

FCC Radio Test Report

FCC ID: IRJ-BM100

Report No. : BTL-FCCP-2-2303T050

Equipment : Bluetooth Module

Model Name : BM100 Brand Name : Marson

Applicant: Marson Technology Co., Ltd.

Address: 9F., No.108-3, Min Chuan Rd., Hsin-Tien District, New Taipei City 23141,

Taiwan (R.O.C.)

Radio Function : Bluetooth Low Energy

FCC Rule Part(s) : FCC CFR Title 47, Part 15, Subpart C (15.247)

Measurement : ANSI C63.10-2013

Procedure(s)

Date of Receipt : 2023/3/15

Date of Test : 2023/3/31 ~ 2023/4/28

Issued Date : 2023/5/9

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Jay Kao, Engineer

Approved by

Jerry Chuang, Supervisor

TAF

Testing Laboratory
0659

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Project No.: 2303T050 Page 1 of 51 Report Version: R00

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2303T050 Page 2 of 51 Report Version: R00

CONTENTS REVISION HISTORY 5 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 MEASUREMENT UNCERTAINTY 1.2 7 1.3 **TEST ENVIRONMENT CONDITIONS** 8 1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 8 1.5 **DUTY CYCLE** 8 2 **GENERAL INFORMATION** 9 **DESCRIPTION OF EUT** 9 2.1 2.2 **TEST MODES** 10 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 11 2.4 SUPPORT UNITS 12 3 AC POWER LINE CONDUCTED EMISSIONS TEST 13 3.1 LIMIT 13 **TEST PROCEDURE** 3.2 13 3.3 **DEVIATION FROM TEST STANDARD** 13 3.4 **TEST SETUP** 14 3.5 **TEST RESULT** 14 4 RADIATED EMISSIONS TEST 15 4.1 LIMIT 15 4.2 **TEST PROCEDURE** 16 4.3 **DEVIATION FROM TEST STANDARD** 16 4.4 **TEST SETUP** 16 **EUT OPERATING CONDITIONS** 4.5 18 TEST RESULT - BELOW 30 MHZ 18 4.6 4.7 TEST RESULT - 30 MHZ TO 1 GHZ 18 4.8 TEST RESULT – ABOVE 1 GHZ 18 5 **BANDWIDTH TEST** 19 APPLIED PROCEDURES / LIMIT 5.1 19 5.2 **TEST PROCEDURE** 19 5.3 **DEVIATION FROM STANDARD** 19 **TEST SETUP** 5.4 19 5.5 **EUT OPERATION CONDITIONS** 19 5.6 **TEST RESULTS** 19 6 **OUTPUT POWER TEST** 20 6.1 APPLIED PROCEDURES / LIMIT 20 **TEST PROCEDURE** 6.2 20 6.3 **DEVIATION FROM STANDARD** 20 **TEST SETUP** 20 6.4 **EUT OPERATION CONDITIONS** 6.5 20 **TEST RESULTS** 6.6 20 POWER SPECTRAL DENSITY TEST 7 21 APPLIED PROCEDURES / LIMIT 7.1 21 7.2 **TEST PROCEDURE** 21 **DEVIATION FROM STANDARD** 7.3 21 7.4 **TEST SETUP** 21 7.5 **EUT OPERATION CONDITIONS** 21

7.6	TEST	RESULTS	21
8	ANTENN	IA CONDUCTED SPURIOUS EMISSION	22
8.1	APPLI	IED PROCEDURES / LIMIT	22
8.2	TEST	PROCEDURE	22
8.3	DEVIA	ATION FROM STANDARD	22
8.4	TEST	SETUP	22
8.5	EUT C	OPERATION CONDITIONS	22
8.6	TEST	RESULTS	22
9	LIST OF	MEASURING EQUIPMENTS	23
10	EUT TES	ST PHOTO	25
11	EUT PHO	OTOS	25
APPEND	IV A	AC POWER LINE CONDUCTED EMISSIONS	26
APPEND	IX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	31
APPEND	IX C	RADIATED EMISSIONS - ABOVE 1 GHZ	34
APPEND	IX D	BANDWIDTH	43
APPEND	IX E	OUTPUT POWER	45
APPEND	IX F	POWER SPECTRAL DENSITY TEST	47
APPEND	IX G	ANTENNA CONDUCTED SPURIOUS EMISSION	49

Project No.: 2303T050 Page 4 of 51 Report Version: R00

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-2-2303T050	R00	Original Report.	2023/5/9	Valid

Project No.: 2303T050 Page 5 of 51 Report Version: R00

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass	
15.247(a)(2)	Bandwidth	APPENDIX D	Pass	
15.247(b)(3)	Output Power	APPENDIX E	Pass	
15.247(e)	Power Spectral Density	APPENDIX F	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX G	Pass	
15.203	Antenna Requirement		Pass	

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

Project No.: 2303T050 Page 6 of 51 Report Version: R00

SR11

SR10

1.1 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659. The test location(s) used to collect the test data in this report are: No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

(FCC DN: TW0659)

C05 □ CB08 □ CB11 No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

(FCC DN: TW0659)

□ C06 □ CB22 CB21

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of k = 2, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 Ucispr requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U (dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB21	1 GHz ~ 6 GHz	5.21
CDZT	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

itest.				
Test Item	U (dB)			
Occupied Bandwidth	0.5334			
Output power	0.3669			
Power Spectral Density	0.6591			
Conducted Spurious emissions	0.5416			
Conducted Band edges	0.5348			

