
Electro-Magnetic Compatibility Test Report

for the

**Radio Frequency Systems (RFS)
12 Channel Digital SMR BDA,
Model C-BDA-SMR800**

Tested Under

FCC Part 90, Subpart J
Title 47 of the CFR
for Private Land Mobile Radio Services

MET REPORT: EMCS13538-FCC90

April 29, 2003

PREPARED FOR:

Radio Frequency Systems, Inc.
29 Research Parkway
Wallingford, CT 06492

PREPARED BY:

MET Laboratories, Inc.
33439 Western Avenue
Union City, California 94587

Copyright 2003, MET Laboratories, Inc.

This report shall not be reproduced except in full, without the express written consent of MET Laboratories, Inc., nor shall this report, or any copy thereof be provided to a competitor of MET Laboratories, Inc.

Electro-Magnetic Compatibility Test Report

for the

**Radio Frequency Systems (RFS)
12 Channel Digital SMR BDA,
Model C-BDA-SMR800**

Tested Under

FCC Part 90, Subpart J
Title 47 of the CFR
for Private Land Mobile Radio Services

MET REPORT: **EMCS13538-FCC90**

PREPARED FOR:

Radio Frequency Systems, Inc.
29 Research Parkway
Wallingford, CT 06492

Alvin Ilarina, Manager
Electromagnetic Compatibility Testing

Cheryl Anicete
Documentation Department

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of Part 90, Subpart J, of the FCC Rules under normal use and maintenance.

Kerwinn Corpuz
Project Engineer

REPORT STATUS SHEET

Revision	Report/Revision Date	Reason for Revision
Ø	April 29, 2003	Initial Issue.

TABLE OF CONTENTS

I.	Executive Summary	1
A.	Purpose of Test	2
B.	Executive Summary	2
II.	General	3
A.	Test Site	4
B.	Description of Test Sample	4
C.	General Test Setup	4
D.	Mode of Operation	4
F.	Modification	13
G.	Disposition of Test Sample	13
III.	Electromagnetic Compatibility RF Power Output Requirements	14
A.	RF Power Output	15
IV.	Electromagnetic Compatibility Modulation Characteristics Requirements	20
A.	Modulation Characteristics	21
V.	Electromagnetic Compatibility Occupied Bandwidth Requirements	22
A.	Occupied Bandwidth	23
VI.	Electromagnetic Compatibility Spurious Emissions at Antenna Terminal Requirements	31
A.	Spurious Emissions at Antenna Terminals	32
B.	Intermodulation Products	37
VII.	Electromagnetic Compatibility Radiated Emissions Requirements	42
A.	Radiated Emissions (Substitution Method)	43
VIII.	Electromagnetic Compatibility Frequency Stability Requirements	48
A.	Frequency Stability	49
IX.	Electromagnetic Compatibility Transient Frequency Behavior Requirements	54
A.	Transient Frequency Behavior	55
X.	Test Equipment	56
XI.	Certification Label & User's Manual Information	59
A.	Certification Information	60
B.	Label and User's Manual Information	63

LIST OF TABLES

Table 1.	Summary of Test Results	vi
Table 2.	Summary of Test Data	vi
Table 3.	References	2
Table 4.	Uplink Middle Channel Test Results	46
Table 5.	Downlink Middle Channel Test Results	47
Table 6.	Temperature Vs. Frequency Test Results	52
Table 7.	Temperature Vs. Frequency Test Results	52
Table 8.	Frequency Vs. Voltage Test Results	53
Table 9.	Frequency Vs. Voltage Test Results	53
Table 10.	Test Equipment	58

LIST OF PHOTOGRAPHS

Photograph 1.	RF Power Output Test Setup Photo	15
Photograph 2.	Occupied Bandwidth Test Setup Photo	23
Photograph 3.	Spurious Emissions at Antenna Terminals Test Setup Photo	32
Photograph 4.	Intermodulation Products at Antenna Terminals Test Setup Photo	37
Photograph 5.	Radiated Emissions Test Setup Photo (Substitution Method)	43
Photograph 6.	Radiated Emissions Test Setup Photo (Substitution)	44
Photograph 7.	Frequency Stability (Temperature Variation) Test Setup Photo	49
Photograph 8.	Frequency Stability (Voltage Variation) Test Setup Photo	50

LIST OF FIGURES

Figure 1.	Test Configuration 1 (Conducted Measurement)	5
Figure 2.	Test Configuration 2 (Frequency Stability)	7
Figure 3.	Test Configuration 3 (Radiated Emissions, Tx Mode)	9
Figure 4.	Test Configuration 4 (Radiated Emissions, Standby Mode)	11

LIST OF TERMS AND ABBREVIATIONS

AC	Alternating Current
Cal	Calibration
<i>d</i>	Measurement Distance
dB	Decibels
dBm	decibels Below 1 milliwatt
dBμA	Decibels above one microamp
dBμV	Decibels above one microvolt
dBμA/m	Decibels above one microamp per meter
dBμV/m	Decibels above one microvolt per meter
DC	Direct Current
E	Electric Field
DSL	Digital Subscriber Line
ESD	Electrostatic Discharge
EUT	Equipment Under Test
<i>f</i>	Frequency
FCC	Federal Communications Commission
CISPR	Comite International Special des Perturbations Radioelectriques (International Special Committee on Radio Interference)
GRP	Ground Reference Plane
H	Magnetic Field
HCP	Horizontal Coupling Plane
Hz	Hertz
IEC	International Electrotechnical Commission
kHz	kilohertz
kPa	kilopascal
kV	kilovolt
LISN	Line Impedance Stabilization Network
MHz	Megahertz
μ H	microhenry
μ F	microfarad
μ s	microseconds
NEBS	Network Equipment-Building System
PRF	Pulse Repetition Frequency
RF	Radio Frequency
RMS	Root-Mean-Square
TWT	Traveling Wave Tube
V/m	Volts per meter
VCP	Vertical Coupling Plane
W	Watts

Summary of Test Results

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 90, Subpart J. All tests were conducted using measurement procedure ANSI TIA/EIA-603-A-2001.

Type of Submission/ Rule Part:	Certification / Part 90 Subpart J
EUT:	RFS, 12 Channel Digital SMR BDA (Repeater), Model C-BDA-SMR800
FCC ID:	IWDC-BDA-SMR800
Equipment Code:	IWD
Type of Emissions:	17K6D7W
RF Power Output:	Conducted Output Power in PEP (Peak Envelope Power) for two channels: 35.5 dBm (3.55 Watts)
Frequency Range (MHz):	UPLINK: 806 - 821 DOWNLINK: 851 - 866
Frequency Stability:	within 2.5 ppm

Table 1. Summary of Test Results

Name of Test	FCC Rule Part/Section	Results
RF Power Output	2.1046; 90.219(b)	Complies
Modulation Characteristics	2.1047(a)	N/A - EUT is non-analog voice.
Occupied Bandwidth	2.1049; 90.209	Complies
Spurious Emissions at Antenna Terminals	2.1051; 90.210	Complies
Radiated Spurious Emissions	2.1053; 90.210	Complies
Frequency Stability over Temperature Variations	2.1055(a) (1); 90.213	Complies
Frequency Stability over Voltage Variations	2.1055(d) (2)	Complies
Transient Frequency Behavior	90.214	N/A - EUT operates at 800 MHz

Table 2. Summary of Test Results

I. Executive Summary

I. Executive Summary

A. Purpose of Test

An EMC evaluation to determine compliance of the 12 Channel Digital SMR BDA, Model C-BDA-SMR800 (referred to as EUT hereafter) with the requirements of Part 90, Subpart J, was conducted. (All references are to the most current version of Title 47 of the Code of Federal Regulations in effect). In accordance with §2.1033, the following data is presented in support of the Certification of the EUT. Radio Frequency Systems should retain a copy of this document and it should be kept on file for at least five years after the manufacturing of the EUT has been **permanently** discontinued.

B. Executive Summary

The EUT, as supplied to MET Laboratories, complied with the requirements stated in this test report.

