
User's Guide Bluetooth Series 1000 Amp Clamp Meters with IR Thermometer AC/DC True RMS Clamp meter

Patented

Introduction

1000A True RMS AC/DC Current Clamp models measure:

- Infrared Temperature
- AC/DC Voltage
- Resistance
- Capacitance
- Frequency
- Continuity
- Diode

Specific functions:

- DC Current, True RMS, Type K thermometer, DC Zero
- Auto Power OFF
- Max/Min recording
- Data Hold
- Peak Hold
- Backlit LCD display

Careful use of this meter will provide many years of reliable service.

Safety

International Safety Symbols

This symbol, adjacent to another symbol or terminal, indicates the user must refer to the manual for further information.

This symbol, adjacent to a terminal, indicates that, under normal use, hazardous voltages may be present

Double insulation

SAFETY NOTES

- Do not exceed the maximum allowable input range of any function.
- · Do not apply voltage to meter when resistance function is selected.
- Set the function switch OFF when the meter is not in use.
- Remove the battery if meter is to be stored for longer than 60 days.

WARNINGS

- Set function switch to the appropriate position before measuring.
- When measuring volts do not switch to current/resistance modes.
- Do not measure current on a circuit whose voltage exceeds 600V.
- When changing ranges always disconnect the test leads from the circuit under test.
- Bluetooth

Life Support Policy and Use in Safety-Critical Applications

CSR's products are not authorised for use in life-support or safety-critical applications. Use in such applications is done at the sole discretion of the customer. CSR will not warrant the use of its devices in such applications.

RoHS Compliance

BlueCore4-External devices meet the requirements of Directive 2002/95/EC of the European Parliament and of the Council on the Restriction of Hazardous Substance (RoHS).

Trademarks, Patents and Licenses

Unless otherwise stated, words and logos marked with [™] or [®] are trademarks registered or owned by Cambridge Silicon Radio Limited or its affiliates. Bluetooth® and the Bluetooth logos are trademarks owned by Bluetooth SIG, Inc. and licensed to CSR. Other products, services and names used in this document may have been trademarked by their respective owners.

The publication of this information does not imply that any license is granted under any patent or other rights owned by Cambridge Silicon Radio Limited.

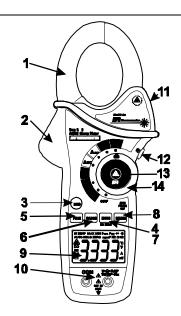
CSR reserves the right to make technical changes to its products as part of its development programme.

While every care has been taken to ensure the accuracy of the contents of this document, CSR cannot accept responsibility for any errors.

UL Note

A UL mark does not indicate that this product has been evaluated for accuracy.

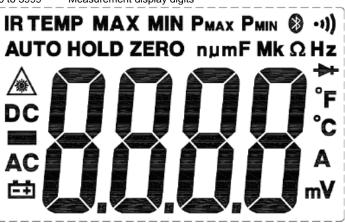
CAUTIONS


- Improper use of this meter can cause damage, shock, injury or death. Read and understand this user manual before operating the meter.
- Always remove the test leads before replacing the battery or fuses.
- Inspect the condition of the test leads and the meter itself for any damage before operating the meter.
 Repair or replace any damage before use.
- Use great care when making measurements if the voltages are greater than 25VAC rms or 35VDC.
 These voltages are considered a shock hazard.
- Always discharge capacitors and remove power from the device under test before performing Diode, Resistance or Continuity tests.
- Voltage checks on electrical outlets can be difficult and misleading because of the uncertainty of
 connection to the recessed electrical contacts. Other means should be used to ensure that the terminals
 are not "live".
- If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Function	Maximum Input
A AC, A DC	1000A DC/AC
V DC, V AC	600V DC/AC
Resistance, Capacitance, Frequency, Diode Test	250V DC/AC
Type K Temperature	60V DC, 24V AC

