

CTC I advanced nember of RWTÜV group

Bundesnetzagentu

TEST REPORT

Test report no.: 1-8063/19-03-03

Testing laboratory

CTC advanced GmbH

BNetzA-CAB-02/21-102

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 + 49 681 5 98 - 9075 Fax: Internet: https://www.ctcadvanced.com e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

Pepperl+Fuchs, Inc. 1600 Enterprise Parkway Ohio 44087 Twinsburg / UNITED STATES Phone: +1 330 425-3555 Contact: Helmut Hornis e-mail: hhornis@us.pepperl-fuchs.com Phone: +1 330 486-0148

Manufacturer

Pepperl+Fuchs Asia Pte. Ltd 18 Ayer Rajah Crescent 139942 Singapore / SINGAPORE

Test standard/s

FCC - Title 47 CFR Part 15	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE-LAN) Devices
For further applied test sta	ndards please refer to section 3 of this test report.

	Test Item
Kind of test item:	UHF Reader module
Model name:	IURF190 FR2
FCC ID:	IREIURF190
IC:	7037A-IURF190
Frequency rangr:	DTS band 902 MHz -928 MHz
Technology tested:	RFID
Antenna:	Integrated antenna
Power supply:	24 V DC by external power supply
Temperature:	-20°C to +60°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Christoph Schneider	
Lab Manager	
Radio Communications	

Test performed:

Tobias Wittenmeier Testing Manager Radio Communications

Table of contents 1

1	Table	of contents	2
2	Gener	al information	4
	2.1 2.2 2.3	Notes and disclaimer Application details Test laboratories sub-contracted	4
3	Test s	tandard/s, references and accreditations	5
4	Repor	ting statements of conformity – decision rule	6
5	Test e	nvironment	7
6	Test it	em	7
	6.1 6.2	General description Additional information	
7	Descr	ption of the test setup	8
	7.1 7.2	Shielded semi anechoic chamber Shielded fully anechoic chamber	
	7.3	AC conducted	
_	7.4	Conducted measurements	
8	•	nce of testing	
	8.1 8.2	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz	
	8.3	Sequence of testing radiated spurious 1 GHz to 12.75 GHz	
9	Measu	irement uncertainty	18
10	Sun	nmary of measurement results	19
11	RF	neasurements	20
	11.1	Additional comments	20
12	Mea	isurement results	21
	12.1	Antenna gain	21
	12.2	Carrier Frequency Separation	
	12.3	Number of Hopping Channels	
	12.4 12.5	Average Time of Occupancy (dwell time) Spectrum bandwidth of a FHSS system	
	12.5	Maximum Output Power	
	12.0	Detailed spurious emissions @ the band edge – conducted and radiated	
	12.8	Spurious Emissions Conducted	
	12.9	Spurious Emissions Radiated < 30 MHz	
	12.10	Spurious Emissions Radiated > 30 MHz	
	12.10	1 Spurious emissions radiated 30 MHz to 1 GHz	46
	12.10	1	
	12.11	Spurious emissions conducted below 30 MHz (AC conducted)	54
13	Obs	ervations	57
14	Glo	ssary	

Test report no.: 1-8063/19-03-03

15	Document history	.59
16	Accreditation Certificate - D-PL-12076-01-04	.59
17	Accreditation Certificate - D-PL-12076-01-05	.60

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2019-10-02
Date of receipt of test item:	2020-04-20
Start of test:	2020-04-24
End of test:	2020-09-09
Person(s) present during the test:	-/-

2.3 Test laboratories sub-contracted

None

3 Test standard/s, references and accreditations


Test standard	Date	Description				
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices				
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices				
RSS - Gen Issue 5 incl. Amendment 1	March 2019	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus				
Guidance	Version	Description				
KDB 558074 D01 ANSI C63.4-2014 ANSI C63.10-2013	v05r02 -/- -/-	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices				
Accreditation	Description	n				
D-PL-12076-01-04		nunication and EMC Canada <u>Adakks.de/as/ast/d/D-PL-12076-01-04e.pdf</u>				
D-PL-12076-01-05		nication FCC requirements akks.de/as/ast/d/D-PL-12076-01-05e.pdf				

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

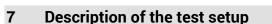
The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

5 **Test environment**

		T_{nom}	+23 °C during room temperature tests
Temperature	:	T_{max}	No tests under extreme conditions required.
		T_{min}	No tests under extreme conditions required.
Relative humidity content	:		55 %
Barometric pressure :			1021 hpa
		V_{nom}	24.0 V DC by external power supply
Power supply	:	V_{max}	No tests under extreme conditions required.
		V_{min}	No tests under extreme conditions required.

6 **Test item**

General description 6.1


Kind of test item :	UHF Reader module				
Model name :	URF190 FR2				
HMN :	-/-				
PMN :	IURF190				
HVIN :	IURF190				
FVIN :	-/-				
S/N serial number :	Rad. 4 000 009 4 975 750				
S/N Senai humber .	Cond. 4 000 009 4 975 752				
Hardware status :	#70115658 IURF190 FR2				
Software status :	18-33929				
Firmware status :	-/-				
Frequency band :	DTS band 902 MHz -928 MHz				
Type of radio transmission :	FHSS				
Use of frequency spectrum :	FN35				
Type of modulation :	FSK				
Number of channels :	50				
Antenna :	Integrated antenna				
Power supply :	24 V DC by external power supply				
Temperature :	-20°C to +60°C				

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

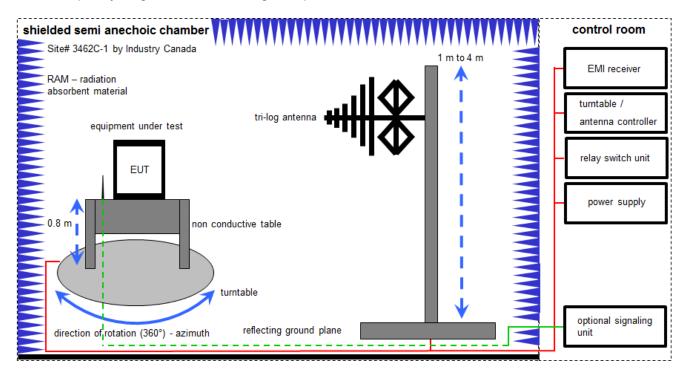
1-8063/19-03-01_AnnexA 1-8063/19-03-01_AnnexB 1-8063/19-03-01_AnnexD

