

PEP Testing Laboratory

REPORT NO. : 990062

RFI / EMI TEST REPORT

APPLICANT : ULTIMA ELECTRONICS CORP.
E. U. T. : MOUSE
TRADE NAME : N/A
FCC ID : ITEUECUM800P
REGULATION : CFR 47 , Part 15 Subpart B , Class B
TEST SITE : PEP Testing Laboratory
TEST ENGINEER : *Tony Wang*
TEST DATE : *1/22/1999*
ISSUED DATE : FEB. / 05 / 1999
REPORT No. : 990062

FEDERAL COMMUNICATIONS COMMISSION

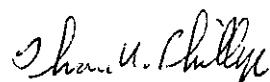
7435 Oakland Mills Road
Columbia, MD 21046
Telephone: 301-725-1585 (ext-218)
Facsimile: 301-344-2050

November 25, 1996

IN REPLY REFER TO
31040/SIT
1300F2

PEP Testing Laboratory
12-3 Fl., No. 27-1, Lane 169
Kang-Ning St., Hsi-chi Town
Taipei Hsien, Taiwan, R.O.C.

Attention: M. Y. Tsui


Re: Measurement facility located at above address
(3 meter site)

Gentlemen:

Your submission of the description of the subject measurement facility has been reviewed and found to be in compliance with the requirements of Section 2.948 of the FCC Rules. The description has, therefore, been placed on file and the name of your organization added to the Commission's list of facilities whose measurement data will be accepted in conjunction with applications for certification or notification under Parts 15 or 18 of the Commission's Rules. Our list will also indicate that the facility complies with the radiated and AC line conducted test site criteria in ANSI C63.4-1992. Please note that this filing must be updated for any changes made to the facility, and at least every three years the data on file must be certified as current.

Per your request, the above mentioned facility has been also added to our list of those who perform these measurement services for the public on a fee basis. This list is published periodically and is also available on the Laboratory's Public Access Link as described in the enclosed Public Notice.

Sincerely,

Thomas W. Phillips
Electronics Engineer
Customer Service Branch

Enclosure:
PAL PN

TABLE OF CONTENTS

<u>1. GENERAL</u>	4
1.1 General Information	
1.2 Place of Measurement	
1.3 Labeling Requirements	
1.4 Information to User	
<u>2. CONDUCTED EMISSIONS TEST</u>	7
2.1 Setup of the Test Facilities	
2.2 Test Procedures	
<u>3. RADIATED EMISSIONS TEST</u>	9
3.1 Setup of the Test Facilities	
3.2 Test Procedures	
<u>4. DESCRIPTION FOR EUT TESTING CONFIGURATION</u>	11
<u>5. SUPPORTING DEVICES TO TEST</u>	12
<u>6. TEST CONFIGURATION</u>	14
** Conducted Emission Test Photo. and Data	
** Radiated Emission Test Photo. and Data	
<u>7. APPENDIX</u>	
A. Photos of EUT Appearance	21
B. List of Test Equipment	22

PEP Testing Laboratory

REPORT NO.: 990062

1. GENERAL

1.1 GENERAL INFORMATION:

APPLICANT : ULTIMA ELECTRONICS CORP.

7F, NO. 100, LI DE CHUNG HO
CITY, TAIPEI HSIEN, TAIWAN
R. O. C.

MANUFACTURER : ULTIMA ELECTRONICS CORP.

7F, NO. 100, LI DE CHUNG HO
CITY, TAIPEI HSIEN, TAIWAN
R. O. C.

MEASUREMENT PROCEDURE : ANSI C63, 4 - 1992

TESTED FOR COMPLIANCE WITH : Title 47 of CFR
Part 15, Subpart B, Class B

1.2 PLACE OF MEASUREMENT **PEP Testing Laboratory**

PEP Testing Laboratory

REPORT NO. : 990062

1.3 LABELING REQUIREMENT

A FCC ID label shall be permanently attached and conspicuously located on the equipment:

FCC ID :ITEUECUM800P

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

35 mm

20 mm

1.4 INFORMATION TO THE USER

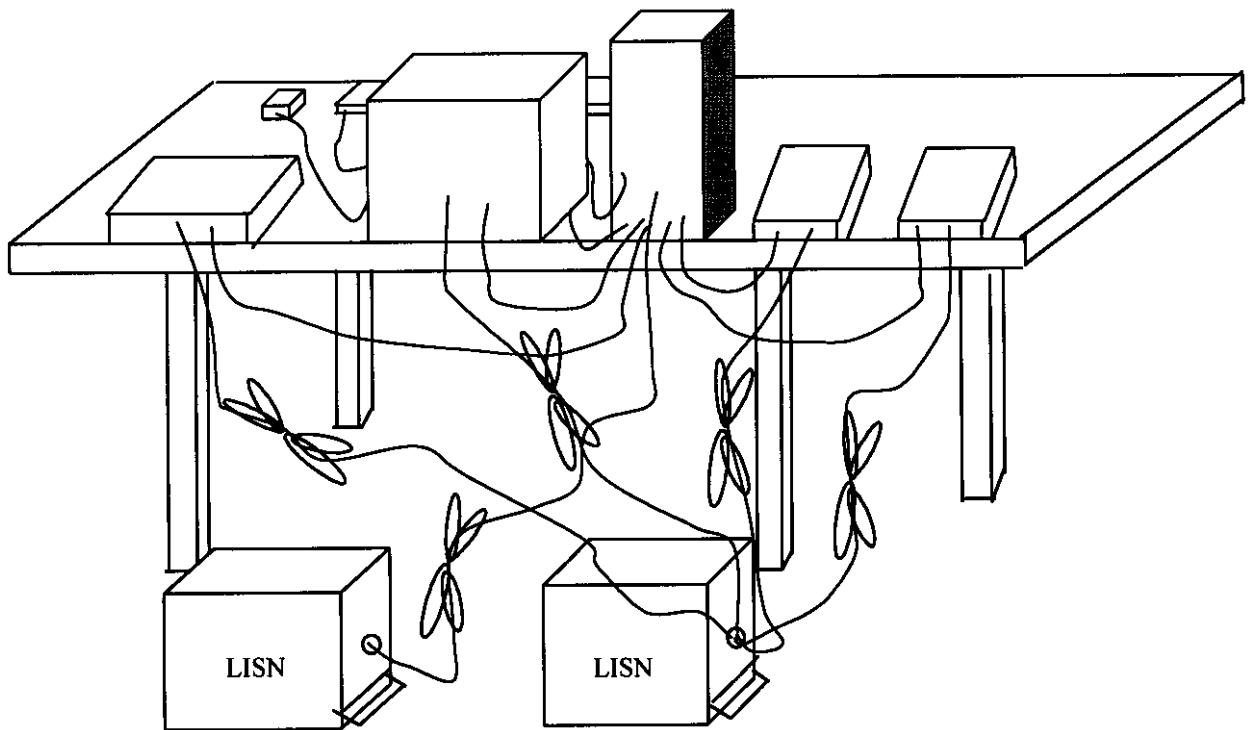
The following FCC statement should be declared in a conspicuous location in the user's manual.

Federal Communications Commission (FCC) Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio / TV technician for help.

Warning : A shielded-type power cord is required in order to meet FCC emission limits and also to prevent interference to the nearby radio and television reception. It is essential that only the supplied power cord be used.


Use only shielded cables to connect I/O devices to this equipment.

You are cautioned that changes or modifications not expressly approved by the party responsible for compliance could void your authority to operate the equipment.