References	Description
Purchase Order #P172392	RFS Purchase Order for 12 Channel Digital SMR BDA (Repeater), Model C-BDA-SMR800 testing
ANSI-C63.4: 2001	Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
TIA/EIA-603-A-2001	Land Mobile HM or PM Communications Equipment Measurement and Performance Standards
FCC 47CFR, Chapter 1, Part 2	Title 47 Code of Federal Regulations Part 2 - Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
FCC 47CFR, Chapter 1, Part 15	Title 47 Code of Federal Regulations Part 15 - Digital Devices
FCC 47CFR, Chapter 1, Part 90	Title 47 Code of Federal Regulations Part 90 - J

Table 3. References

II. General

II. General

A. Test Site

All testing was conducted at MET Laboratories, Inc., 4855 Patrick Henry Drive, Building 6, Santa Clara, California 95054. Radiated Emissions measurements were performed inside a 10 meter semi-anechoic chamber. In accordance with §2.948(a)(2), a complete site description is filed with the Commission's Laboratory in Columbia, Maryland. MET Laboratories has been accredited by the National Voluntary Laboratory Accreditation Program (Lab Code: 100273-0).

B. Description of Test Sample

The EUT is a Class A narrowband Repeater used for boosting the signal strength of Cellular (iDEN) signals. The band of operation is 806 - 821 MHz for the uplink and 851 - 866 MHz for the downlink. In each band, the user can select up to 12 specific channels (each with a bandwidth of 25 kHz) to be amplified.

C. General Test Setup

The EUT was configured with an AC voltage of 120 and PC (HOST) interface to program the EUT controlling the Channel Allocation. The EUT was operated in a manner representative of the typical usage of the equipment. During all testing, system components were manipulated with the confines of typical usage to maximize each emission.

D. Mode of Operation

The EUT was configured in accordance with the manufacturer's instructions and was operated as follows for all testing contained in this report unless stated otherwise:

Basic operation involves an iDEN Signal Generators, 25-watt 30 dB pad, and a connection with transmit/receive lines to a host microprocessor. The iDEN Signal Generators will be connected to the "service area" port and a Spectrum Analyzer to the "base station" port. This will test the Uplink operation. The equipment is swapped to test the Downlink operation.

The unit will be monitored by a local computer or remotely of the frequency gain and output power levels. Alarms will be displayed on the screen indicating failures of frequency and power levels.

II. General

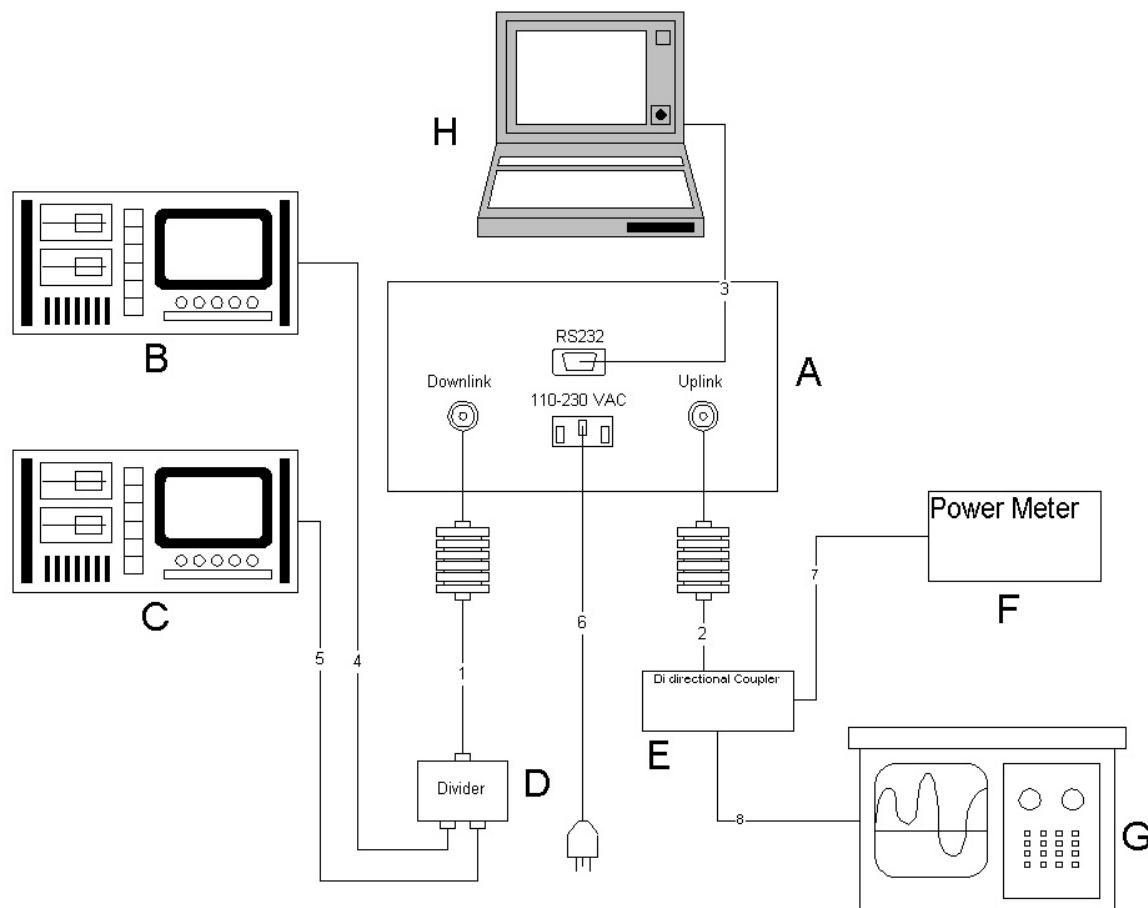


Figure 1. Test Configuration 1 (Conducted Measurement)

II. General**TEST CONFIGURATION 1****EUT and Support Equipment**

Ref. ID	Description	Manufacturer	Model Number	Customer Supplied Calibration Data*	Additional Information
A	Repeater - EUT	RFS	C-BDA-SMR800	N/A	N/A
B	iDEN Generator	Motorola	R-2660	N/A	Functional Verification
C	iDEN Generator	Motorola	R-2660	N/A	
D	Power Divider	Mini Circuit	15542	N/A	
E	BI-Directional Coupler	Narda	3020A	N/A	
F	Power Meter	Agilent Corp.	E4418B	08/28/03	N/A
G	Spectrum Analyzer	Hewlett Packard	8564E	08/27/03	N/A
H	PC Laptop	DELL Corp.	Latitude CPt	N/A	N/A

Ports and Cabling Information

Ref. ID	Port Name	Port Location (Ref. ID + Slot)	Connector Type	Cable Type	Qty.	Length (m)	Shielded ?		Cable Termination (Ref. ID + Slot + Port ID)
							Y	N	
1	To Downlink	A	N Type to SMA	Coax	1	1	X		D with 30 dB Attenuator
2	To Uplink	A	N Type	Coax	1	1	X		E with 30 dB Attenuator
3	RS232	A	DB9	Serial	1	1.5	X		H
4	None	D	N type to SMA	Coax	1	1	X		B
5	None	D	N type to SMA	Coax	1	1	X		C
6	120 Vac	A	Single Phase	Standard	1	1.2		X	AC outlet
7	Power Meter	E	SMA	Power Sensor	1	1.5	X		F
8	None	E	SMA	Coax	1	1	X		G