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

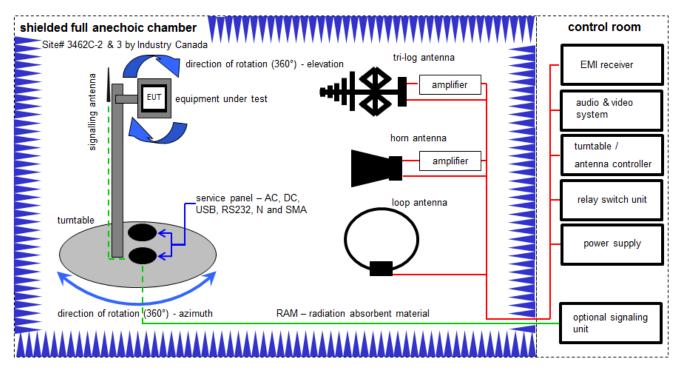

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter EMC32 software version: 10.30.0

FS = UR + CL + AF (FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


<u>Example calculation</u>: FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	А	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
3	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
4	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vlKI!	17.01.2020	16.01.2022
5	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	295	300003787	vlKl!	19.02.2019	18.02.2021
9	А	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	21.05.2019	20.11.2020

7.2 Shielded fully anechoic chamber

Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter

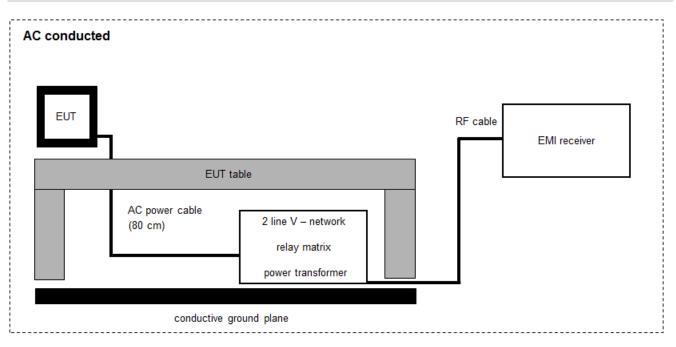
FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

<u>Example calculation:</u> FS [dBµV/m] = 40.0 [dBµV/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dBµV/m] (71.61 µV/m)

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

<u>Example calculation</u>: OP [dBm] = -65.0 [dBm] + 50 [dB] - 20 [dBi] + 5 [dB] = -30 [dBm] (1 µW) CTC | advanced


member of RWTÜV group

Equipment table:

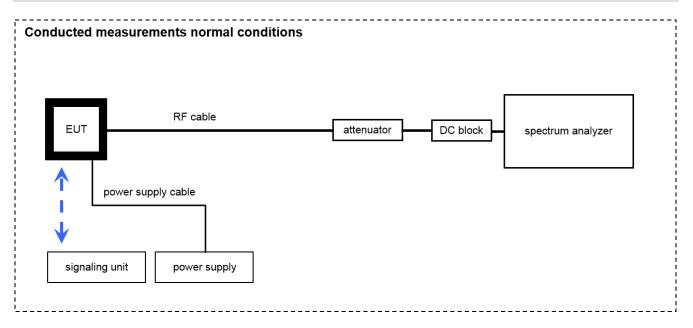
No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	13.06.2019	12.06.2021
2	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3696	300001604	vlKl!	27.02.2019	26.02.2021
3	А, В	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04590	300001041	vlKl!	14.12.2017	13.12.2020
4	В	Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	ne	-/-	-/-
5	В	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
6	А, В	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
7	А, В	Computer	Intel Core i3 3220/3,3 GHz, Prozessor		2V2403033A54 21	300004591	ne	-/-	-/-
8	А, В	NEXIO EMV- Software	BAT EMC V3.20.02	EMCO		300004682	ne	-/-	-/-
9	А, В	Anechoic chamber		TDK		300003726	ne	-/-	-/-
10	A, B	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	k	10.12.2019	09.12.2020
11	В	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011571	300005240	ev	-/-	-/-

7.3 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:


FS [dBµV/m] = 37.62 [dBµV/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dBµV/m] (244.06 µV/m)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	vlKl!	11.12.2019	10.12.2021
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	10.12.2019	09.12.2020
4	A	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-

CTC I advanced

7.4 Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Power Supply	2X30V	Zentro	870008	300000830	NK!	-/-	-/-
2	А	Signal- and Spectrum Analyzer 2 Hz - 26 GHz	FSW26	R&S	101455	300004528	k	24.02.2020	23.02.2021
3	А	RF-Cable SRD021 No. 1	Enviroflex 316 D	Huber & Suhner		400001311	ev	-/-	-/-

CTC I advanced

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.3 Sequence of testing radiated spurious 1 GHz to 12.75 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

9 Measurement uncertainty

Measurement uncertainty					
Test case	Uncertainty				
Antenna gain	± 3 dB				
Carrier frequency separation	± 21.5 kHz				
Number of hopping channels	-/-				
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative				
Maximum output power	± 1 dB				
Detailed conducted spurious emissions @ the band edge	± 1 dB				
Band edge compliance radiated	± 3 dB				
Spurious emissions conducted	± 3 dB				
Spurious emissions radiated below 30 MHz	± 3 dB				
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB				
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB				
Spurious emissions radiated above 12.75 GHz	± 4.5 dB				

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

CTC I advanced

Description	Verdict	Date	Remark
CFR Part 15 BSS - 247 Jssue 2	Passed	2020-10-08	-/-
		CFR Part 15 Passed	CFR Part 15 Passed 2020-10-08