Description

eter Description


- 1. Current clamp
- 2. Clamp opening trigger
- 3. Data Hold Button
- 4. Mode
- 5. Peak
- 6. Range
- 7. DCA Zero
- 8. MIN/MAX
- 9. Backlit LCD Display
- 10. Test lead input jacks
- 11. IR thermometer and laser pointer (rear)
- 12. Backlight /BT active / Store trigger button
- 13. Laser pointer button
- 14. Function switch

Display icons Description

HOLD Data Hold

Minus sign Negative reading display 0 to 3999 Measurement display digits

ZERO DCA Zero
P Peak value

AUTO Auto Range mode

DC/AC Direct Current / Alternating Current

MAX Max reading
MIN Min reading
Low battery

mV or V Milli-volts or Volts (Voltage)

Ω Ohms (Resistance)
 A Amperes (Current)
 F Farad (Capacitance)
 Hz Hertz (Frequency)

°F and °C Fahrenheit and Celsius units (Temperature)

n, m, $\mu,\,M,\,k$ $\,$ Unit of measure prefixes: nano, milli, micro, mega, and kilo

•i)) Continuity test

→ Diode test

Laser pointer

BT active

Specifications

Function	Range & Resolution	Accuracy (% of reading + digits)	
AC Current 50/60 Hz True RMS	400.0 AAC	± (2.5% + 8d)	
	1000 AAC	± (2.8% + 5d)	
DC Current	400.0 ADC	± (2.5% + 5d)	
	1000 ADC	± (2.8% + 5d)	
AC Voltage 50/60Hz True RMS	400.0 mVAC	± (1.0% + 10d)	
	4.000 VAC		
	40.00 VAC	± (1.5% + 5d)	
	400.0 VAC		
	600 VAC	± (2.0% + 5d)	
DC Voltage	400.0 mVDC	± (0.8% + 2d)	
	4.000 VDC		
	40.00 VDC	± (1.5% + 2d)	
	400.0 VDC		
	600 VDC	± (2.0% + 2d)	
Resistance	400.0Ω	± (1.0% + 4d)	
	4.000kΩ		
	40.000kΩ	± (1.5% + 2d)	
	400.0kΩ		
	$4.000 \mathrm{M}\Omega$	± (2.5% + 3d)	
	40.00ΜΩ	± (3.5% + 5d)	
Capacitance	4.000nF	± (5.0% + 30d)	
	40.00nF	± (5.0% + 20d)	
	400.0nF		
	4.000μF	± (3.0% + 5d)	
	40.00μF		
	400.0μF	± (4.0% + 10d)	
	4.000mF	± (10% + 10d)	
	40.00mF	unspecified	
	4.000kHz	± (1.5% + 2d)	
Frequency	Sensitivity: 100V (<50Hz);	Sensitivity: 100V (<50Hz); 50V (50 to 400Hz); 5V (401Hz to 4000Hz)	

Function	Range and Resolution	Accuracy (% of reading + digits)
Temperature (type-K)	-4 to 1400°F	± (3%rdg + 9°F)
	-20 to 760°C	± (3%rdg + 5°C)
Temp (IR)	-58 to -4°F	±9°F
	-4 to 518°F	$\pm 2.0\%$ reading or \pm 4°F whichever is >
	-50 to -20°C	±5°C
	-20 to 270°C	±2.0% reading or ±2°C

General Specifications

Clamp jaw opening 1.7" (43mm) approx.