II. General

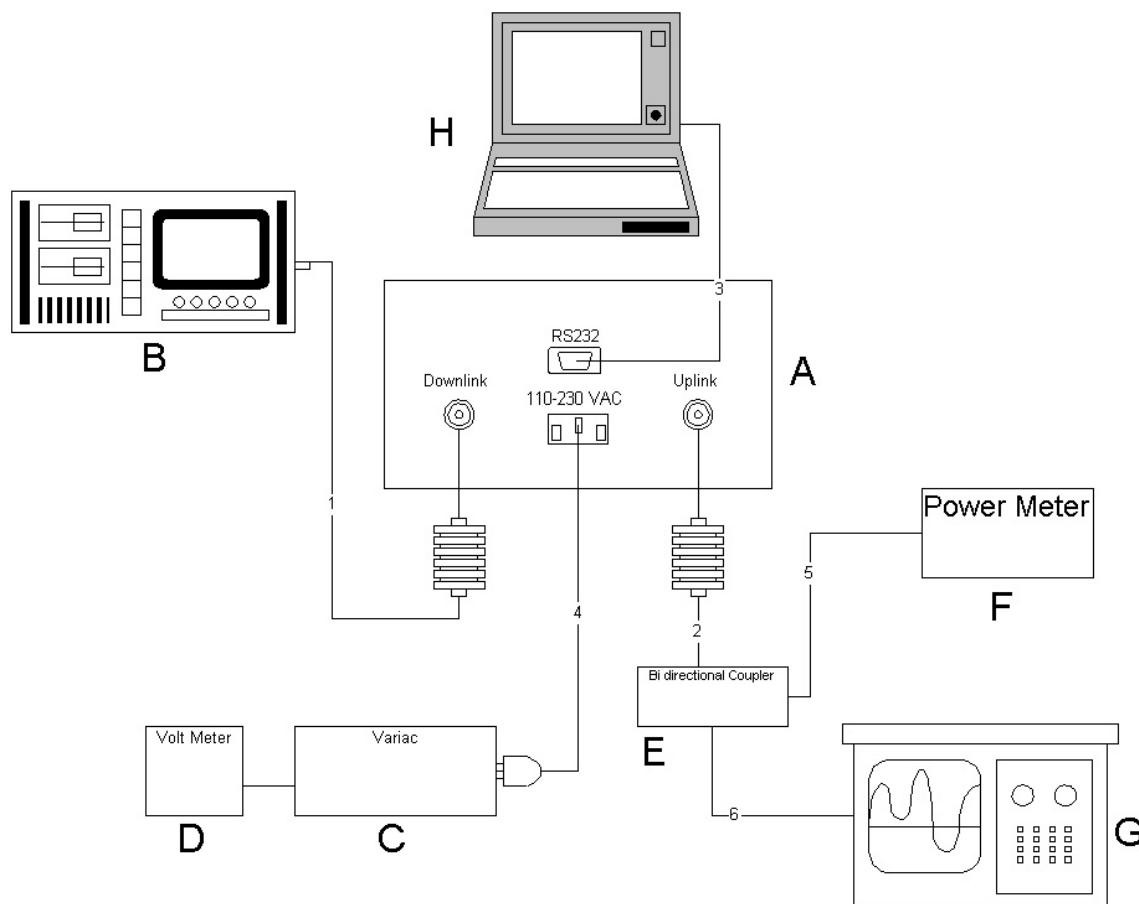


Figure 2. Test Configuration 2 (Frequency Stability)

II. General**TEST CONFIGURATION 2****EUT and Support Equipment**

Ref. ID	Description	Manufacturer	Model Number	Customer Supplied Calibration Data*	Additional Information
A	Repeater - EUT	RFS	C-BDA-SMR800	N/A	N/A
B	Signal Generator	Hewlett Packard	83650B	08/27/03	N/A
C	Variac	STACO Energy	3PN2210	N/A	Functional Verification
D	Volt Meter	Fluke	77 Series II	09/18/03	N/A
E	BI-Directional Coupler	Narda	3020A	N/A	Functional Verification
F	Power Meter	Agilent Corp.	E4418B	08/28/03	N/A
G	Spectrum Analyzer	Hewlett Packard	8564E	08/27/03	N/A
H	PC Laptop	DELL Corp.	Latitude CPt	N/A	N/A

Ports and Cabling Information

Ref. ID	Port Name	Port Location (Ref. ID + Slot)	Connector Type	Cable Type	Qty.	Length (m)	Shielded ?		Cable Termination (Ref. ID + Slot + Port ID)
							Y	N	
1	To Downlink	A	N Type to SMA	Coax	1	1	X		D with 30 dB Attenuator
2	To Uplink	A	N Type	Coax	1	1	X		E with 30 dB Attenuator
3	RS232	A	DB9	Serial	1	1.5	X		H
4	120 Vac	A	Single Phase	Standard	1	1.2		X	C
5	Power Meter	E	SMA	Power Sensor	1	1.5	X		F
6	None	E	SMA	Coax	1	1	X		G

II. General

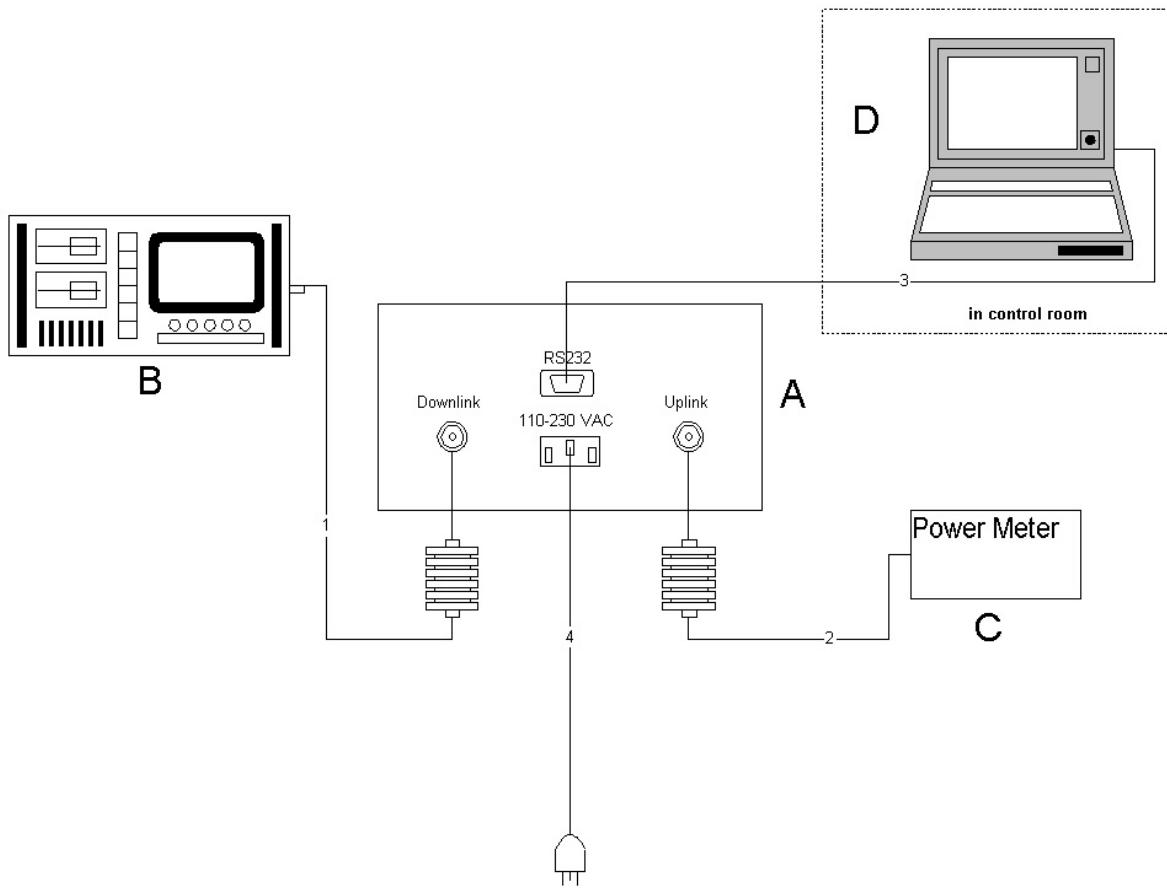


Figure 3. Test Configuration 3 (Radiated Emissions, Tx Mode)

II. General**TEST CONFIGURATION 3****EUT and Support Equipment**

Ref. ID	Description	Manufacturer	Model Number	Customer Supplied Calibration Data*	Additional Information
A	Repeater - EUT	RFS	C-BDA-SMR800	N/A	N/A
B	iDEN Generator	Motorola	R-2660	N/A	Functional Verification
C	Power Meter	Agilent Corp.	E4418B	08/28/03	N/A
D	PC Laptop	DELL Corp.	Latitude CPt	N/A	N/A

Ports and Cabling Information

Ref. ID	Port Name	Port Location (Ref. ID + Slot)	Connector Type	Cable Type	Qty.	Length (m)	Shielded ?		Cable Termination (Ref. ID + Slot + Port ID)
							Y	N	
1	To Downlink	A	N Type to SMA	Coax	1	1	X		B with 30 dB Attenuator
2	To Uplink	A	N Type	Coax	1	1	X		C with 30 dB Attenuator
3	RS232	A	DB9	Serial	1	10	X		H
4	120 Vac	A	Single Phase	Standard	1	1.2		X	AC outlet