Test specification clause	Test case	Temperatur e conditions	Power source voltages	Mode	с	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (d)	Antenna gain	Nominal	Nominal	TX single channel	X				-/-
§15.247(a)(1) RSS - 247 / 5.1 (b)	Carrier frequency separation	Nominal	Nominal	Hopping on	X				-/-
§15.247(a)(1) RSS - 247 / 5.1 (d)	Number of hopping channels	Nominal	Nominal	Hopping on	X				-/-
§15.247(a)(1) (iii) RSS - 247 / 5.1 (d)	Time of occupancy (dwell time)	Nominal	Nominal	Hopping on	X				-/-
§15.247(a)(1) RSS - 247 / 5.1 (a)	Spectrum bandwidth of a FHSS system bandwidth	Nominal	Nominal	TX single channel	X				-/-
§15.247(b)(1) RSS - 247 / 5.4 (b)	Maximum output power	Nominal	Nominal	TX single channel	X				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	Nominal	Nominal	Hopping on TX single channel	X				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	-/-			X		-/-
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	Nominal	TX single channel	X				-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	Nominal	Nominal	TX single channel	X				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	Nominal	Nominal	TX single channel	X				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	Nominal	Nominal	TX single channel	X				-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	Nominal	Nominal	Hopping on	X				-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

11 RF measurements

11.1 Additional comment	S	
Reference documents:	None	
Special test descriptions:	None	
Configuration descriptions:	None	
Test mode:	\boxtimes	Special software is used. EUT is transmitting pseudo random data by itself

12.1 Antenna gain

The antenna gain of the complete system is calculated by the difference of radiated power in ERP and the conducted power of the module.

CTC I advanced

Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	1 MHz			
Video bandwidth	10 MHz			
Span	5 MHz			
Trace mode	Max hold			
Test setup	See sub clause 7.1 A (radiated)			
Test setup	See sub clause 7.4 A (conducted)			
Measurement uncertainty	See sub clause 9			

Limits:

FCC	IC
Antenr	na gain
with directional gains that do not exceed 6 dBi. E transmitting antennas of directional gain greater than	aph (b) of this section is based on the use of antennas xcept as shown in paragraph (c) of this section, if 6 dBi are used, the conducted output power from the d values in paragraphs (b)(1), (b)(2), and (b)(3) of this lirectional gain of the antenna exceeds 6 dBi.

Results:

	Low channel	Middle channel	High channel
Conducted power [dBm]	27.7	28.1	27.6
Radiated power [dBm]	28.8	28.3	27.9
Gain [dBi] Calculated	1.1	0.2	0.3

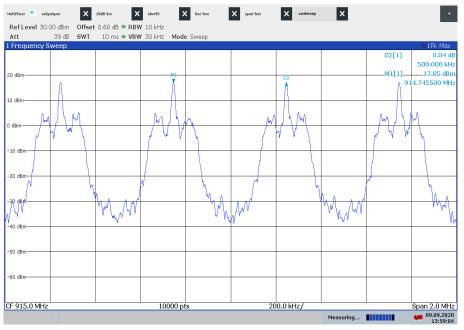
12.2 Carrier Frequency Separation

Description:

Measurement of the carrier frequency separation of a hopping system. The carrier frequency separation is constant for all modulation-modes. We use DBPSK-modulation to show compliance. EUT in hopping mode.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	10 kHz		
Video bandwidth	30 kHz		
Span	See plots		
Trace mode	Max hold		
Test setup	See sub clause 7.4 A		
Measurement uncertainty	See sub clause 9		

Limits:


FCC	IC
Carrier frequency separation	
	e hopping system whichever is greater. The two-thirds of the for the ISM band 2400 – 2483.5 MHz.

Result: The channel separation is 500 kHz.

Plots:

Plot 1: Carrier separation

13:59:04 09.09.2020

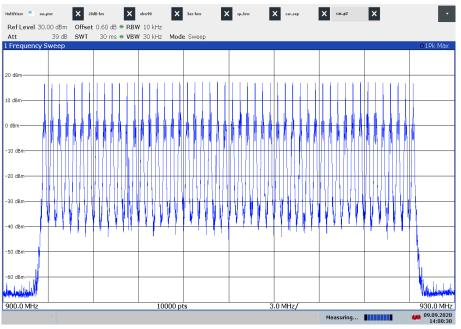
Description:

Measurement of the total number of used hopping channels. EUT in hopping mode.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	See plots		
Video bandwidth	See plots		
Span	See plots		
Trace mode	Max hold		
Test setup	See sub clause 7.4 A		
Measurement uncertainty	See sub clause 9		

Limits:

FCC	IC	
Number of hopping channels		
At least 25 non overlapping hopping channels. If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels.		


Result: The EUT uses 50 channels.

Plots:

Plot 1: Number of channels

14:00:31 09.09.2020

12.4 Average Time of Occupancy (dwell time)

Measurement:

The measurement is performed in zero span mode to show that none of the 50 used channels is allocated more than 0.4 seconds within a 20 seconds interval (50 channels times 0.4s).

Used equipment:	See chapter 7.4 A
Measurement uncertainty:	See chapter 9

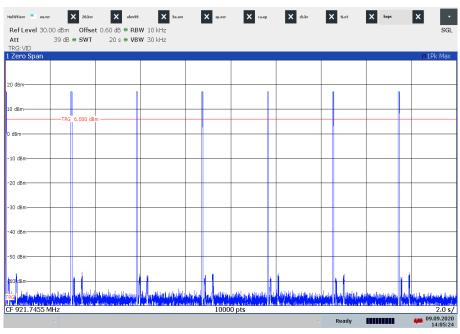
<u>Limits:</u>

FCC	IC		
Average time of occupancy			
channel is less than 250 kHz, the system shall use at occupancy on any frequency shall not be greater tha bandwidth of the hopping channel is 250 kHz or greater	928 MHz band: If the 20 dB bandwidth of the hopping least 50 hopping frequencies and the average time of an 0.4 seconds within 20 second period; if the 20 dB er, the system shall use at least 25 hopping frequencies shall not be greater than 0.4 seconds within 10 second		

<u>Result:</u> The time slot length is = 56.045 ms Number of hops / channel @ 20s = 7

Within 20 s period, the average time of occupancy on each frequency is: 392.32 ms

 \rightarrow The average time of occupancy = 392.32 ms



Plots:

Plot 1: Time slot length = 56.1 ms

RG:VID Zero Span											•1Pk Max
zero span										D2[1	63.11 d 56.04560 m
) dBm			00000			ממחת באמחת		70		M1[1	1]—-49.11 dB -69.01 j
) dBm	Mun	uuu Muu	umu		What	uur Muur	0.04	-			
		m									
dBm											+
0 dBm											
0 dBm											
0 dBm											
o ubin											
0 dBm											
Ma											
odBm				NA							
i0 dBm				<u> </u>							
TR	G								n and.	L. I	
921.7455 M	Hz				1000	0 pts		l ll i			10.0 ms

Plot 2: hops / channel @ 20s = 7

14:05:25 09.09.2020

12.5 Spectrum bandwidth of a FHSS system

Description:

Measurement of the 20dB bandwidth and 99% bandwidth of the modulated signal.