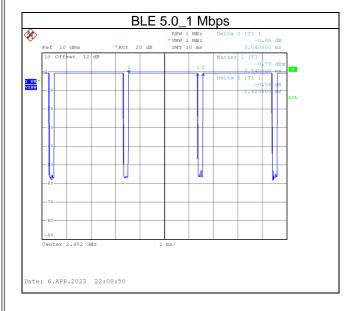
NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

Project No.: 2303T050 Page 7 of 51 Report Version: R00

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	22 °C, 65 %	AC 120V	Cora Lin
Radiated emissions below 1 GHz	Refer to data	DC 5V	Eddie Lee
Radiated emissions above 1 GHz	Refer to data	DC 5V	Mark Wang
Bandwidth	23.2 °C, 61 %	DC 5V	Jay Tien
Output Power	23.2 °C, 61 %	DC 5V	Jay Tien
Power Spectral Density	23.2 °C, 61 %	DC 5V	Jay Tien
Antenna conducted Spurious Emission	23.2 °C, 61 %	DC 5V	Jay Tien


1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

Test Software		BT98X FC	C Tool V1.2	
Modulation Mode	2402 MHz	2440 MHz	2480 MHz	Data Rate
BLE 5.0	0	0	0	1 Mbps

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
Mode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BLE 5.0	2.820	1	2.820	3.040	92.76%	0.33

Project No.: 2303T050 Page 8 of 51 Report Version: R00

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Bluetooth Module
Model Name	BM100
Brand Name	Marson
Model Difference	N/A
Power Source	DC voltage supplied from host system.
Power Rating	DC 5V, 0.5A
Products Covered	N/A
Operation Band	2400 MHz ~ 2483.5 MHz
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Technology	GFSK
Transfer Rate	1 Mbps
Output Power Max.	1.09 dBm (0.0013 W)
Test Model	BM100
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

(3) Table for Filed Antenna:

Antenna	Brand	Part number	Type	Connector	Gain (dBi)
1	Walsin Technology Corporation	RFANT5220110A0T	Multilayer ceramic antenna	N/A	2.66

(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

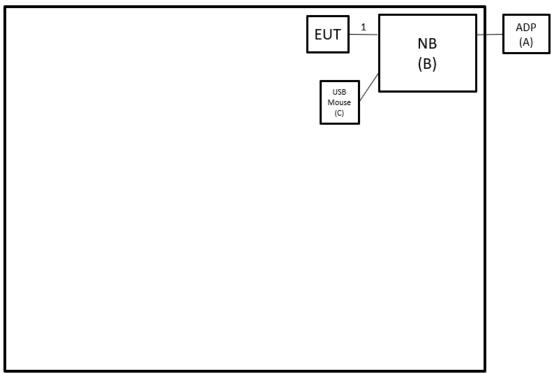
Project No.: 2303T050 Page 9 of 51 Report Version: R00

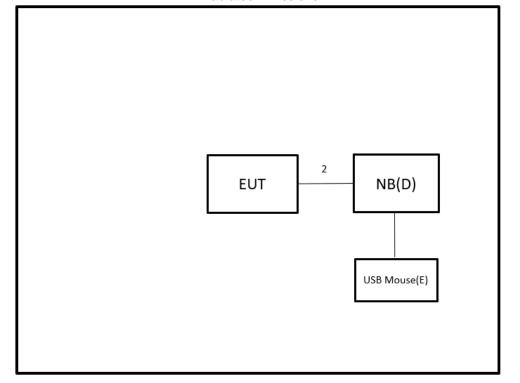
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	BLE 5.0 / 1 Mbps	19	-
Transmitter Radiated Emissions	BLE 5.0 / 1 Mbps	00/39	Bandedge
(above 1GHz)	BLE 5.0 / 1 Mbps	00/19/39	Harmonic
Bandwidth	BLE 5.0 / 1 Mbps	00/19/39	-
Output Power	BLE 5.0 / 1 Mbps	00/19/39	-
Power Spectral Density	BLE 5.0 / 1 Mbps	00/19/39	-
Antenna conducted Spurious Emission	BLE 5.0 / 1 Mbps	00/19/39	-

NOTE:

- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (2) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.
- (3) The EUT supports both BLE 4.0 and 5.0, we will pick BLE 5.0 for testing.


Project No.: 2303T050 Page 10 of 51 Report Version: R00


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC power line conducted emissions

Radiated Emissions

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
А	ADAPTER	ASUS	ADP-45BW X	131504500507MAS 024003799	Furnished by test lab.
В	NB	ASUS	X555LN	EAN0CV311223428	Furnished by test lab.
С	USB Mouse	DELL	MOCZUL	CN-049TWY-PRC0 0-79E-01HA	Furnished by test lab.
D	NB	HP	TPN-I119	N/A	Furnished by test lab.
Е	USB Mouse	LOGITECH	B100	1402HS01W358	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	No	No	1m	mini USB Cable	Furnished by test lab.
2	No	No	0.6m	mini USB Cable	Furnished by test lab.