Open circuit voltage < 3VDC typical

Low Battery indication Battery symbol is displayed

Over-range indication 'OL' display

Measurement rate 2 readings per second, nominal

PEAK Captures peaks >1ms

Thermocouple sensor Type K thermocouple required

IR Spectral response 6 to 16μm IR Emissivity 0.95 fixed IR distance ratio 8:1

 $\begin{array}{lll} \textbf{Input Impedance} & 10M\Omega \, (VDC \, \text{and VAC}) \\ \textbf{AC bandwidth} & 50 \, \text{to 400Hz (AAC and VAC)} \\ \textbf{AC response} & True \, \text{rms (AAC and VAC)} \\ \end{array}$

Crest Factor 3.0 in 40A and 400A ranges, 1.4 in 1000A range (50/60Hz and 5% to 100% of

range)

Operating Humidity Max 80% up to 87°F (31°C) decreasing linearly to 50% at 104°F(40°C)

Storage Humidity <80%

Operating Altitude 7000ft. (2000meters) maximum.

Battery One (1) 9V Battery (NEDA 1604)

Auto power OFF After approx. 25 minutes

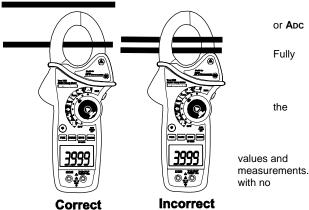
Dimensions & Weight 10.6x4.3x2" (270x110x50mm); 13.6 oz. (386g)

Safety For indoor use and in accordance with the requirements for double insulation to IEC1010-1 (2001): EN61010-1 (2001) Overvoltage Category III 600V and

Category II 1000V, Pollution Degree 2.

Operation

NOTES: Read and understand all **Warning** and **Caution** statements in this operation manual prior to using this meter. Set the function select switch to the OFF position when the meter is not in use.


AC/DC Current Measurements

WARNING: Ensure that the test leads are disconnected from the meter before making current clamp measurements.

- Set the Function switch to the AAC range.
- Press the trigger to open jaw. enclose only one conductor. For optimum results, center the conductor in the jaw.
- The clamp meter LCD will display reading.

DCA ZERO

The DC Zero feature removes offset improves accuracy for DC current To perform a zero, select ADC and conductor in the jaw:

- Press the DC ZERO button to zero the display. "ZERO" will appear in the display. The offset value is now stored andremoved from all measure ments.
- To view the stored value, press the DC ZERO button. "ZERO" will flash and the stored value will be displayed.
- 3. To exit this mode, press and Hold the **ZERO** button until "**ZERO**" is no longer in the display.

AC/DC Voltage Measurements

- Insert the black test lead into the negative COM terminal and the lead into the positive V terminal.
- 2. Set the function switch to the Vac or VDc position.
- 3. Use the MODE button to select AC or DC Voltage
- 4. Connect the test leads in parallel to the circuit under test.
- 5. Read the voltage measurement on the LCD display.

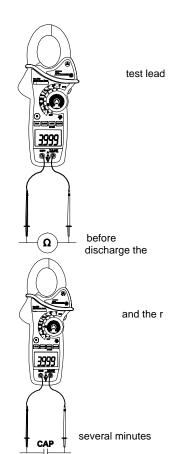
red test

Resistance Measurements

Note: Remove power before making resistance measurements

- 1. Insert the black test lead into the negative ${\bf COM}$ terminal and the red into the ${\bf \Omega}$ positive terminal.
- 2. Set the function switch to the Ω position.
- 3. Touch the test probe tips across the circuit or component under test.
- 4. Read the resistance on the LCD display.

Capacitance Measurements


WARNING: To avoid electric shock, discharge the capacitor under test measuring. If "dISC" appears in the display, remove and capacitor.

- 1. Set the function switch to the ⊣ capacitance position.
- 2. Insert the black test lead banana plug into the negative **COM** jack ed test lead banana plug into the **CAP** positive jack.
- 3. Press MODE to zero any stray capacitance.
- 4. Touch the test probe tips across the part under test.
- 5. Read the capacitance value in the display.
- 6. The display will indicate the proper decimal point and value.

Note: For very large values of capacitance measurement time can be before the final reading stabilizes.

Frequency Measurements

- 1. Set the function switch to the V Hz Position.
- 2. Press and hold the MODE button to select the Frequency (Hz) function. "k Hz" will appear in the display.
- Insert the black test lead banana plug into the negative COM jack and the red test lead banana plug into the Hz positive jack.
- 4. Touch the test probe tips across the part under test.
- 5. Read the Frequency value on the display.
- 6. The display will indicate the proper decimal point and value.
- 7. Press and hold the MODE button again to return to the voltage mode

Type K Temperature Measurements

- 1. Set the function switch to the **K Temp** position.
- Insert the Temperature Probe into the negative COM and the TEMP jacks, observing polarity.
- Touch the Temperature Probe tip to the device under test. Continue to touch the part under test with the probe until the stabilizes
- Read the temperature on the display. The digital reading will indicate decimal point and value.

WARNING: To avoid electric shock, be sure the thermocouple probe before changing to another measurement function.

Note: An open input or a temperature overrange the meter will display

Note: See the "Temperature Units" paragraph to select °F or °C

reading the proper has been removed "OL" and beep.

Continuity Measurements

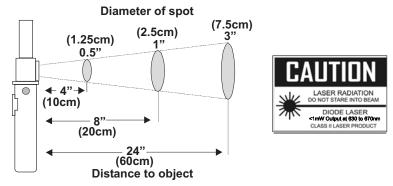
- Insert the black test lead into the negative COM terminal and the red test lead into the Ω positive terminal.
- 2. Set the function switch to the •))) position.
- Use the MODE button to select continuity •)). The display icons will change when the MODE button is pressed.
- 4. Touch the test probe tips across the circuit or component under test.
- 5. If the resistance is $< 40\Omega$, a tone will sound.

Diode Test

- Insert the black test lead banana plug into the negative COM jack and the red test lead banana plug into the positive jack
- Turn the function switch to position. Use the MODE button to select the diode function if necessary (diode symbol will appear e→the LCD when in Diode test mode)
- 3. Touch the test probe tips to the diode or semiconductor junction under test. Note the meter reading
- 4. Reverse the test lead polarity by reversing the red and black leads. Note this reading
- 5. The diode or junction can be evaluated as follows:
 - If one reading displays a value (typically 0.400V to 0.900V) and the other reading displays OL, the diode is good.
 - If both readings display **OL** the device is open.
 - If both readings are very small or '0', the device is shorted.

Non-Contact InfraRed Temperature Measurements

- Set the function switch to the IR Temp position.
- Aim the infrared sensor (rear of the meter) at surface to be measured.
- Press the button in the center of the rotary function switch to turn on the laser pointer and identify the surface spot to be measured.
- The area of the surface to be measured must spot size as determined by the distance to spot
- Read the temperature in the display.


Note: See the "Temperature Units" paragraph to select

WARNING: Do not directly view or direct the laser pointer at an eye. Low power visible lasers do not normally present a hazard, but may present some potential for hazard if viewed directly for extended periods of time.

IR Spot to Distance Diagram

The 8:1 spot to distance ratio determines the size of the measured surface area with respect to the distance the meter is held away from the surface.

IR Measurement Notes

- 1. The object under test should be larger than the spot (target) size calculated by the field of view diagram.
- If the surface of the object under test is covered with frost, oil, grime, etc., clean before taking measurements.
- If an object's surface is highly reflective, apply masking tape or flat black paint to the surface before measuring.
- 4. The meter may not make accurate measurements through transparent surfaces such as glass.
- 5. Steam, dust, smoke, etc. can obscure measurements.
- 6. To find a hot spot, aim the meter outside the area of interest then scan across (in an up and down motion) until the hot spot is located.

Data Hold

To freeze the LCD reading, press the **HOLD** button. While data hold is active, the **HOLD** icon appears on the LCD. Press the **HOLD** button again to return to normal operation.

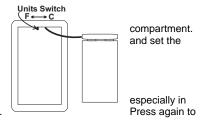
Peak Hold

The Peak Hold function captures the peak AC or DC voltage or current. The meter can capture negative or positive peaks as fast as 1 millisecond in duration.