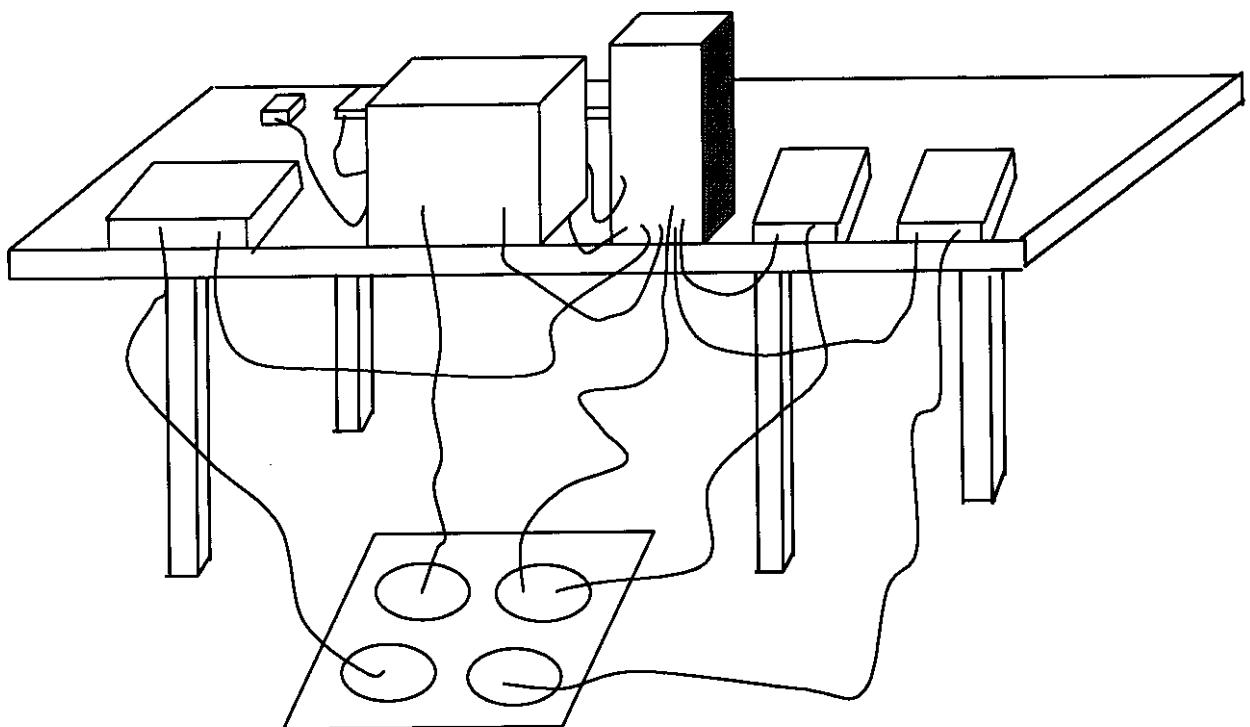
2. CONDUCTION EMISSIONS TEST

2.1 GENERAL SETUP OF THE TEST FACILITIES

2.2 TEST PROCEDURES

The system was setup as described above, with the EMI diagnostic software.

Both the line of power cord, hot and neutral, were run with the EMI tests software.


To get the maximum power line conducted emission, we changed the configuration by varying the monitor power cord fed from floor outlet and from the outlet on the power supply of this computer.

The highest emissions were recorded in the RFI test report.

3. RADIATED EMISSIONS TEST

3.1 GENERAL SETUP OF THE FACILITIES

3.2 TEST PROCEDURES

Radiated emissions test was carried out by **PEP Testing Laboratory** at the open field test site authorized by FCC.

The EUT and supporting equipments were setup with the EMI diagnostic software .

- a. setting up the EUT under normally position, and scanning it from 30 MHz to 1000 MHz, then recording those narrow band noises which cannot be 6 dBuV below lower bound. Both horizontal and vertical antenna are measured from 1 meter height to 4.0 meter height, and turntable rotate 360 degrees.
- b. fixing the EUT rear face to antenna and antenna 1.0 meter height. We adjusted I/O cables to find the highest coupling noise and moved the height of antenna from 1 to 4 meters, then rotated the turntable simultaneously .
- c. checking following step b. all points which were recorded in step a.
- d. changing the peripherals position, and routine steps a. b. c.

The highest emissions were recorded in the RFI test report .

4. DESCRIPTION FOR EUT TESTING CONFIGURATION

**** TEST PROCESURE ----**

- (A) The EUT was PS/2 PC mouse , FCC ID : ITEUECUM800P , for more detail information about the EUT , please refer user's manual .
- (B) The EUT was inserted into the mouse port on a tower PC under test and enabled by FCC EMITEST program , we provided worse case data in this report .
- (C) After the EUT was set up , we did the conducted emission test in the shielded room and the worst case placement finding as the ANSI C63.4 requirement ; similarly , the radiated emission test was done at the open field site .
- (D) If the peak value of the noise can't under Non-consumer equipment limit 3 dBuV more , we'll change Biconical antenna or Log-periodic antenna for Dipole antenna and record its Quasi-Peak value , making sure it can under 6 dBuV at least .
- (E) In the RFI test report , we provided the worst conducted emission testing data and radiated emission test data.

5. SUPPORTING DEVICES TO TEST

SUPPORT UNIT 1. ---- PERSONAL COMPUTER

Manufacturer : ASUS Inc.