II. General

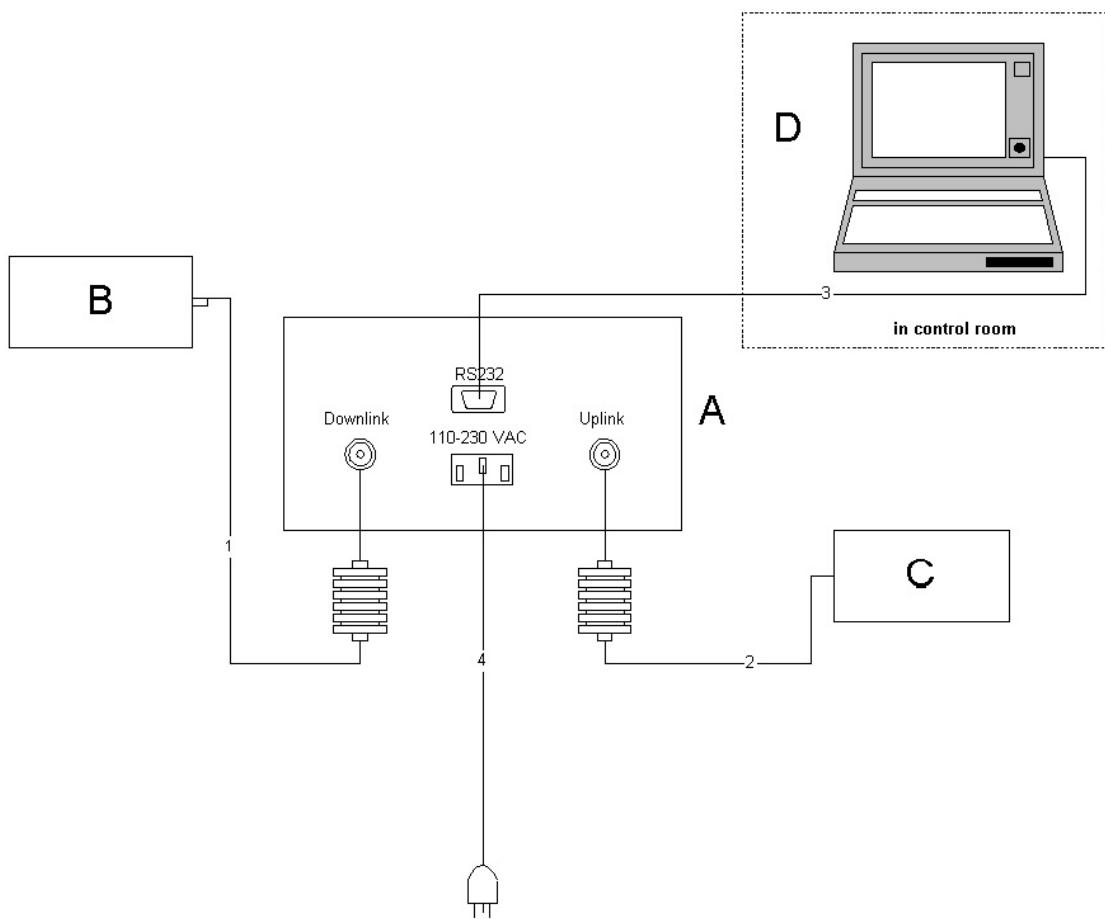


Figure 4. Test Configuration 4 (Radiated Emissions, Standby Mode)

II. General**TEST CONFIGURATION 4****EUT and Support Equipment**

Ref. ID	Description	Manufacturer	Model Number	Customer Supplied Calibration Data*	Additional Information
A	Repeater - EUT	RFS	C-BDA-SMR800	N/A	N/A
B	50Ω Terminator	Narda	378 NM	N/A	Functional Verification
C	50Ω Terminator	Narda	375 BNM	N/A	
D	PC Laptop	DELL Corp.	Latitude CPt	N/A	N/A

Ports and Cabling Information

Ref. ID	Port Name	Port Location (Ref. ID + Slot)	Connector Type	Cable Type	Qty.	Length (m)	Shielded ?		Cable Termination (Ref. ID + Slot + Port ID)
							Y	N	
1	To Downlink	A	N Type to SMA	Coax	1	1	X		B with 30 dB Attenuator
2	To Uplink	A	N Type	Coax	1	1	X		C with 30 dB Attenuator
3	RS232	A	DB9	Serial	1	10	X		H
4	120 Vac	A	Single Phase	Standard	1	1.2		X	AC outlet

II. General

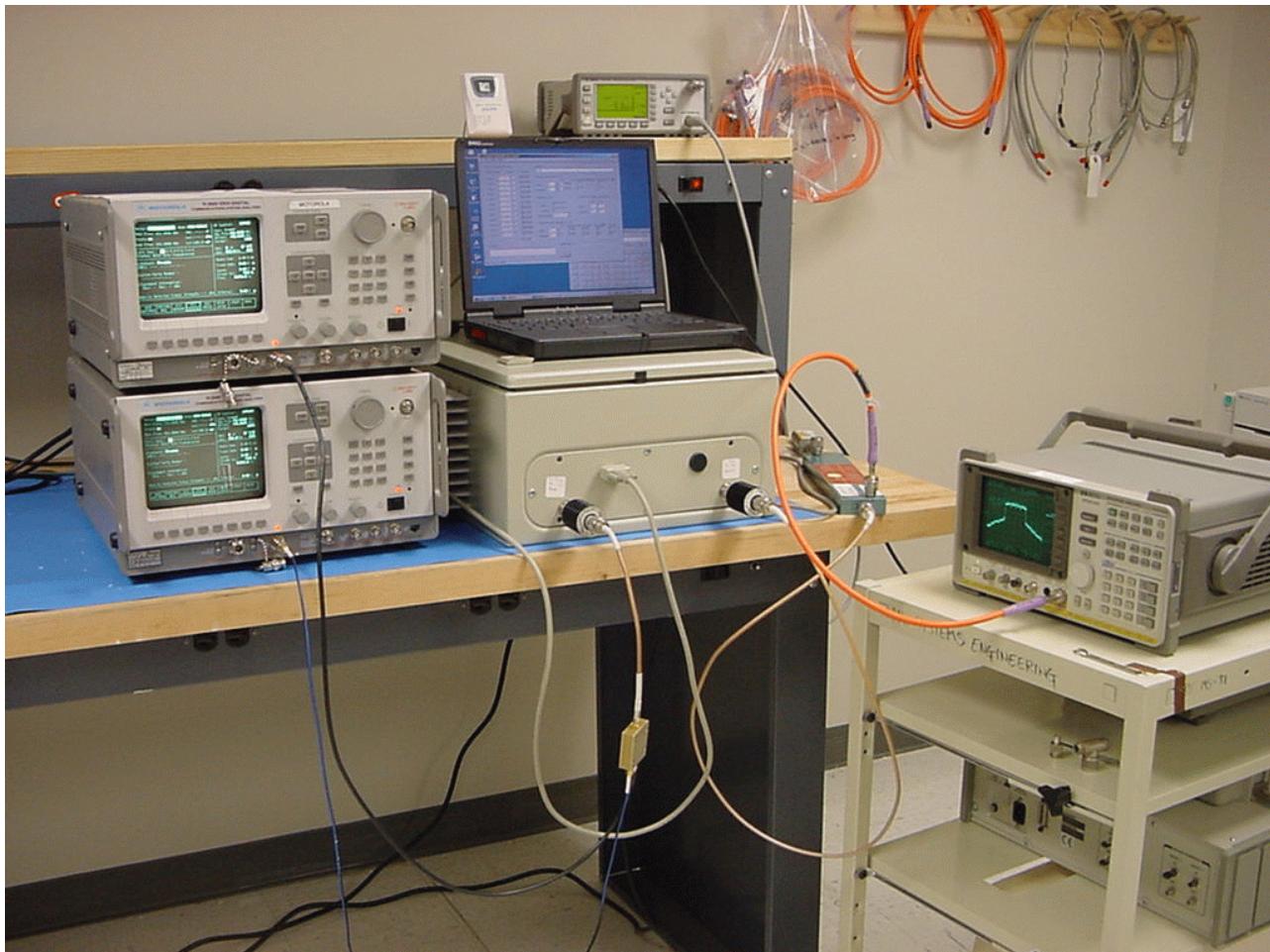
F. Modification

No modifications were made during testing.