Measurement:

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	3 kHz	
Video bandwidth	100 kHz	
Span	See plots	
Trace mode	Max hold	
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 9	

<u>Limits:</u>

FCC	IC		
Spectrum bandwidth of a FHSS system			
The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.			

Result:

Test Conditions		20dB BANDWIDTH [kHz]			
lest Co	nditions	Low channel	Middle channel	High channel	
T _{nom}	V _{nom}	171.87	169.53	171.87	

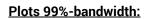
Test Conditions		99% BANDWIDTH [kHz]			
Test Co	nutions	Low channel	Middle channel	High channel	
T _{nom}	V _{nom}	195.43	197.29	196.36	

CTC I advanced

Plot 1: Low Channel

Plot 2: Middle Channel

13:49:55 09.09.2020


CTC I advanced

Plot 3: High Channel

13:43:45 09.09.2020

Plot 1: Low Channel

Plot 2: Middle Channel

13:38:12 09.09.2020

CTC I advanced

Plot 3: High Channel

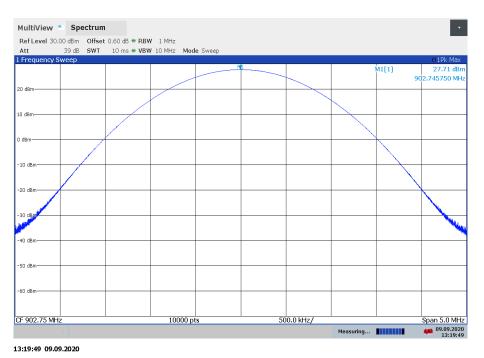
13:44:33 09.09.2020

Measurement:

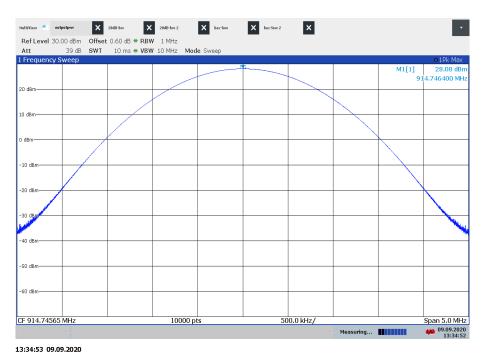
Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth:	1 MHz	
Video bandwidth:	10 MHz	
Span:	5 MHz	
Trace mode:	Max hold	
Used equipment:	See chapter 7.4 A	
Measurement uncertainty:	See chapter 9	

<u>Limits:</u>

FCC	IC		
Maximum Output	Power Conducted		
For frequency hopping systems operating in the 902–928 MHz band: 1 watt (30 dBm) for systems employing at least 50 hopping channels; and, 0.25 watts (24 dBm) for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.			
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.			


Result:

Test Conditions		Maximum Output Power Conducted [dBm]		
	rest conditions		Middle channel	High channel
T _{nom}	V _{nom}	27.7	28.1	27.6



Plots:

Plot 1: Low Channel

Plot 2: Middle Channel

Plot 3: High Channel

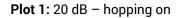
13:40:25 09.09.2020

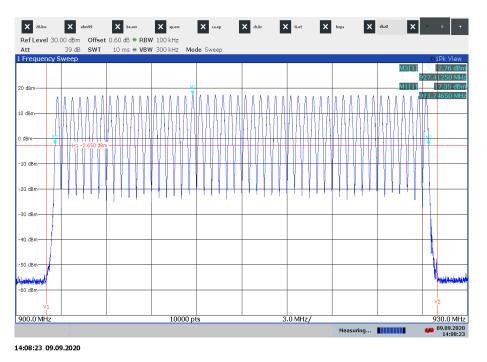
12.7 Detailed spurious emissions @ the band edge - conducted and radiated

Description:

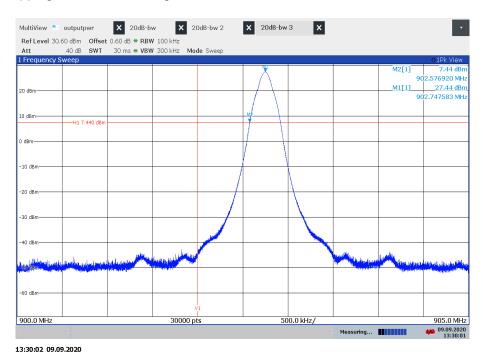
Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel and hopping mode. The measurement is repeated for all modulations.

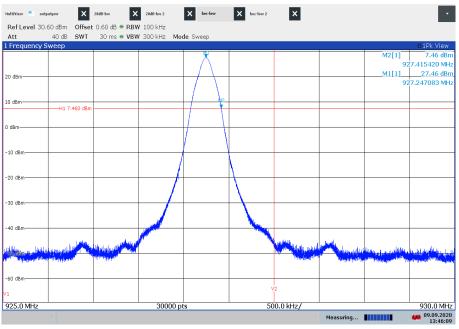
Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	300 kHz	
Span	See plots	
Trace mode	Max hold	
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 9	


Limits:


FCC	IC	
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.		

Results conducted:


Scenario	Spurious band edge conducted [dB]	
Modulation	lowest channel	highest channel
Lower band edge – hopping on	> 20 dB	> 20 dB
Upper band edge – hopping on	> 20 dB	> 20 dB
Lower band edge – hopping off	> 20 dB	> 20 dB
Upper band edge – hopping off	> 20 dB	> 20 dB



Plot 2: 20 dB - hopping off, lower band edge

Plot 3: 20 dB – hopping off, higher band edge

13:46:10 09.09.2020

Results radiated:

No restricted band in the range \pm 2 channel bandwidths of the Band-edges of the specified emission band! (608 MHz - 614 MHz and 960 MHz - 1240 MHz).