Model Number : P2L97

Power Supply Type : Switching

Power Cord : Shielded, Detachable, 1.2m

Data Cable : Shielded, Detachable, 1.2m

FCC ID : N/A

SUPPORT UNIT 2. ---- MONITOR

Manufacturer : Acer Peripherals Inc.

Model Number : 7134T

Power Supply Type : Switching

Power Cord : Shielded, Detachable, 1.2m

Data Cable : Shielded, Undetachable, 1m

FCC ID : JVP7134T

SUPPORT UNIT 3. ---- PRINTER

Manufacturer : Hewlett-Packard Singapore Pte Ltd.

Model Number : C2642A

Power Supply Type : Linear

Power Cord : Non-Shielded, Detachable, 1.2m

Data Cable : Shielded, Detachable, 1m

FCC ID : N/A

SUPPORT UNIT 4. ----MODEM x 2

Manufacturer : ACEEX

Model Number : 1414

Power Supply Type : Linear

Power Cord : Non-Shielded, Detachable, 1.2m

Data Cable : Shielded, Detachable, 1m

FCC ID : IFAXDM1414

SUPPORT UNIT 5. ---- KEYBOARD

Manufacturer : Acer Peripherals Inc.

Model Number : 6311-KW

Power Supply Type : N/A

Power Cord : N/A

Data Cable : Shielded, Undetachable, 1.2m

FCC ID : JVPKBS-WIN

EQUIPMENT UNDER TEST ---- MOUSE

Manufacturer : ULTIMA ELECTRONICS CORP.

Model Number : UM800P, AM820P, AM880P, UM660P

Data Cable : Shielded, Undetachable, 1.2m

FCC ID : ITEUECUM800P

6. TEST CONFIGURATION

Radiated emission detector function :

(1) 30MHZ~1GHZ : Quasi-Peak Value
Resolution BW : 120KHZ Video BW : 300KHZ

(2) above 1GHZ : Quasi-Peak value and Average Value
Resolution BW : 1MHZ Video BW : 1MHZ
* either Q. P. or average value will be recorded
in the report

Conducted emission detector function :

(1) 450KHZ~30MHZ : Quasi-Peak Value
Resolution BW : 9KHZ Video BW : 30KHZ

The else descriptions : N/A

Conducted Emission Test Photo. : Page 15

Test Data : Hot 16

Neutral 17

Radiated Emission Test Photo. : Page 18

Test Data : Horizontal 19

Vertical 20

CONDUCTED EMISSIONS TEST DATA

Note : HOT LINE TEST

Freq. (MHz)	Level (dB)	Over Limit (dB)	Limit Line (dB)	Read Level (dB)	Probe Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)
1.366	37.25	-10.75	48.00	36.80	0.11	0.34	0.00
2.519	30.85	-17.15	48.00	30.20	0.15	0.50	0.00
3.937	31.95	-16.05	48.00	31.40	0.24	0.32	0.00
8.133	39.80	- 8.20	48.00	38.60	0.74	0.46	0.00
12.418	32.57	-15.43	48.00	31.00	1.02	0.55	0.00
16.318	23.09	-24.91	48.00	21.40	1.06	0.63	0.00
21.253	30.88	-17.12	48.00	29.00	1.15	0.73	0.00
22.938	33.58	-14.42	48.00	31.60	1.22	0.76	0.00
26.572	23.99	-24.01	48.00	21.80	1.36	0.83	0.00
28.050	22.08	-25.92	48.00	19.80	1.42	0.86	0.00

Note :

1. Level = Read Level + Probe Factor + Cable Loss - Preamp Factor
2. Over Limit = Level - Limit Line

CONDUCTED EMISSIONS TEST DATA

Note : NEUTRAL LINE TEST

Freq. (MHz)	Level (dB)	Over Limit (dB)	Limit Line (dB)	Read Level (dB)	Probe Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)
0.657	38.54	- 9.46	48.00	37.99	0.10	0.45	0.00
2.637	33.49	-14.51	48.00	32.80	0.16	0.53	0.00
6.531	31.81	-16.19	48.00	30.80	0.57	0.44	0.00
8.547	38.07	- 9.93	48.00	36.80	0.80	0.47	0.00
11.768	25.15	-22.85	48.00	23.60	1.02	0.54	0.00
13.954	30.62	-17.38	48.00	29.00	1.04	0.58	0.00
16.555	28.50	-19.50	48.00	26.80	1.07	0.63	0.00
20.544	28.83	-19.17	48.00	27.00	1.12	0.71	0.00
22.140	34.73	-13.27	48.00	32.80	1.18	0.74	0.00
24.120	32.65	-15.35	48.00	30.60	1.26	0.78	0.00