G. Disposition of Test Sample

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to Radio Frequency Systems upon completion of testing.

III. Electromagnetic Compatibility RF Power Output Requirements


III. Electromagnetic Compatibility RF Power Output Requirements

A. RF Power Output

Technical Specifications: §2.1046 and 90.219(b)

Test equipment: Test equipment for RF Power Output is listed in Section X of this report.

Photograph:

Photograph 1. RF Power Output Test Setup Photo

III. Electromagnetic Compatibility RF Power Output Requirements

Measurement

Procedures: As required by 47 CFR 2.1046, *RF power output measurements* were made at the RF output terminals using a 25-watt 30 dB attenuator and a Spectrum Analyzer measuring PEP (Peak Envelope Power).

Connect iDEN signal generators to the input of EUT. Set a 50.7 dB Reference level Offset and the RBW = VBW = 100kHz to Spectrum Analyzer. The EUT was set to transmit two tones in the lowest of the operating frequency range. The iDEN signal generators was adjusted enough to produce maximum output power as specified in the owner's manual. The max hold button from the Spectrum Analyzer was activated capturing the PEP of the EUT. Peak Search the highest amplitude and plot the graph. This process was repeatedly done with middle and highest channels for Uplink and Downlink.

Results: Equipment complies with 47CFR 2.1046 and 90.219(b). The EUT does not exceed 5 W (37 dBm) at the carrier frequency.

Important note: Limit shows in Effective Radiated Power (ERP), the maximum antenna gain that can be applied is 1.5 dBi with the EUT maximum power output of 3.5 watts. Therefore, antenna gain should not be greater than 1.5 dBi.

All RF Power output measurements were direct connection to RF output Terminal of EUT.

The following page show measurements of RF Power output which is recorded below:

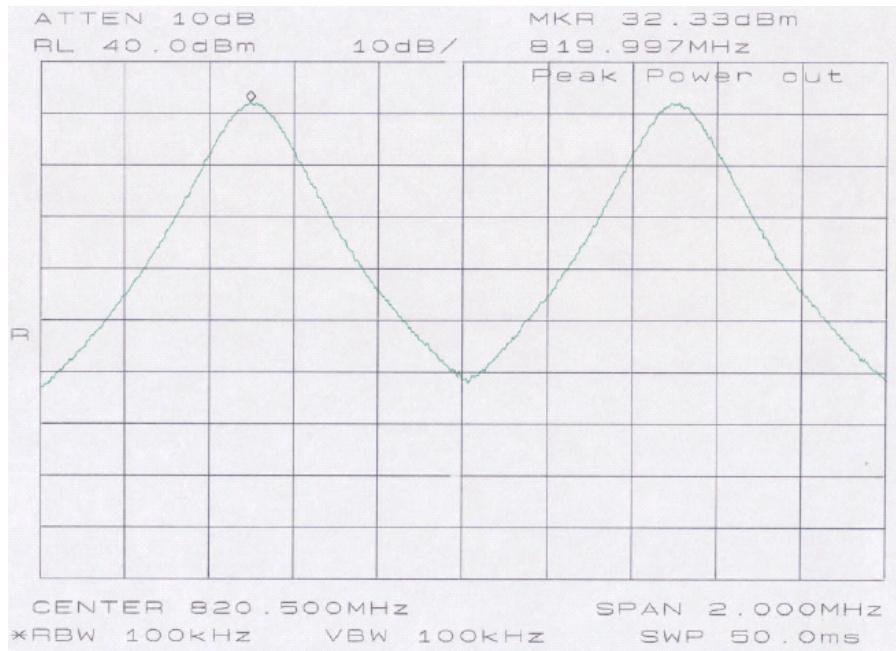
PEP; Peak Envelope Power = measured output power + 3 dB

Plot #	Comments	PEP (dBm / Watt)
1	Uplink: two tones @ 806 and 807 MHz	35.33 / 3.41
2	Uplink: two tones @ 813.5 and 816 MHz	35.00 / 3.16
3	Uplink: two tones @ 820 and 821 MHz	35.33 / 3.41
4	Downlink: two tones @ 851 and 852 MHz	35.50 / 3.55
5	Downlink: two tones @ 858.5 and 861 MHz	35.17 / 3.29
6	Downlink: two tones @ 865 and 866 MHz	35.33 / 3.41