Project No.: 2303T050 Page 12 of 51 Report Version: R00

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

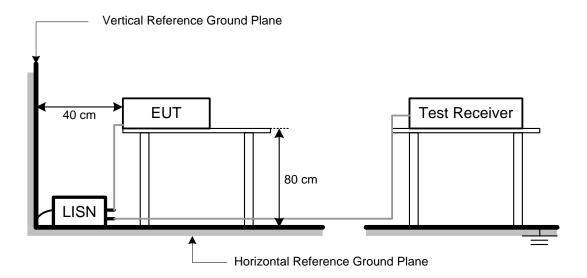
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2303T050 Page 13 of 51 Report Version: R00

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated (dBu	Measurement Distance	
(IVITZ)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
41.91	+	-8.36	=	33.55

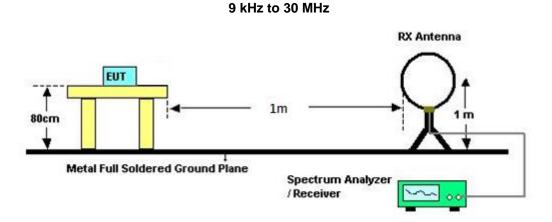
Measurement Value	Limit Value		Margin Level
33.55	43.50	=	-9.95

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

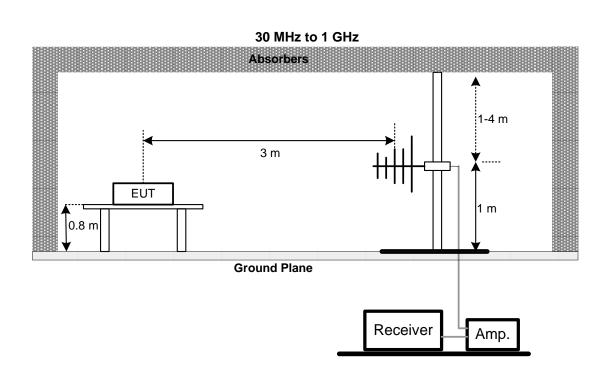
Mode	VBW(Hz)
BLE (1M)	2700

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

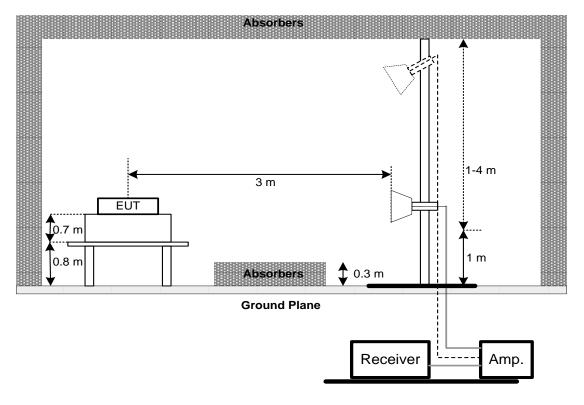
Project No.: 2303T050 Page 15 of 51 Report Version: R00


4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.


4.3 DEVIATION FROM TEST STANDARD

No deviation.


4.4 TEST SETUP

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2303T050 Page 18 of 51 Report Version: R00

5 BANDWIDTH TEST

5.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz	2400-2483.5	PASS
		(6dB bandwidth)		

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

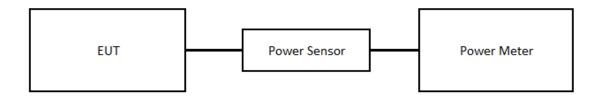
Please refer to the APPENDIX D.

Project No.: 2303T050 Page 19 of 51 Report Version: R00

6 OUTPUT POWER TEST

6.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Maximum Output Power	1 watt or 30dBm	2400-2483.5	PASS


6.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- b. The maximum peak conducted output power was performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

Please refer to the APPENDIX E.

Project No.: 2303T050 Page 20 of 51 Report Version: R00

7 POWER SPECTRAL DENSITY TEST

7.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(e)	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=3KHz, VBW=10 KHz, Sweep time = auto.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

7.6 TEST RESULTS

Please refer to the APPENDIX F.

Project No.: 2303T050 Page 21 of 51 Report Version: R00

8 ANTENNA CONDUCTED SPURIOUS EMISSION

8.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 10 ms.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULTS

Please refer to the APPENDIX G.

Project No.: 2303T050 Page 22 of 51 Report Version: R00

9 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	TWO-LINE V-NETWORK	R&S	ENV216	101521	2022/9/28	2023/9/27
2	Test Cable	EMCI	EMCCFD300-BM -BM-9000	210502	2022/12/8	2023/12/7
3	EMI Test Receiver	R&S	ESR 7	101433	2022/11/16	2023/11/15
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

	Radiated Emissions					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Preamplifier	EMCI	EMC330N	980850	2022/9/19	2023/9/18
2	Preamplifier	EMCI	EMC118A45SE	980819	2023/3/7	2024/3/6
3	Pre-Amplifier	EMCI	EMC184045SE	980907	2022/9/28	2023/9/27
4	Preamplifier	EMCI	EMC001340	980579	2022/9/30	2023/9/29
5	Test Cable	EMCI	EMC104-SM-SM- 1000	220319	2023/3/14	2024/3/13
6	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2023/3/14	2024/3/13
7	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2023/3/14	2024/3/13
8	EXA Signal Analyzer	keysight	N9020B	MY57120120	2023/2/24	2024/2/23
9	Loop Ant	Electro-Metrics	EMCI-LPA600	291	2022/9/19	2023/9/18
10	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2022/5/18	2023/5/17
11	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2022/5/18	2023/5/17
12	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2022/5/20	2023/5/19
13	6dB Attenuator	EMCI	EMCI-N-6-06	AT-06001	2022/5/20	2023/5/19
14	Test Cable	EMCI	EMC101G-KM-K M-3000	220329	2023/3/14	2024/3/13
15	Test Cable	EMCI	EMC102-KM-KM- 1000	220327	2023/3/14	2024/3/13
16	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

			Bandwidth			
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	100129	2022/10/7	2023/10/6

			Output Power			
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Power Meter	Anritsu	ML2495A	1128008	2022/6/1	2023/5/31
2	Power Sensor	Anritsu	MA2411B	1126001	2022/6/1	2023/5/31

		P	ower Spectral De	nsity		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	100129	2022/10/7	2023/10/6

	Antenna conducted Spurious Emission					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	100129	2022/10/7	2023/10/6

Remark: "N/A" denotes no model name, no serial no. or no calibration specified.

All calibration period of equipment list is one year.

Project No.: 2303T050 Page 24 of 51 Report Version: R00

10 EUT TEST PHOTO
Please refer to document Appendix No.: TP-2303T050-FCCP-1 (APPENDIX-TEST PHOTOS).
11 EUT PHOTOS
Please refer to document Appendix No.: EP-2303T050-1 (APPENDIX-EUT PHOTOS).

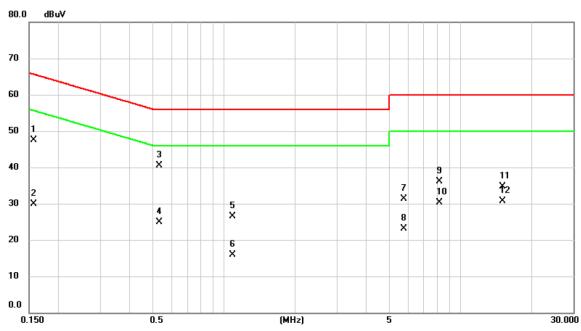
Project No.: 2303T050 Page 25 of 51 Report Version: R00



APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2303T050 Page 26 of 51 Report Version: R00

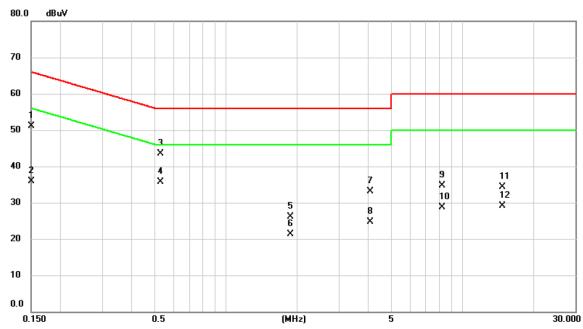
Test Mode	Normal	Tested Date	2023/3/31
Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	V.	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1836	32.64	9.63	42.27	64.32	-22.05	QP	
2		0.1836	15.85	9.63	25.48	54.32	-28.84	AVG	
3		0.5257	32.99	9.66	42.65	56.00	-13.35	QP	
4	*	0.5257	23.95	9.66	33.61	46.00	-12.39	AVG	
5		2.0512	19.93	9.73	29.66	56.00	-26.34	QP	
6		2.0512	11.41	9.73	21.14	46.00	-24.86	AVG	
7		4.3350	23.64	9.82	33.46	56.00	-22.54	QP	
8		4.3350	15.96	9.82	25.78	46.00	-20.22	AVG	
9		8.4366	23.69	9.92	33.61	60.00	-26.39	QP	
10		8.4366	17.90	9.92	27.82	50.00	-22.18	AVG	
11		14.9932	23.61	9.99	33.60	60.00	-26.40	QP	
12		14.9932	18.41	9.99	28.40	50.00	-21.60	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

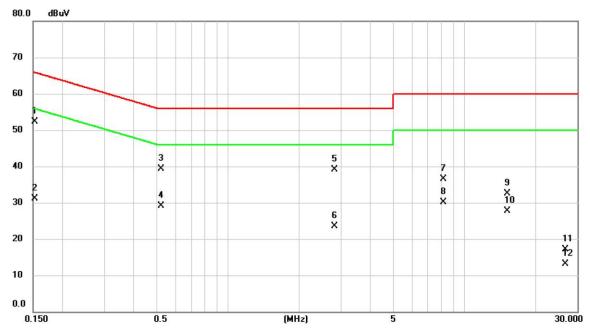
Test Mode	Normal	Tested Date	2023/3/31
Test Frequency	-	Phase	Neutral



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1568	37.80	9.65	47.45	65.63	-18.18	QP	
2		0.1568	20.19	9.65	29.84	55.63	-25.79	AVG	
3	*	0.5347	30.76	9.67	40.43	56.00	-15.57	QP	
4		0.5347	15.14	9.67	24.81	46.00	-21.19	AVG	
5		1.0905	16.89	9.71	26.60	56.00	-29.40	QP	
6		1.0905	6.17	9.71	15.88	46.00	-30.12	AVG	
7		5.7593	21.49	9.88	31.37	60.00	-28.63	QP	
8		5.7593	13.14	9.88	23.02	50.00	-26.98	AVG	
9		8.1735	26.22	9.94	36.16	60.00	-23.84	QP	
10		8.1735	20.38	9.94	30.32	50.00	-19.68	AVG	
11		15.0180	24.71	10.08	34.79	60.00	-25.21	QP	
12		15.0180	20.71	10.08	30.79	50.00	-19.21	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2023/3/31
Test Frequency	-	Phase	Line

