Setting	Maximum	Press. (mBars)	1011					
Antenna	Integral	Duty Cycle (%)						
Test Notes 1	Handset (Spectralink Model: 6020) with battery, while charging in dock with power supply (Model: HK-U-120A050-CP); Battery fully charged							
Test Notes 2	EUT set for static frequency (non-hopping);	TX: Ch. 01						

Formally measured emission peaks

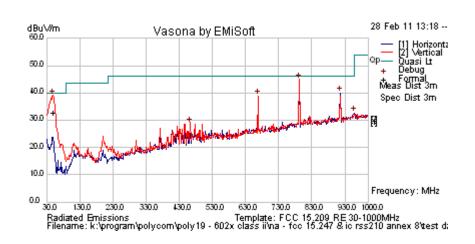
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
779.170	54.1	7.1	-8.7	52.5	Peak [Scan]	Н					Pass	NRB
902.405	50.6	7.3	-7.4	50.5	Peak [Scan]	Н					Pass	NRB
655.375	48.9	6.6	-10.2	45.3	Peak [Scan]	V					Pass	NRB
51.307	52.4	3.7	-23.3	32.8	Quasi Max	V	113	25	40.0	-7.2	Pass	DIG
864.172	44.6	7.2	-7.8	44.0	Peak [Scan]	Н					Pass	NRB
494.048	36.3	6.0	-12.6	29.7	Peak [Scan]	V	98	0	46.0	-16.3	Pass	DIG

Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; AMB-Ambient

NRB = Non-Restricted Band. RB = Restricted Band.

NRB emissions comply per Section 5.1.6 Conducted Spurious Emissions Transmitter

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

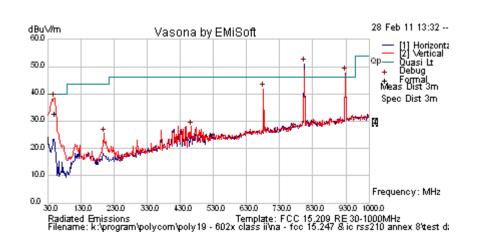
Page: 58 of 67

Channel 914.7370 MHz Transmitter Emissions 0.03 – 1 GHz

Test Freq.	914.737 MHz	Engineer	EVF					
Variant	FHSS	Temp (°C)	17.5					
Freq. Range	30 - 1000 MHz	Rel. Hum. (%)	33					
Power Setting	Maximum	Press. (mBars) 1011						
Antenna	Integral	ntegral Duty Cycle (%)						
Test Notes 1	Handset (Spectralink Model: 6020) with batter 120A050-CP); Battery fully charged	y, while charging in dock with po	ower supply (Model: HK-U-					
Test Notes 2	EUT set for static frequency (non-hopping); T	X: Ch. 26						

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
791.263	46.6	7.1	-8.6	45.0	Peak [Scan]	V					Pass	NRB
51.307	52.4	3.7	23.3	32.8	Quasi Max	V	113	25	40.0	-7.2	Pass	DIG
914.681	40.0	7.4	-7.4	40.0	Peak [Scan]	Н					Pass	NRB
667.637	42.5	6.6	- 10.2	38.9	Peak [Scan]	V					Pass	NRB
959.178	31.6	7.6	-6.4	32.7	Peak [Scan]	Н	200	0	46	-13.3	Pass	noise floor
462.396	36.3	5.9	13.3	28.9	Peak [Scan]	V	98	0	46	-17.1	Pass	DIG

NRB emissions comply per Section 5.1.6 Conducted Spurious Emissions Transmitter


Serial #: POLY19-U1 Rev A

Issue Date: 8th March 2011
Page: 59 of 67

Channel 927.4826 MHz Transmitter Emissions 0.03 - 1 GHz

Test Freq.	927.4826 MHz	Engineer	EVF					
Variant	FHSS	Temp (°C)	17.5					
Freq. Range	30 - 1000 MHz	Rel. Hum.(%) 33						
Power Setting	Maximum	Press. (mBars) 1011						
Antenna	Integral	Integral Duty Cycle (%)						
Test Notes 1	Handset (Spectralink Model: 6020) with batter 120A050-CP); Battery fully charged	ry, while charging in dock with p	ower supply (Model: HK-U-					
Test Notes 2	EUT set for static frequency (non-hopping); T	X: Ch. 52						

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
804.030	52.0	7.2	-8.2	51.0	Peak [Scan]	Η					Pass	NRB
927.511	47.5	7.4	-7.3	47.7	Peak [Scan]	Н					Pass	NRB
51.307	52.4	3.7	23.3	32.8	Quasi Max	٧	113	25	40.0	-7.2	Pass	DIG
680.381	45.2	6.6	- 10.0	41.9	Peak [Scan]	V					Pass	NRB
462.732	35.4	5.9	- 13.3	28.0	Peak [Scan]	٧	98	0	46	-18.0	Pass	DIG
200.466	38.6	4.8	- 17.9	25.5	Peak [Scan]	V	98	0	43.5	-18.0	Pass	DIG

Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; AMB-Ambient
NRB = Non-Restricted Band. RB = Restricted Band.