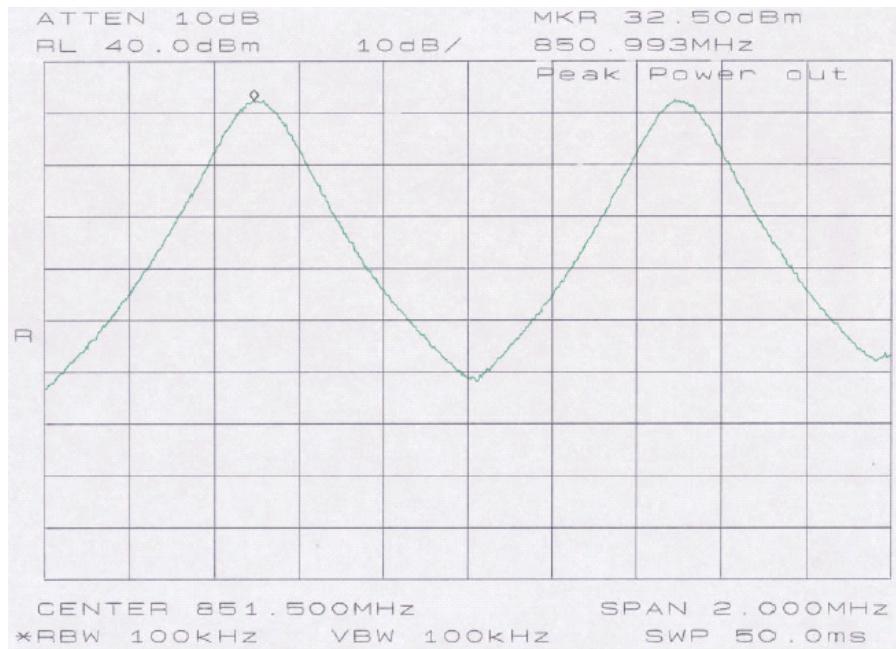
Test Engineer: Kerwinn Corpuz

Test Date: 04/16/03

III. Electromagnetic Compatibility RF Power Output Requirements

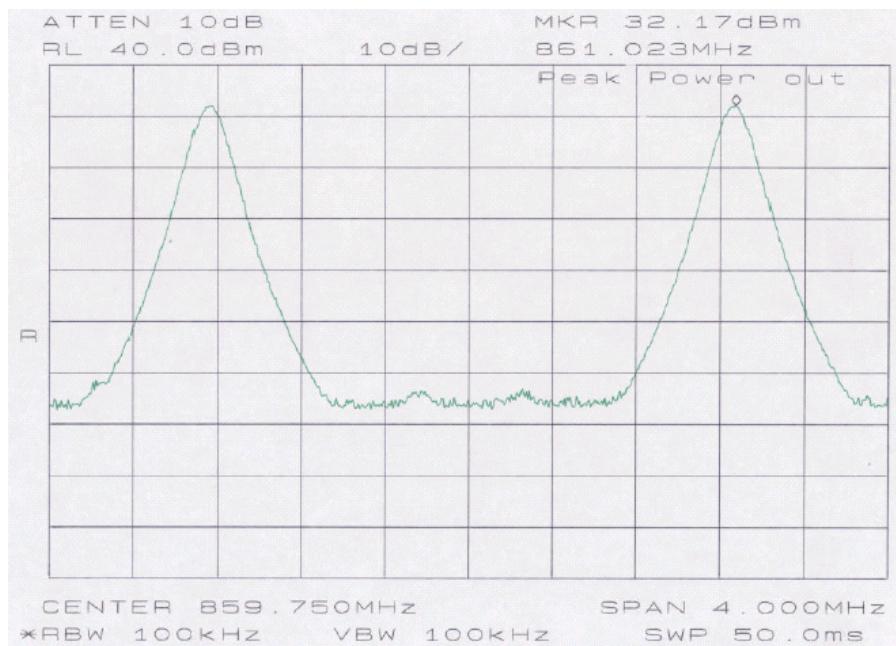


Plot #1: UL Power Output at CH1 and CH2



Plot #2: UL Power Output at CH6 and CH7

III. Electromagnetic Compatibility RF Power Output Requirements



Plot #3: UL Power Output at CH11 and CH12

Plot #4: DL Power Output at CH1 and CH2

III. Electromagnetic Compatibility RF Power Output Requirements

Plot #5: DL Power Output at CH6 and CH7

Plot #6: DL Power Output at CH11 and CH12

IV. Electromagnetic Compatibility Modulation Characteristics Requirements

IV. Electromagnetic Compatibility Modulation Characteristics Requirements

A. Modulation Characteristics

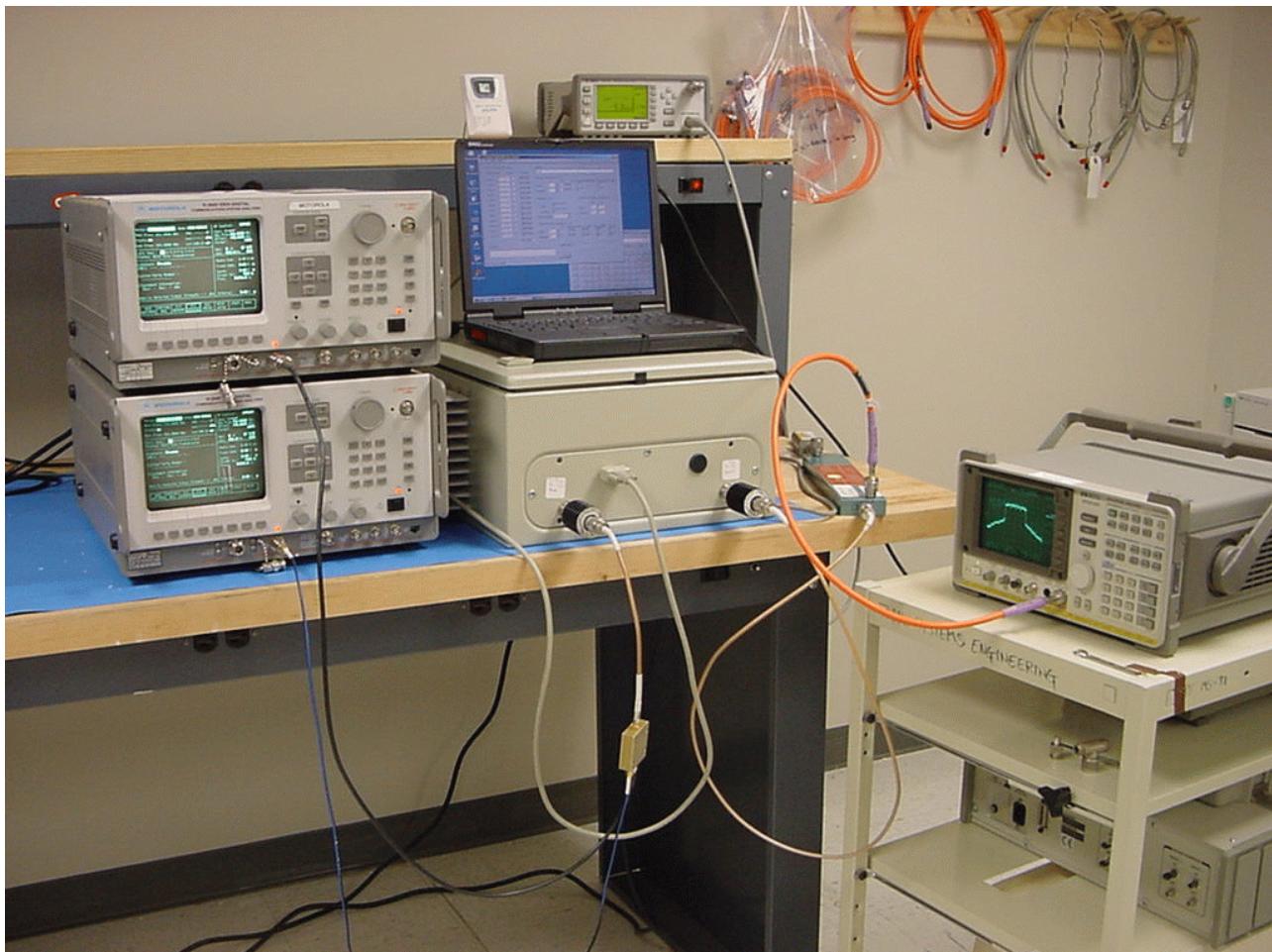
Technical Specifications: §2.1047

Test equipment: Test equipment for Modulation Characteristics is listed in Section X of this report.

Measurement Procedures: As required by 47 CFR 2.1047, *Modulation Characteristics measurements* were made at the RF output terminals.

Results: EUT is not required for this test.
The EUT contain no analog voice circuitry.

V. Electromagnetic Compatibility Occupied Bandwidth Requirements


V. Electromagnetic Compatibility Occupied Bandwidth Requirements

A. Occupied Bandwidth

Technical Specifications: §2.1049 and §90.209

Test equipment: Test equipment for Occupied Bandwidth is listed in Section X of this report.

Photograph:

Photograph 2. Occupied Bandwidth Test Setup Photo

V. Electromagnetic Compatibility Occupied Bandwidth Requirements

Measurement

Procedures: As required by 47 CFR 2.1049, *occupied bandwidth measurements* were made at the RF output terminals using a 25-watt 30 dB attenuator and a Spectrum Analyzer.

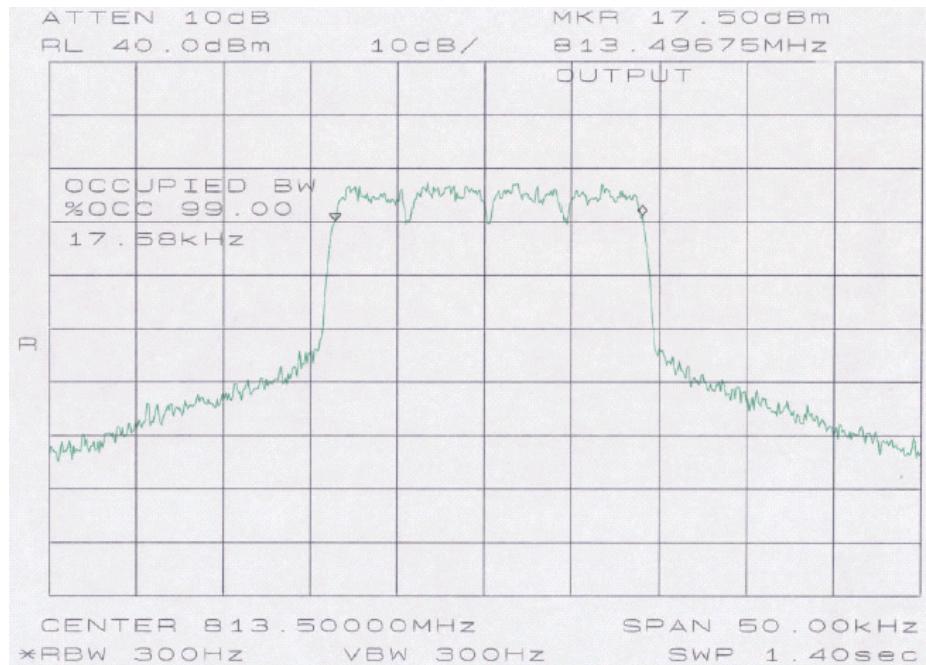
Set a 50.7 dB Reference level Offset and RBW = VBW = 300 Hz to Spectrum Analyzer. The EUT was set to transmit two tones in the lowest of the operating frequency range. The iDEN signal generators was adjusted enough to produce maximum output power as specified in the owner's manual. The max hold button from the Spectrum Analyzer was activated capturing the modulated envelope of the EUT. Peak Search the highest amplitude and activated the 99% BW of the Spectrum Analyzer. Plot the graph. This process was repeatedly done with middle and highest channels for Uplink and Downlink.