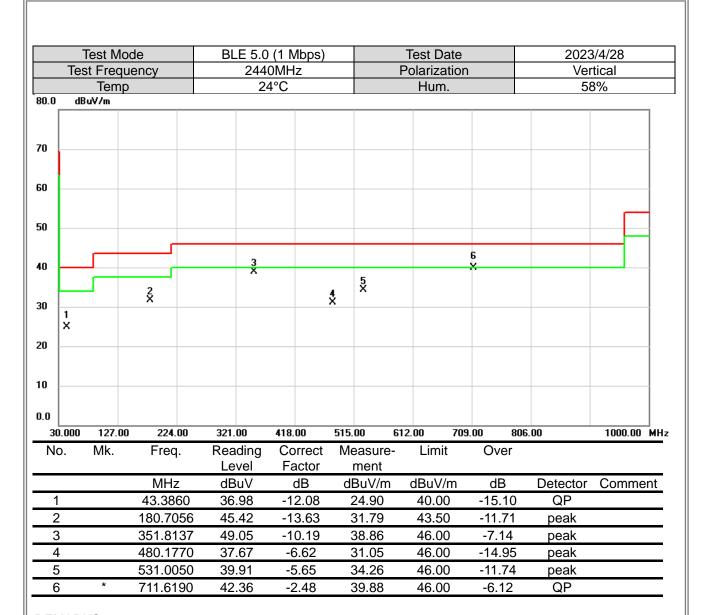


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	41.51	9.63	51.14	66.00	-14.86	QP	
2		0.1500	26.30	9.63	35.93	56.00	-20.07	AVG	
3		0.5302	33.81	9.66	43.47	56.00	-12.53	QP	
4	*	0.5302	26.10	9.66	35.76	46.00	-10.24	AVG	
5		1.8735	16.31	9.73	26.04	56.00	-29.96	QP	
6		1.8735	11.61	9.73	21.34	46.00	-24.66	AVG	
7		4.0853	23.25	9.81	33.06	56.00	-22.94	QP	
8		4.0853	14.98	9.81	24.79	46.00	-21.21	AVG	
9		8.2118	24.88	9.92	34.80	60.00	-25.20	QP	
10		8.2118	18.77	9.92	28.69	50.00	-21.31	AVG	
11		14.7098	24.23	9.99	34.22	60.00	-25.78	QP	
12		14.7098	19.09	9.99	29.08	50.00	-20.92	AVG	

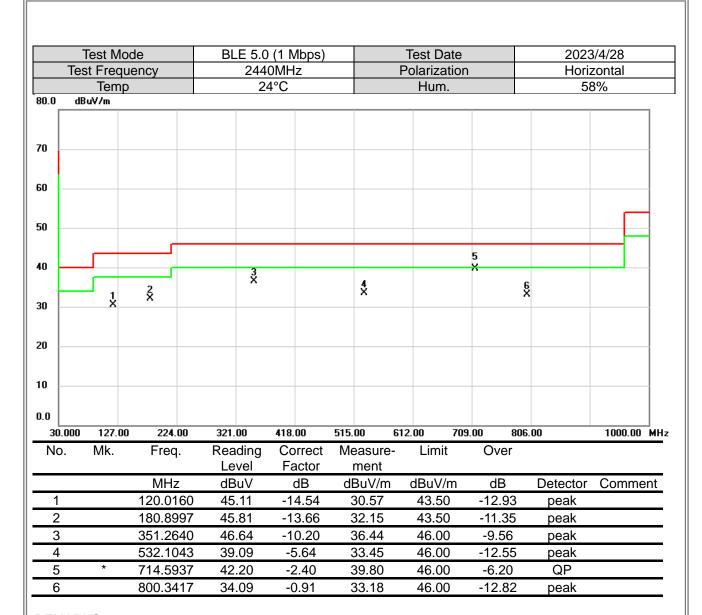
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2023/3/31
Test Frequency	-	Phase	Neutral

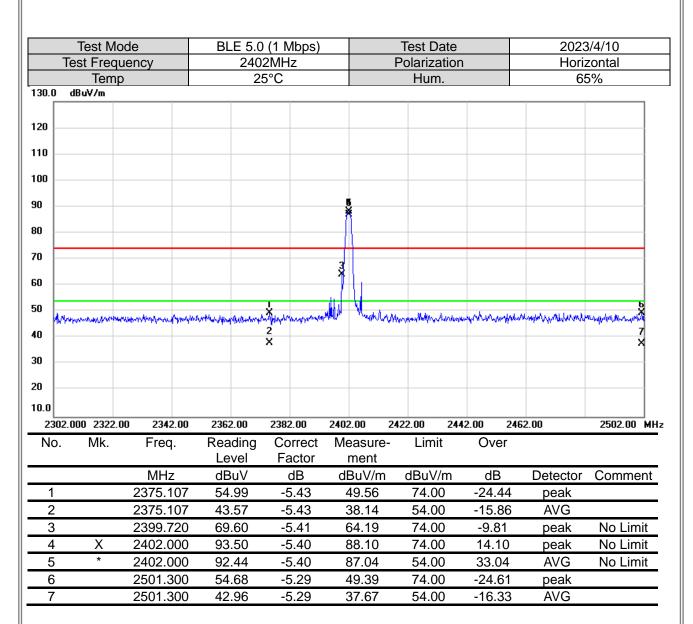
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	V.	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1532	42.71	9.65	52.36	65.82	-13.46	QP	
2		0.1532	21.40	9.65	31.05	55.82	-24.77	AVG	
3		0.5235	29.61	9.67	39.28	56.00	-16.72	QP	
4		0.5235	19.34	9.67	29.01	46.00	-16.99	AVG	
5		2.8275	29.35	9.77	39.12	56.00	-16.88	QP	
6		2.8275	13.78	9.77	23.55	46.00	-22.45	AVG	
7		8.1735	26.54	9.94	36.48	60.00	-23.52	QP	
8		8.1735	20.26	9.94	30.20	50.00	-19.80	AVG	
9		15.2183	22.35	10.08	32.43	60.00	-27.57	QP	
10		15.2183	17.53	10.08	27.61	50.00	-22.39	AVG	
11		26.6550	6.84	10.25	17.09	60.00	-42.91	QP	
12		26.6550	2.81	10.25	13.06	50.00	-36.94	AVG	