- 1. Turn the function switch to the A or V position.
- 2. Use the MODE button to select AC or DC.
- 3. Allow time for the display to stabilize.
- Press and Hold the PEAK button until "CAL" appears in the display. This procedure will zero the range selected.
- 5. Press the PEAK button, Pmax will display.
- 6. The display will update each time a higher positive peak occurs.
- Press the PEAK button again, Pmin will display. The display will now update and indicate the lowest negative peak.
- To return to normal operation, press and hold the PEAK button until the Pmin or Pmax indicator switches off.

Note: If the Function switch position is changed after a calibration the Peak Hold calibration must be repeated for the new function selected.

MAX/MIN


- 1. Press the **MAX/MIN** key to activate the MAX/MIN recording mode. The display icon "**MAX**" will appear. The meter will display and hold the maximum reading and will update only when a new "max" occurs.
- Press the MAX/MIN key and "MIN" will appear The display icon "MIN" will appear. The meter will display and hold the minimum reading and will update only when a new "min" occurs
- 3. Press the MAX/MIN key and a blinking "MAX MIN" will appear. The meter will display the present reading, but will continue to update and store the max and min readings.
- 4. To exit MAX/MIN mode press and hold the MAX/MIN key for 2 seconds.

Temperature Units (°F / °C)

The temperature units selection switch is located in the battery To change the units, remove the battery door, lift out the battery switch for the desired units.

The LCD is equipped with backlighting for easier viewing, dimly lit areas. Press the backlight button to turn the backlight on. turn the backlight off.

Bluetooth enable/disabled and store trigger

- 1、Long pres s 6/2 seconds Bluetooth enable, LCD display Bluetooth symbol, again long by 2 seconds Bluetooth disabled, LCD Bluetooth symbol disappears.
- 2. And with the Bluetooth-enabled devices like the primary, the short press of switch trigger signal is stored, once again short the switch, cancel trigger stored signal,

Automatic Power OFF

In order to conserve battery life, the meter will automatically turn off after approximately 25 minutes. To turn the meter on again, turn the function switch to the OFF position and then to the desired function position.

Maintenance

WARNING: To avoid electrical shock, disconnect the meter from any circuit, remove the test leads from the input terminals, and turn OFF the meter before opening the case. Do not operate the meter with an open case.

Cleaning and Storage

Periodically wipe the case with a damp cloth and mild detergent; do not use abrasives or solvents. If the meter is not to be used for 60 days or more, remove the battery and store it separately.

Battery Replacement

- 1. Remove the Phillips head screw that secures the rear battery door
- 2. Open the battery compartment
- 3. Replace the 9V battery
- 4. Secure the battery compartment

FCC Warning

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) T his device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Do not attempt to disassemble the EX845 instrument by yourself. Non-expert handling of the devices may da mage them.

The EXTECH EX845 TRUE RMS 1000 Amp Clamp Meter with IR Thermometer is designed and manufacture d not to exceed limits for exposure to radio frequency (RF) energy set by the Federal Communications Comm ission (FCC) of the U.S. Government. These limits are part of comprehensive guidelines and establish permitt ed levels of RF energy for the general population. The guidelines are based on standards that were develope d by independent scientific organizations through periodic and thorough evaluation of scientific studies. The s tandards include a substantial safety margin designed to assure the safety of all persons, regardless of age or health. The standards include a substantial safety margin designed to assure the safety of all persons, regardless of age or health. The exposure standard for Bluetooth employs a unit of measurement known as the FC C Part 1.1310(b) (1), FCC Part 2.1093, and SAR.

The FCC ID label is placed on the instrument clearly visible to all persons at the time of purchase. The user is cautioned that changes or modifications not expressly approved by the manufacturer could void the user's a uthority to operate the equipment.