Input signals was also plotted to compare for any distortion between input and output signals.

Results: Equipment complies with Section 2.1049 and 90.209. The EUT does not exceed 20 kHz bandwidth.

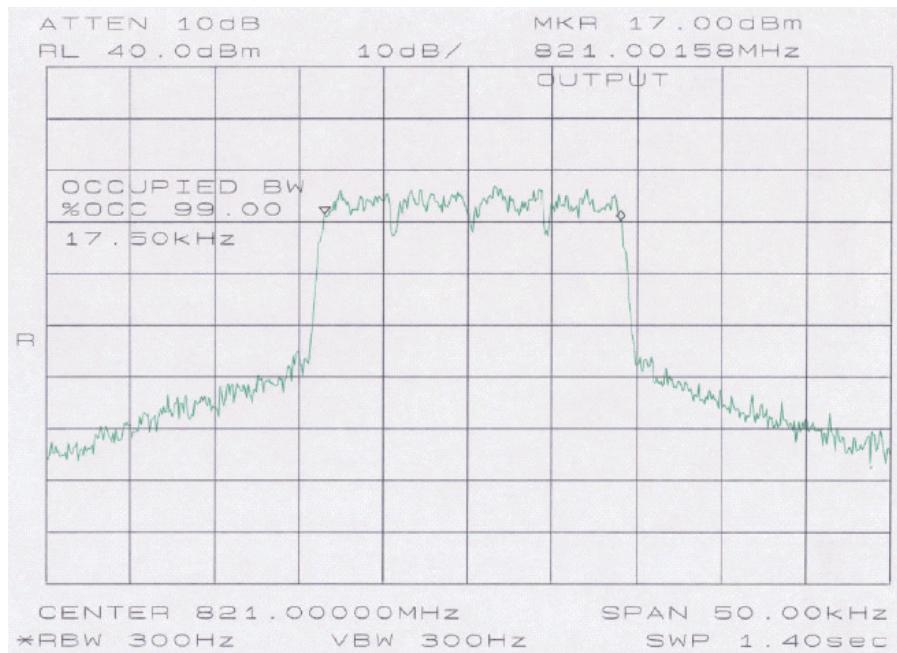

The following pages show measurements of Bandwidth Limitations plots which is recorded below:

OUTPUT SIGNALS		
Plot #	Comment	Measured BW (kHz)
7	Uplink Lowest Channel (806 MHz) 99% Occupied Bandwidth	17.5
8	Uplink Middle Channel (813.5 MHz) 99% Occupied Bandwidth	17.58
9	Uplink Highest Channel (821 MHz) 99% Occupied Bandwidth	17.5
10	Downlink Lowest Channel (851 MHz) 99% Occupied Bandwidth	17.5
11	Downlink Middle Channel (858.5 MHz) 99% Occupied Bandwidth	17.58
12	Downlink Highest Channel (866 MHz) 99% Occupied Bandwidth	17.5

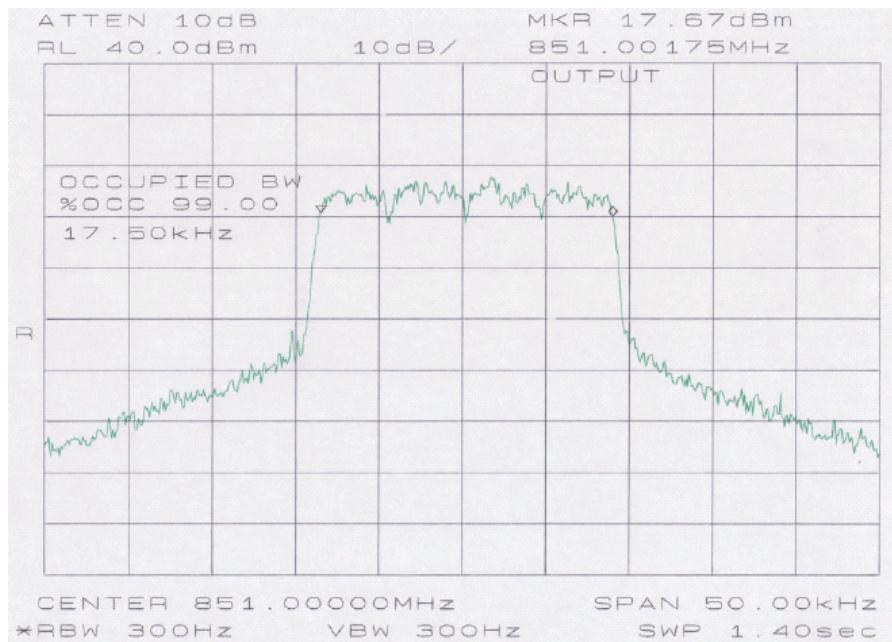


INPUT SIGNALS		
Plot #	Comment	Measured BW (kHz)
13	Uplink Lowest Channel (806 MHz) 99% Occupied Bandwidth	17.5
14	Uplink Middle Channel (813.5 MHz) 99% Occupied Bandwidth	17.58
15	Uplink Highest Channel (821 MHz) 99% Occupied Bandwidth	17.5
16	Downlink Lowest Channel (851 MHz) 99% Occupied Bandwidth	17.5
17	Downlink Middle Channel (858.5 MHz) 99% Occupied Bandwidth	17.58
18	Downlink Highest Channel (866 MHz) 99% Occupied Bandwidth	17.5