Note :

1. Level = Read Level + Probe Factor + Cable Loss - Preamp Factor
2. Over Limit = Level - Limit Line

RADIATED EMISSIONS TEST DATA

Antenna polarization : HORIZONTAL ; Test distance : 3 m ;

Freq. (MHz)	Level (dB)	Over Limit (dB)	Limit Line (dB)	Read Level (dB)	Probe Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)
48.360	30.96	- 9.04	40.00	42.00	8.77	0.19	20.00
120.180	29.95	-13.55	43.50	33.60	16.11	0.24	20.00
172.020	31.12	-12.38	43.50	32.80	17.64	0.68	20.00
214.680	27.79	-15.71	43.50	34.60	10.09	3.09	20.00
240.060	32.79	-13.21	46.00	38.60	11.49	2.70	20.00
339.900	32.49	-13.51	46.00	36.04	14.53	1.92	20.00
336.700	31.63	-14.37	46.00	35.80	14.34	1.49	20.00
412.700	36.33	- 9.67	46.00	40.40	13.92	2.01	20.00
470.100	36.57	- 9.43	46.00	35.20	18.55	2.83	20.00
531.000	36.00	-10.00	46.00	33.80	19.69	2.52	20.00

Note :

1. Level = Read Level + Probe Factor + Cable Loss - Preamp Factor
2. Over Limit = Level - Limit Line

RADIATED EMISSIONS TEST DATA

Antenna polarization : VERTICAL; Test distance : 3 m;

Freq. (MHz)	Level (dB)	Over Limit (dB)	Limit Line (dB)	Read Level (dB)	Probe Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)
48.360	27.36	-12.64	40.00	38.40	8.77	0.19	20.00
57.810	26.28	-13.72	40.00	34.00	12.18	0.11	20.00
120.180	28.54	-14.96	43.50	32.20	16.11	0.24	20.00
172.020	33.72	- 9.78	43.50	35.40	17.64	0.68	20.00
217.380	27.71	-18.29	46.00	34.80	10.05	2.86	20.00
335.000	26.93	-19.07	46.00	31.60	13.04	2.29	20.00
423.900	34.31	-11.69	46.00	35.75	16.82	1.75	20.00
482.700	37.93	- 8.07	46.00	36.60	19.17	2.16	20.00
542.900	38.16	- 7.84	46.00	37.20	18.73	2.23	20.00
563.900	39.07	- 6.93	46.00	35.80	21.17	2.09	20.00

Note :

1. Level = Read Level + Probe Factor + Cable Loss - Preamp Factor
2. Over Limit = Level - Limit Line

PEP Testing Laboratory

REPORT NO. : 990062

List of Test Equipment

Instrument	Model No.	Cal. Due Date	S/N
R&S Receiver	ESVS30(30M~1GHZ)	Apr. 21, 2000	863342/012
R&S Receiver	ESBI (20~5GHZ)	Feb. 12, 2000	845658/003
Spectrum Analyzer	HP8591A(9K~1.8GHZ)	Apr. 15, 2000	3225A03039
Spectrum Analyzer	R3261A (9K~2.6GHZ)	Dec. 03 1999	91720076
EMCO L.I.S.N.	3825/2 (10K~30MHZ)	Apr. 15, 2000	9311-2150
L.I.S.N.	KNW-242(10K~30MHZ)	Jan. 31, 2000	8-837-7
R & S L.I.S.N.	ESH3-Z5(9K~30MHZ)	Jul. 09, 1999	844982/039
Anritsu Pre-Amp.	MH648A(100K~1.4GHZ)	Sep. 20, 1999	M40076
R & S Pre-Amp.	ESMI-Z7(20M~7GHZ)	Feb. 12, 2000	6/2278/011
COM-Power Horn Antenna	AH-118 (1G~18GHZ)		10056
EMCO Dipole Antenna	3121C (20M~1GHZ)	May. 22, 1999	9611-1230
EMCO Biconical Antenna	3110B (30M~300M)	Mar. 10, 1999	2932
EMCO Log-Periodic Antenna	3146A (300M~1GHZ)	Apr. 14, 1999	1384