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ


Project No.: 2303T050 Page 31 of 51 Report Version: R00

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2303T050 Page 34 of 51 Report Version: R00

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	Test Mo			(1 Mbps)		Test Date			3/4/10
Те	est Frequ			0MHz		Polarization)		zontal
1000	Temp		2	5°C		Hum.		65	5%
130.0 d	IBuV/m								
120									
20									
10									
100									
30					Ħ				
30									
70					tt.				
60					.17 11 5				i
					Į Š				
50 1	regerial Herritanish	emony and to have a	frakerrijalet aktoris tidenka	y name ha a napa	me la structura	المراجعة الم	on the state of the substitute of the	han a pagaman parahasan sh	W-rashy makes a mark
50 1 	reserved by the mode	man aparellation and	tapor esta per esta perior	Aparametara Aparama	**************************************	المرابع	go, phendere significant gale	handelperagneralledent	M-wateraland ma
50 1 40 2 X	reservablesterned	en e	tapmakan perenggak	rpaningharraph	Mar. G MANAGE	rdy with a great way to able able to	gape, plane in filter and processing in	desir se trapper a september a trapper a september a trapper a september a trapper a september a trapper a sep	196-augustus dan dari barakan
50 1 40 2 X	regardityriti mak	en e	Pakere Andre State Andre S	rpinantestaren alla	Mar. G MANAGE	nd who you have a local point	an phashan da bhraightean ag ph	desirate per anglas de la desirate	M-racky Mand Man
50 1 40 2	rann and begin in made	enter mangraph of letter and a	fish work through the fight	representative resident	Mar. G MANAGE	rd _e therpotern _e nskedph	gyphallacadylinadlythagyd	daga antigan ay araflaga a s	19-randy 19-band 19-ra
1 40 2 X 30	ranavadi figerili ingadi	en e	taper show special spe	rgunantestaren alfil	Mar. G MANAGE	rding nashring tasksidipin	op plante of the agilly processor	description of the second	ort-casely or band verse
50 1 40 2 × 30 20	000 2400.0		2440.00	2460.00	Kir dividiya	500.00 252		hande of the second of the sec	2580.00 M
50 1 40 2 × 30 20			2440.00 Reading	2460.00 Correct	2480.00 29 Measure-				
50 1 40 2 X 30 20 10.0 2380.0	000 2400.0	0 2420.00 Freq.	2440.00 Reading Level	2460.00 Correct Factor	2480.00 29 Measure- ment	500.00 252 Limit	20.00 254 Over	0.00	2580.00 M
20 2380.0 No.	000 2400.0	0 2420.00 Freq.	2440.00 Reading Level dBuV	2460.00 Correct Factor dB	2480.00 29 Measurement dBuV/m	500.00 252 Limit dBuV/m	20.00 254 Over dB	0.00 Detector	
1 2 X 80 0 0.0 0.0 0.0 No.	000 2400.0	0 2420.00 Freq. MHz 2384.453	2440.00 Reading Level dBuV 54.30	2460.00 Correct Factor dB -5.43	2480.00 29 Measurement dBuV/m 48.87	500.00 252 Limit dBuV/m 74.00	20.00 254 Over dB -25.13	0.00 Detector peak	2580.00 M
10 2 x 80 0 0.0 2380.0 No.	000 2400.0 Mk.	0 2420.00 Freq. MHz 2384.453 2384.453	2440.00 Reading Level dBuV 54.30 42.92	2460.00 Correct Factor dB -5.43 -5.43	2480.00 29 Measure- ment dBuV/m 48.87 37.49	500.00 252 Limit dBuV/m 74.00 54.00	20.00 254 Over dB -25.13 -16.51	Detector peak AVG	2580.00 MI
00 2 X 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 2400.0 Mk.	0 2420.00 Freq. MHz 2384.453 2384.453 2480.000	2440.00 Reading Level dBuV 54.30 42.92 95.18	2460.00 Correct Factor dB -5.43 -5.43 -5.31	2480.00 29 Measurement dBuV/m 48.87 37.49 89.87	500.00 252 Limit dBuV/m 74.00 54.00 74.00	Over dB -25.13 -16.51 15.87	Detector peak AVG peak	2580.00 MI
1 2 3 4	000 2400.0 Mk.	0 2420.00 Freq. MHz 2384.453 2384.453 2480.000 2480.000	2440.00 Reading Level dBuV 54.30 42.92 95.18 94.35	2460.00 Correct Factor dB -5.43 -5.43 -5.31	2480.00 29 Measurement dBuV/m 48.87 37.49 89.87 89.04	500.00 252 Limit dBuV/m 74.00 54.00 74.00 54.00	20.00 254 Over dB -25.13 -16.51 15.87 35.04	Detector peak AVG peak AVG	2580.00 MI
10.0 2380.0 No.	000 2400.0 Mk.	0 2420.00 Freq. MHz 2384.453 2384.453 2480.000	2440.00 Reading Level dBuV 54.30 42.92 95.18	2460.00 Correct Factor dB -5.43 -5.43 -5.31	2480.00 29 Measurement dBuV/m 48.87 37.49 89.87	500.00 252 Limit dBuV/m 74.00 54.00 74.00	Over dB -25.13 -16.51 15.87	Detector peak AVG peak	2580.00 MI

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mode Test Frequency			BLE 5.0 (1 Mbps)							Test Da					3/4/10		
				2402MHz					Polarization						Vertical			
		emp				2	5°C					Hum				68	5%	
130.0	dBuV/	m																_
120																		
110																		-
100																		4
90																		
80																		
70																		-
60 _																		
50			1 2															+
40			2 X															
30																		4
20																		
10.0																		
	0.000 3				8650			00.00		50.00		00.00		50.00		00.00	26500.0	0 MH:
No.	M	k.	Freq	.		ding vel		rrect		easur ment	e-	Limit	t	Ove	er			
			MHz	<u> </u>	dB			dB	dE	3uV/n	n	dBuV/	m	dB	3	Detector	Commo	ent
1			4804.0	000	47	.58	0	.75		18.33		74.00)	-25.6	67	peak		
2		k	4804.0	000	41	.28	0	.75	4	12.03		54.00)	-11.9	97	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mode			5.0 (1 Mbps)		Test Date			3/4/10
Te	est Frequ		2	402MHz		Polarizatio	n		zontal
	Temp)		25°C		Hum.	65%		
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60 —		1							
50		1. 2. X							
40									
30									
20									
10.0									
1000.	000 3550.0	00 6100.00	0 8650.00		13750.00		850.00 214	00.00	26500.00 MHz
No.	Mk.	Freq.	Readin Level		Measure ment	- Limit	Over		_
		MHz	dBuV		dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000	52.30	0.75	53.05	74.00	-20.95	peak	
2	*	4804.000) 47.18	0.75	47.93	54.00	-6.07	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		st Mo			BL		(1 M					Test D					3/4/10
Test Frequency			2440MHz 25°C			Polarization					Vertical 65%						
130.0	dBuV	Temp	<u> </u>			2	5°C					Hum	٦			68	0%
JU.U	dbut	7111															
120 _																	
10																	
00																	
10																	
30 <u> </u>																	
o																	
0 _																	
0 =			1 Ž														
0			2 X														
:0																	
20																	
0.0																	
		3550.0			8650		1120		1375			300.00		50.00		00.00	26500.00 M
No.	N	Лk.	Freq	•	Rea Le			rect ctor		asur nent	e-	Limi	it	Ove	er		
			MHz		dB	uV	d	В	dE	3uV/r	n	dBuV.	/m	dB	3	Detector	Comment
1			4880.0	00	46.	.01	1.	01	۷	7.02		74.0	0	-26.9	98	peak	
2		*	4880.0	00	39.	69	1.	01		10.70		54.0	0	-13.3	30	AVG	-

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mode Test Frequency		BI		(1 Mbps)			Test D				3/4/10
Te					0MHz			Polariza		Horizontal		
	Temp)		25°C				Hum		65%		
130.0	dBuV/m											
120												
110												
100												
90												
80												
70												
60												
50		Ą										
40		X										
30												
20												
10.0												
	000 3550.0			0.00	11200.00	1375		16300.00	18850.00		00.00	26500.00 MHz
No.	Mk.	Freq.		ading evel	Correct Factor		asure nent	- Limi	it O	/er		
		MHz	dE	₿uV	dB		3uV/m	dBuV	/m d	В	Detector	Comment
1		4879.40	0 48	.54	1.00	4	9.54	74.0	0 -24	.46	peak	
2	*	4879.40	0 43	.57	1.00	4	4.57	54.0	0 -9.	.43	AVG	

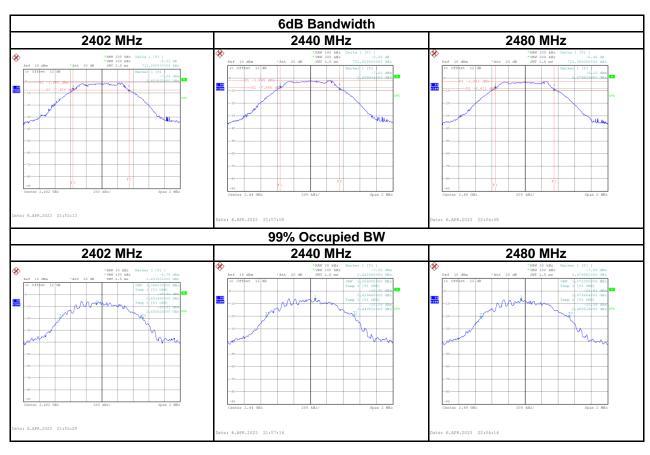
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode) (1 Mbps)		Test Date			8/4/10
Te	est Frequ			80MHz		Polarization	Vertical		
100.0	Temp 30.0 dBuV/m		2	5°C		Hum.	65%		
130.0	dBuV/m								
120									
110 -									
100									
90									
30									
70 <u> </u>									
50									
50		_							
40 L		1 X 2							
80		×							
20									
10.0									
1000.0	000 3550.0	00 6100.00	8650.00	11200.00	13750.00	16300.00 18	850.00 214	00.00	26500.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000		1.28	44.63	74.00	-29.37	peak	
2	*	4960.000		1.28	36.52	54.00	-17.48	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M				BL	E 5.0						Test D					3/4/10	
	Test Frequency Temp			2480MHz 25°C					Polarization Hum.						Horizontal 65%			
130.0	dBuV/m	ıρ				Ζ;	5 C					пип	l.			U:	J 70	
																		\neg
120 🗀																		_
110																		_
00																		
30																		
30 _																		
o																		-
:0																		
io			ı ×															-
0			2															4
:0 _		,	×															
20																		
10.0																		
1000	.000 3550	0.00	6100	.00	8650	0.00	1120	0.00	1375	0.00	16	300.00	188	50.00	214	00.00	26500.0	00 MH
No.	Mk.		Freq	•		ding vel		rect ctor		easur ment		Lim	it	Ove	er			
			MHz			uV		IB		3uV/r		dBuV	/m	dE	}	Detector	Comm	ent
1		49	960.0	00	45	.86	1.	28		17.14		74.0	0	-26.	86	peak		
2	*	49	960.1	50	35	.26	1.	28	3	36.54		54.0	0	-17.	46	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


3LL		Report No.: BTL-FCCP-2-2303T050
	APPENDIX D	

Project No.: 2303T050 Page 43 of 51 Report Version: R00

Test Mode: BLE 5.0

Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result
2402	0.71	1.06	500	Pass
2440	0.72	1.06	500	Pass
2480	0.71	1.07	500	Pass

APPENDIX E OUTPUT POWER

Project No.: 2303T050 Page 45 of 51 Report Version: R00

Report No.: BTL-FCCP-2-2303T050

Test Mode: BLE 5.0 Tested Date 2023/4/6

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	1.09	0.0013	30.00	1.0000	Pass
2440	0.74	0.0012	30.00	1.0000	Pass
2480	0.11	0.0010	30.00	1.0000	Pass

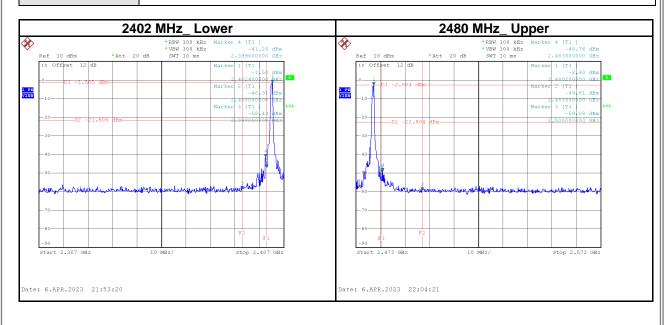
Project No.: 2303T050 Page 46 of 51 Report Version: R00

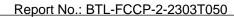
APPENDIX F POWER SPECTRAL DENSITY TEST

Project No.: 2303T050 Page 47 of 51 Report Version: R00

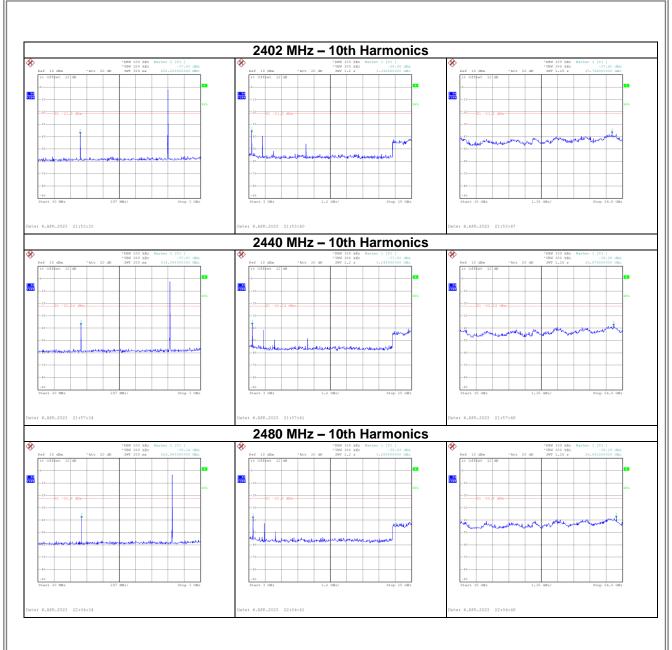
Test Mode : BLE 5.0

Frequency (MHz)	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Test Result
2402	-17.00	8	Pass
2440	-17.64	8	Pass
2480	-18.15	8	Pass




APPENDIX G	ANTENNA CONDUCTED SPURIOUS EMISSION

Project No.: 2303T050 Page 49 of 51 Report Version: R00



Test Mode: BLE 5.0