V. Electromagnetic Compatibility Occupied Bandwidth Requirements

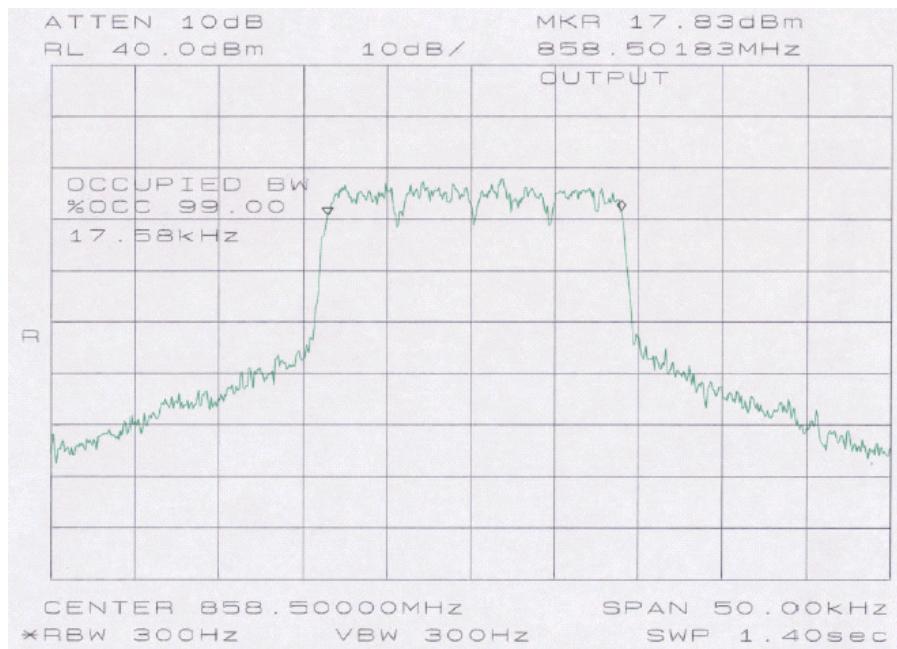


Plot #7: Uplink Lowest Channel (806 MHz) 99% Occupied Bandwidth

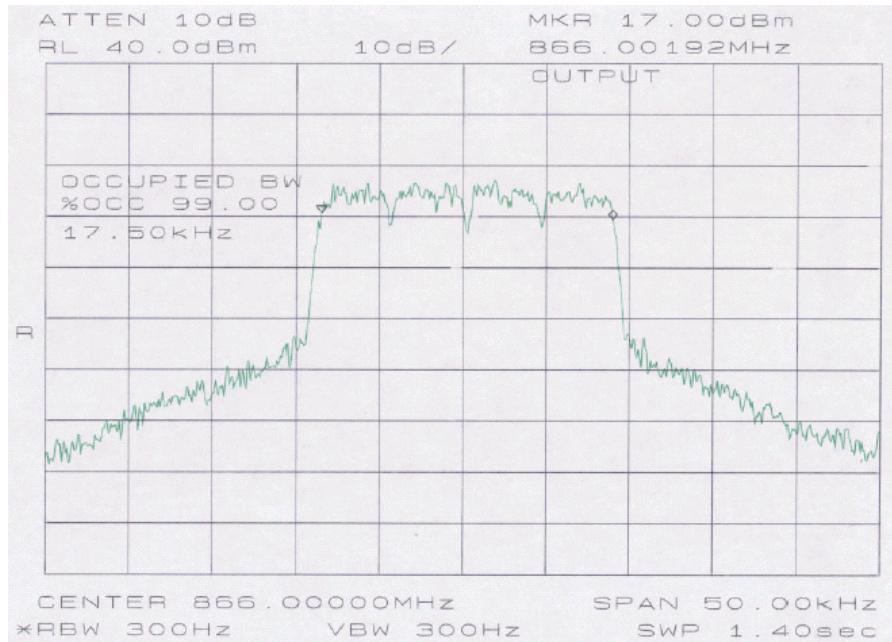


Plot #8: Uplink Middle Channel (813.5 MHz) 99% Occupied Bandwidth

V. Electromagnetic Compatibility Occupied Bandwidth Requirements

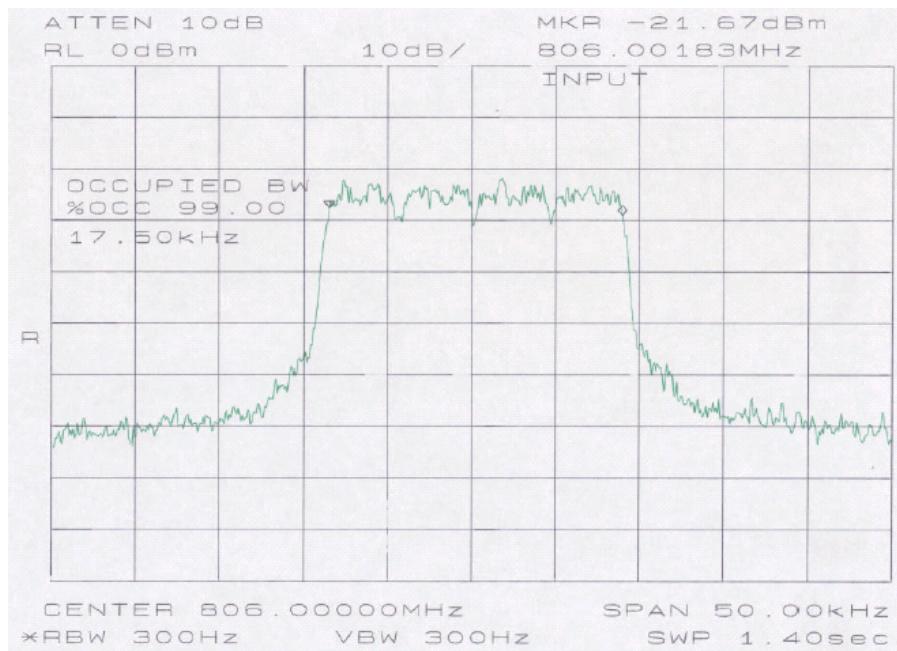


Plot #9: Uplink Highest Channel (821 MHz) 99% Occupied Bandwidth

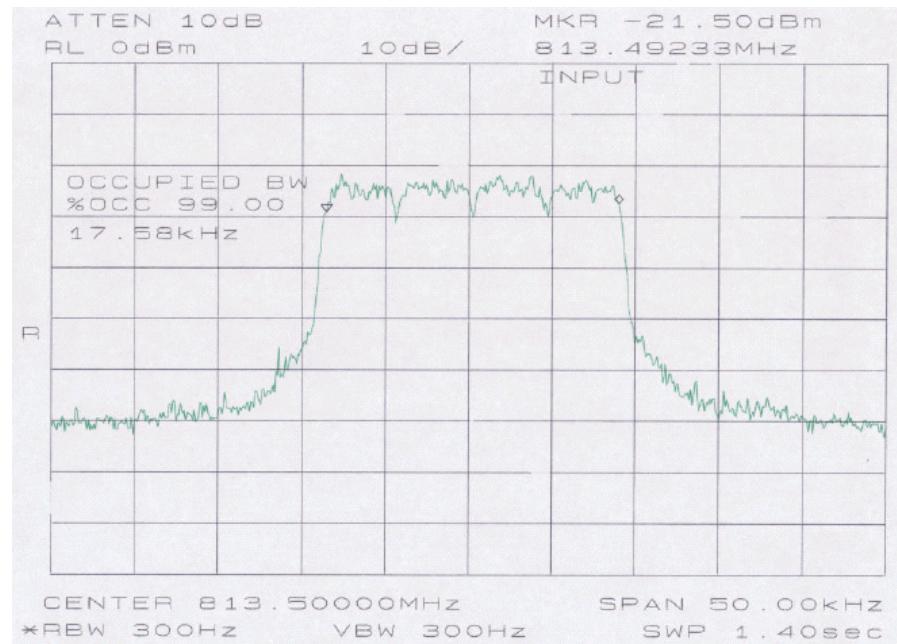


Plot #10: Downlink Lowest Channel (851 MHz) 99% Occupied Bandwidth

V. Electromagnetic Compatibility Occupied Bandwidth Requirements

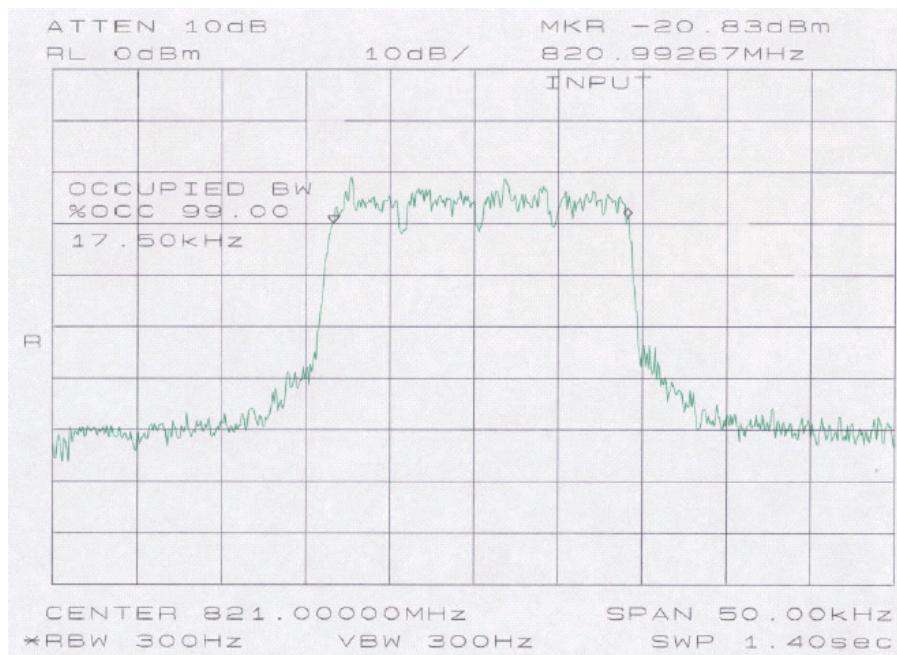


Plot #11: Downlink Middle Channel (858.5 MHz) 99% Occupied Bandwidth



Plot #12: Downlink Highest Channel (866 MHz) 99% Occupied Bandwidth

V. Electromagnetic Compatibility Occupied Bandwidth Requirements


Plot #13: Uplink Lowest Channel (806 MHz) 99% Occupied Bandwidth

Plot #14: Uplink Middle Channel (813.5 MHz) 99% Occupied Bandwidth

V. Electromagnetic Compatibility Occupied Bandwidth Requirements

Plot #15: Uplink Highest Channel (821 MHz) 99% Occupied Bandwidth

Plot #16: Downlink Lowest Channel (851 MHz) 99% Occupied Bandwidth