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

Description:

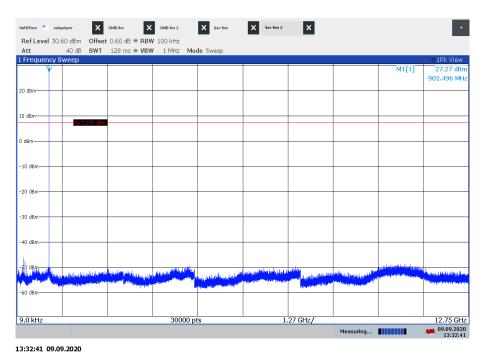
Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode. The measurement is repeated for low, mid and high channel.

CTC I advanced

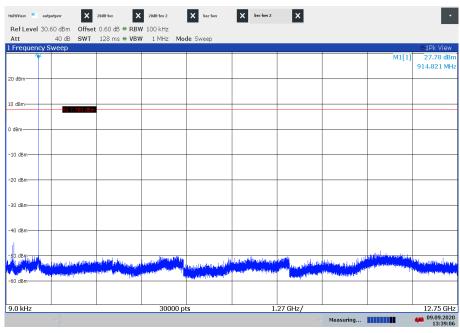
Measurement:

Measurement parameter						
Detector:	Peak					
Sweep time:	Auto					
Video bandwidth:	F < 1 GHz: 1 MHz F > 1 GHz: 1 MHz					
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 100 kHz					
Span:	9 kHz to 12.75 GHz					
Trace mode:	Max hold					
Used equipment:	See chapter 7.4 A					
Measurement uncertainty:	See chapter 9					

Limits:


FCC	IC					
TX spurious emissions conducted						
radiator is operating, the radio frequency power that is produced that in the 100 kHz bandwidth within the band that contains	hich the spread spectrum or digitally modulated intentional uced by the intentional radiator shall be at least 20 dB below the highest level of the desired power, based on either an RF e general limits specified in Section 15.209(a) is not required					

Result:


	Emission Limitation							
Frequency [MHz]	Amplitude of emission [dBm]	Limit max. allowed emission power	actual attenuation below frequency of operation [dB]	Results				
902.75	27.27	30 dBm						
		-20 dBc	No emissions detected!	Complies				
914.75	27.78	30 dBm						
		-20 dBc	No emissions detected!	Complies				
927.25	27.46	30 dBm						
		-20 dBc	No emissions detected!	Complies				

Plot 1: Low channel, 9 kHz - - 12.75 GHz

Plot 2: Middle channel, 9 kHz - 12.75 GHz

13:39:06 09.09.2020

Plot 3: High channel, 9 kHz – 12.75 GHz

iulti¥iew 📒 or	utputpwr	X 20dB-bw	×	20dB-bw 2	× bec-low	× bec-low 2	×			
		Offset 0.60 c								
Att		SWT 128 m	ns 🖷 VBW	1 MHz N	lode Sweep					
Frequency	Sweep						1		M1[1]	01Pk View 27,46 dBm
T.									MILI	927.146 dBm
										5271140 000
) dBm										
) dBm										
	H1 7.46	50 dBm								
dBm										
usm-										
10 dBm										
20 dBm										
20 uBm-										
30 dBm										
40 dBm										
+U UBM										
50 dBm		1 1 .			tu -	and the start of	1444		and the bill of the base of	
	والمحلقين والمعاطي المروة	elpitelelen etter og som på som på som på som på som	All mallacter	AND AND AND	المالية وراعط ومطروطي والم	in the first second second section.	and Landson and the	Alabelia de la constante de la	and the second second second second	"Wegethildeladaa
	ing the state of the state of the	and the second	Contraction of the local division of the loc	and the second	and the state of the	And a state of the	and performance	Barrel Destribution of a		"This gate is the ballout
60 dBm										
.0 kHz				30000	pts	1	.27 GHz/	1		12.75 GHz
_	~							Measuring		09.09.2020 13:46:54

13:46:55 09.09.2020

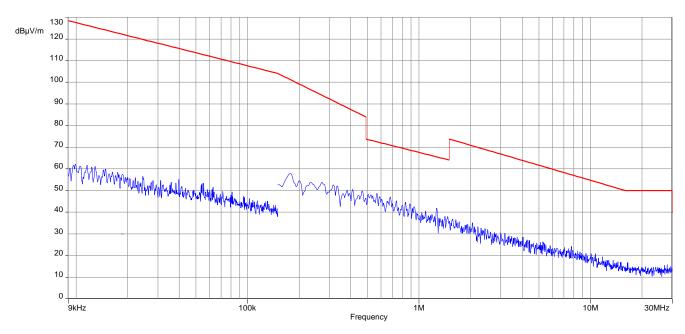
12.9 Spurious Emissions Radiated < 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode. The measurement is repeated for low, mid and high channel.. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

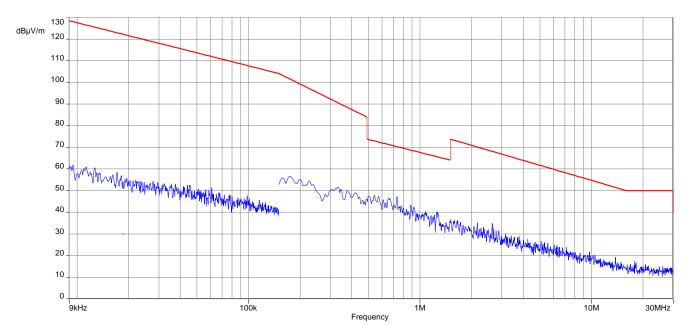
Measurement:

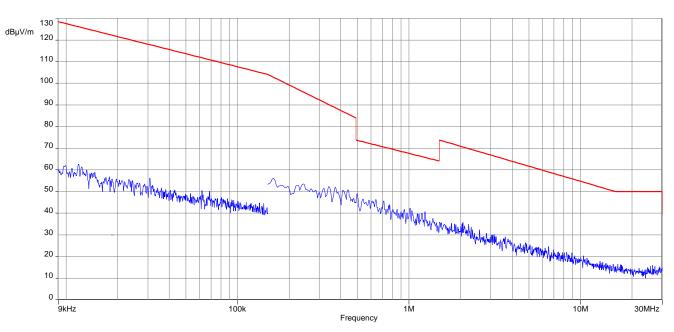
Measurement parameter							
Detector:	Peak / Quasi Peak						
Sweep time:	Auto						
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz						
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz						
Span:	9 kHz to 30 MHz						
Trace mode:	Max hold						
Used equipment:	See chapter 7.2 A						
Measurement uncertainty:	See chapter 9						


Limits:

FCC	IC					
TX spurious emissions radiated < 30 MHz						
Frequency (MHz)	Field strength (dBµV/m)		dBμV/m) Measurement distar			
0.009 - 0.490	2400/F(kHz)		2400/F(kHz)			300
0.490 - 1.705	24000/F(kHz)		24000/F(kHz)			30
1.705 – 30.0	30			30		

Result:


SPURIOUS EMISSIONS LEVEL [dBµV/m]										
Lowest channel			М	Middle channel			Highest channel			
Frequency [MHz]	Detector	Level [dBµV/m]	Frequency [MHz]	Detector	Level [dBµV/m]	Frequency [MHz]	Detector	Level [dBµV/m]		
All emissions were more than 10 dB below the limit.										


Plot 1: TX-Mode low channel

Plot 2: TX-Mode mid channel

Test report no.: 1-8063/19-03-03

Plot 3: TX-Mode high channel

12.10 Spurious Emissions Radiated > 30 MHz

12.10.1 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at channel low, mid and high.

Measurement:

Measurement parameters					
Detector	Peak / Quasi Peak				
Sweep time	Auto				
Resolution bandwidth	3 x VBW				
Video bandwidth	120 kHz				
Span	30 MHz to 1 GHz				
Trace mode	Max hold				
Measured modulation	FSK single channel				
Test setup	See sub clause 7.1 A				
Measurement uncertainty	See sub clause 9				

<u>Limits:</u>

FCC							
100	IC IC						
Band-edge Compliance of conducted and radiated emissions							
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).							
Frequency (MHz)	Field Strength (dBµV/m) Measurement distance						
30 - 88	30	.0	10				
88 - 216	33	10					

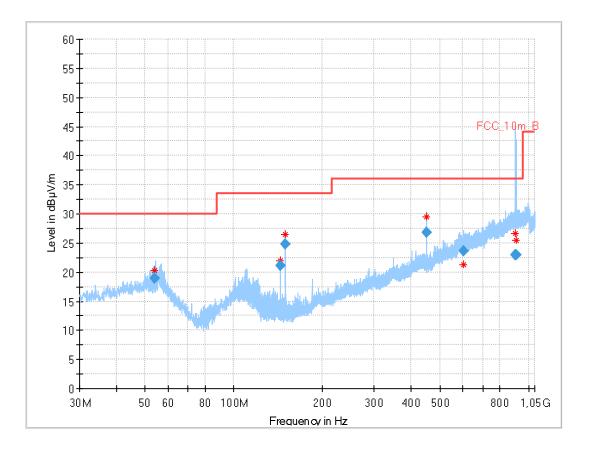
36.0

54.0

Result:

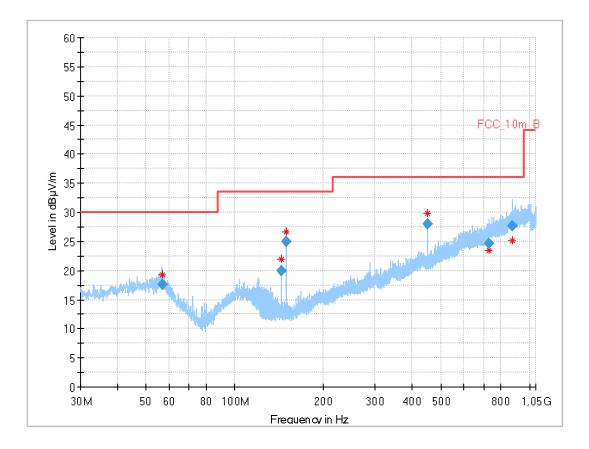
See result table below the plots.

216 - 960

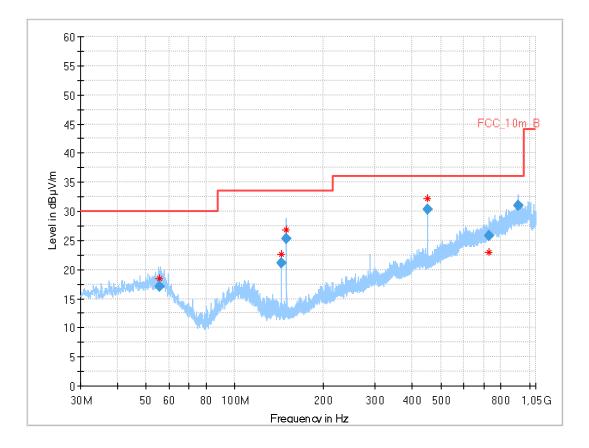

Above 960

10

3


Plot 1: 30 MHz - 1 GHz, horizontal & vertical polarisation (lowest channel)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
53.930	18.87	30.0	11.1	1000	120.0	110.0	V	259	14
144.004	21.14	33.5	12.4	1000	120.0	104.0	V	67	9
150.004	24.73	33.5	8.8	1000	120.0	105.0	V	248	9
450.011	26.84	36.0	9.2	1000	120.0	101.0	V	157	17
601.514	23.71	36.0	12.3	1000	120.0	118.0	Н	67	20
903.779	22.89	36.0	13.1	1000	120.0	170.0	Н	247	24
905.864	22.88	36.0	13.1	1000	120.0	170.0	Н	247	24


Plot 2: 30 MHz – 1 GHz, horizontal & vertical polarisation (middle channel)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
56.842	17.61	30.0	12.4	1000	120.0	170.0	V	247	15
144.000	19.97	33.5	13.5	1000	120.0	106.0	V	292	9
150.025	25.02	33.5	8.5	1000	120.0	101.0	V	158	9
450.010	27.95	36.0	8.1	1000	120.0	101.0	V	292	17
731.138	24.59	36.0	11.4	1000	120.0	170.0	Н	157	21
875.624	27.65	36.0	8.4	1000	120.0	170.0	V	84	23