NRB emissions comply per Section 5.1.6 Conducted Spurious Emissions Transmitter

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 60 of 67

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

§15.209 (a) and RSS-Gen §2.2 Limit Matrix

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

Magaurament uncertainty	+5.6/ -4.5 dB
Measurement uncertainty	+5.6/ -4.5 UB

Traceability

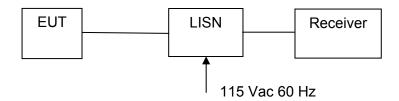
Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312, 0341

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 61 of 67

5.1.10. AC Wireline Conducted Emissions (150 kHz - 30 MHz)


FCC, Part 15 Subpart C §15.207

Industry Canada RSS-Gen §7.2.2

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Test Measurement Set up

Measurement set up for AC Wireline Conducted Emissions Test

Measurement Results for AC Wireline Conducted Emissions (150 kHz - 30 MHz)

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

NOT TESTED AS PART OF THIS CLASS II PERMISSIVE CHANGE

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 62 of 67

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

RSS-Gen §7.2.2

The radio frequency voltage that is conducted back into the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The tighter limit applies at the frequency range boundaries.

§15.207 (a) and RSS-Gen §7.2.2 Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dBμV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

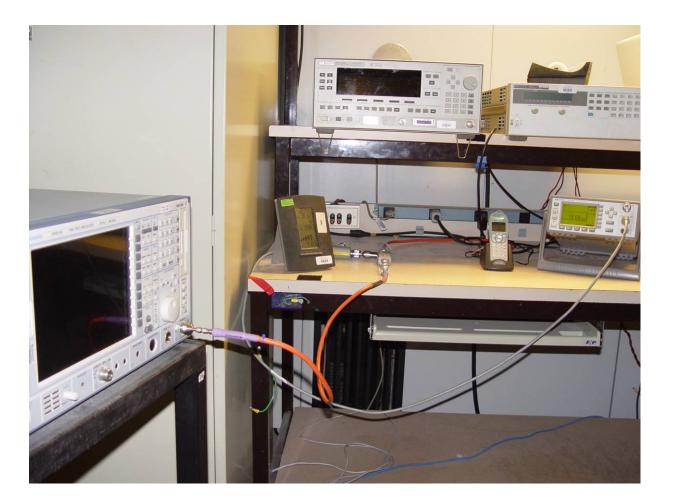
^{*} Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	±2.64 dB

Traceability

Method	Test Equipment Used
Measurements were made per Sanmina work instruction	0190, 0193

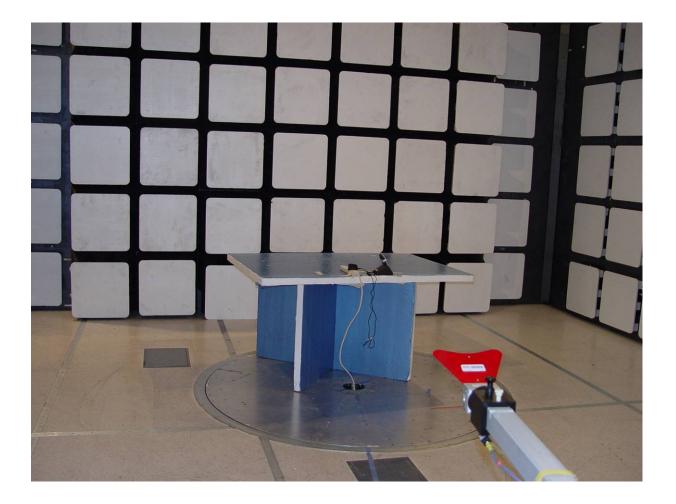


Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 63 of 67

6. PHOTOGRAPHS

6.1. **General Measurement Test Set-up**



To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 64 of 67

6.2. Radiated Emissions >1 GHz

Serial #: POLY19-U1 Rev A

Issue Date: 8th March 2011 Page: 65 of 67

6.3. Radiated Emissions <1 GHz

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: POLY19-U1 Rev A Issue Date: 8th March 2011

Page: 66 of 67

7. TEST EQUIPMENT DETAILS

Asset #	Instrument	Instrument Manufacturer		Serial #
0088	Spectrum Analyzer	Hewlett Packard	8564E	3410A00141
0104	1-18GHz Horn Antenna	The Electro-Mechanics Company	3115	9205-3882
0134	Amplifier	Com Power	PA 122	181910
0158	Barometer /Thermometer	Control Co.	4196	E2846
0193	EMI Receiver	Rhode & Schwartz	ESI 7	838496/007
0252	SMA Cable	Megaphase	Sucoflex 104	None
0310	2m SMA Cable	Micro-Coax	UFA210A-0-0787- 3G03G0	209089-001
0312	3m SMA Cable	Micro-Coax	UFA210A-1-1181- 3G0300	209092-001
0313	Coupler	Hewlett Packard	86205A	3140A01285
0314	30dB N-Type Attenuator	ARRA	N9444-30	1623
0070	Power Meter	Hewlett Packard	437B	3125U11552
0116	Power Sensor	Hewlett Packard	8485A	3318A19694
0117	Power Sensor	Hewlett Packard	8487D	3318A00371
0184	Pulse Limiter	Rhode & Schwartz	ESH3Z2	357.8810.52
0190	LISN	Rhode & Schwartz	ESH3Z5	836679/006
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002
0341	902-928 MHz Notch Filter	EWT	EWT-14-0199	H1

440 Boulder Court, Suite 200 Pleasanton, CA 94566, USA Tel: 1.925.462.0304

Fax: 1.925.462.0306 www.micomlabs.com