Plot 3: 30 MHz – 1 GHz, horizontal & vertical polarisation (highest channel)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
55.666	17.04	30.0	13.0	1000	120.0	170.0	V	67	15
144.005	21.14	33.5	12.4	1000	120.0	101.0	V	292	9
150.007	25.39	33.5	8.1	1000	120.0	98.0	V	202	9
450.008	30.28	36.0	5.7	1000	120.0	101.0	V	292	17
728.814	25.85	36.0	10.2	1000	120.0	155.0	Н	258	21
917.757	31.04	36.0	5.0	1000	120.0	98.0	Н	202	24

12.10.2 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed in the mode with the highest output power.

M	easurement parameters
Detector	Peak / RMS
Sweep time	Auto
Resolution bandwidth	1 MHz
Video bandwidth	3 x RBW
Span	1 GHz to 12.75 GHz
Trace mode	Max hold
Measured modulation	FSK
Test setup	See sub clause 7.2 B (1 GHz – 12.75 GHz)
Measurement uncertainty	See sub clause 9

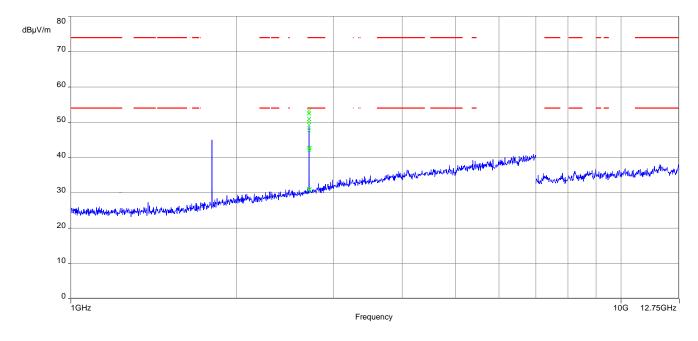
The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

<u>Limits:</u>

FCC			IC			
	TX spurious em	ssions radiated				
radiator is operating, the radio frequence that in the 100 kHz bandwidth within the conducted or a radiated measurement. In addition, radiated emissions which f	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).					
	§15	209				
Frequency (MHz)	Field streng	:h (dBμV/m)	Measurement distance			
Above 960	54.0 (A	verage)	3			
Above 960	74.0 (Peak)	3			

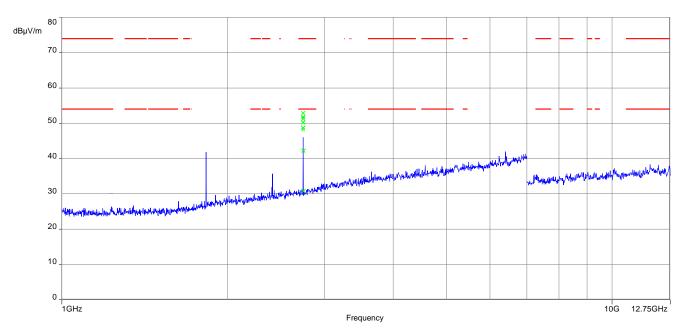
Result:

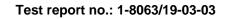
TX spurious emissions radiated [dBµV/m]								
Lowest channel Middle channel Highest channel								
F [MHz] Detector Level [dBµV/m] F [MHz] Detector Level F [MHz] Detector [dBµV/m] F [MHz] Detector [dBµV/m]					Level [dBµV/m]			
2713	Peak	53.3	0744	Peak	52.9	0701	Peak	53.5
2713	AVG	48.3*	2744	AVG	47.9*	2781	AVG	48.5*

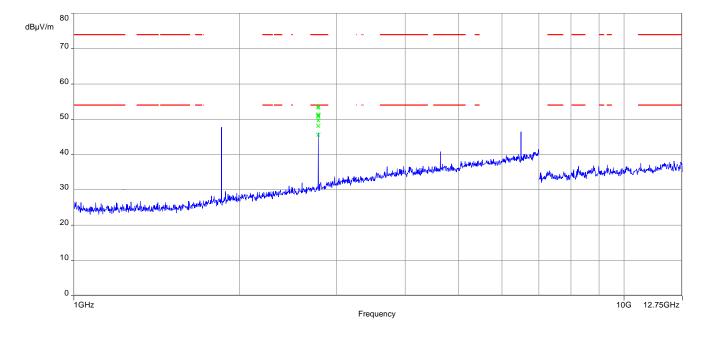

*) Average emission adjusting factor:

F = 20 * log (dwell time / 100 ms)

In a period of 100 ms, we have a maximum of 1 transmission of 56.1 ms (See chapter 12.4) and that implies a correction factor for spurious measurement emissions:


F = 20 * log (1 * 56.1 / 100) = -5.0 dB




Plot 1: 1 GHz - 12.75 GHz, horizontal & vertical polarisation (lowest channel)

Plot 2: 1 GHz - 12.75 GHz, horizontal & vertical polarisation (middle channel)

Plot 3: 1 GHz - 12.75 GHz, horizontal & vertical polarisation (highest channel)

12.11 Spurious emissions conducted below 30 MHz (AC conducted)

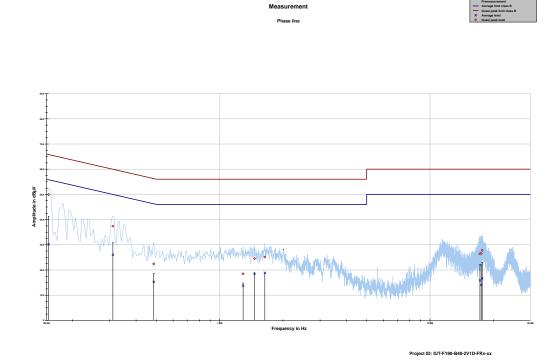
Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit frequency is 2440 MHz. This measurement is representative for all channels and modes. If critical peaks are found frequency 2402 MHz and 2480 MHz will be measured too. The measurement is performed in the mode with the highest output power. Both power lines, phase and neutral line, are measured. Found peaks are remeasured with average and quasi peak detection to show compliance to the limits.

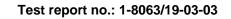
Measurement parameters				
Detector	Peak - Quasi peak / average			
Sweep time	Auto			
Resolution bandwidth	F < 150 kHz: 200 Hz			
	F > 150 kHz: 9 kHz			
Video bandwidth	F < 150 kHz: 1 kHz			
	F > 150 kHz: 100 kHz			
Span	9 kHz to 30 MHz			
Trace mode	Max hold			
Measured modulation	Hopping on			
Test setup	See sub clause 7.3 A			
Measurement uncertainty	See sub clause 9			

<u>Limits:</u>

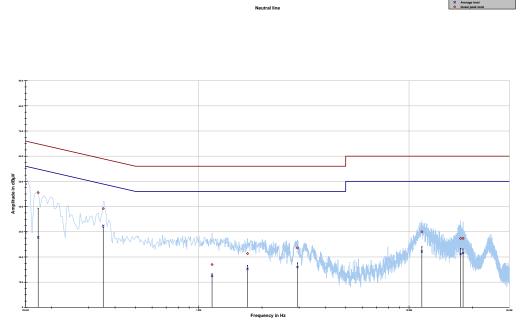
FCC			IC	
TX spurious emissions conducted < 30 MHz				
Frequency (MHz)	Quasi-peak	α (dBµV/m)	Average (dBµV/m)	
0.15 – 0.5	66 to 56*		56 to 46*	
0.5 - 5	5	6	46	
5 - 30.0	6	0	50	


*Decreases with the logarithm of the frequency

Results:


See result table below the plots.

Plot 1: 150 kHz to 30 MHz, phase line



Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.153731	49.92	15.88	65.796	30.13	25.76	55.893
0.310444	37.37	22.59	59.959	26.03	25.39	51.416
0.485812	22.41	33.83	56.239	15.27	31.14	46.405
1.291762	18.46	37.54	56.000	13.77	32.23	46.000
1.463400	24.49	31.51	56.000	18.43	27.57	46.000
1.638769	25.13	30.87	56.000	18.85	27.15	46.000
17.272706	26.37	33.63	60.000	15.82	34.18	50.000
17.511506	26.62	33.38	60.000	14.08	35.92	50.000
17.705531	27.80	32.20	60.000	16.63	33.37	50.000

Plot 2: 150 kHz to 30 MHz, neutral line

Measurement

Project ID: IUT-F190-B40-2V1D-FRx-xx

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin Average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.150000	48.92	17.08	66.000	29.75	26.25	56.000
0.172387	45.49	19.35	64.845	27.74	27.62	55.360
0.351488	39.19	19.74	58.927	32.40	17.85	50.243
1.157437	16.97	39.03	56.000	12.50	33.50	46.000
1.705931	21.36	34.64	56.000	15.28	30.72	46.000
2.948437	23.60	32.40	56.000	15.97	30.03	46.000
11.507925	29.99	30.01	60.000	22.16	27.84	50.000
17.593594	27.37	32.63	60.000	21.13	28.87	50.000
18.071194	27.38	32.62	60.000	21.53	28.47	50.000

13 Observations

No observations except those reported with the single test cases have been made.

14 Glossary

EUT	Fauinment under teet
_	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
C	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
00	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

15 Document history

Version	Applied changes	Date of release
-/-	Initial release	2020-10-08

16 Accreditation Certificate – D-PL-12076-01-04

first page	last page
Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition	Deutsche Akkreditierungsstelle GmbH Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesaliee 100 1017 Berlin 60327 Frankfurt am Main 38116 farunschweig
Accreditation Image: Constraint of the second s	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAXKS). Exempted is the unchanged form of separate
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.66.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following animex with a total of 07 pages. Registration number of the certificate: D-PL-12076-01-04 Frankfurt am Main, 09.06.2020 The certificate speed of the cover sheets at the total of the total of the scope of accreditation of the detailed of details details and the details of the scope of accreditation can be found in the details of accredited bodies of Details Material Material Materials and the details and the scope of accreditation can be found in the details of accredited bodies of details Materials and the details and the details and the scope of accredited bodies of details details and the details and th	disseminations of the cover sheet by the conformity assessment body methoded evented. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAMS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkdStelleG) of 31 July 2009 (Federal Law Gastet J p. 2523) and the Regulation (EC) No 755/2008 of the European Parliament and of the Council of July 2008 straining out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union L 218 of July 2008, p. 30). DAKS is a signatory to the Multilateral Accreditation Forum (AF) and International Laboratory Accreditation Cooperation (EA), International Accreditation Forum (AF) and International Laboratory Accreditations. The up-to date state of membership can be retrieved from the following websites: EAC: www.lac.org IAC: www.lac.org IAC: www.lac.org

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf

17 Accreditation Certificate – D-PL-12076-01-05

first page	last page
<image/> <image/> <image/> <section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header>	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelimark 10 Bundesalee 100 Bundesalee 100 10117 Berlin B0327 Frankfurt am Main Bundesalee 100 38116 Braunschweig Bundesalee 100 B116 Braunschweig Dubusche Akkreditierungsstelle GmbH (VAKS), Issenpted is the unchanged form of spanate disseminations of the coordination acterificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (VAKS), Issenpted is the unchanged form of spanate disseminations of the coordination acterificate also extended to fields beyond the scope of accerditation also extended to f
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 by originating the stops of the time of the det of laws. The current notus of the scope of the certificate together with its unser reflects the stops of the time of the det of laws. The current notus of the scope of	The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleo) of 31.19/2009 (Federal LaW Gazette J. = Z625) and the Regulation (EQ No 765/2008 of the furgoean Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Difical Journal of the European London L28 of 9 July 2008, p.30). DAKKS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EQ), International Accreditation for Courcil (AP) and International Laboratory Accreditation. Cooperation (EA). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.ilac.org IAF: www.ilac.org
accorditation can be fund in the distribute of accordinal badles of Destable Akkreditarungsstelle GmbH. http://www.ddsk.dd/en/content/Sccredinal-badles-dakks ine sets minute.	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf