

TEST REPORT

BNetzA-CAB-02/21-102 Test report no.: 1-3876_22-10-02

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

Pepperl+Fuchs, Inc.

1600 Enterprise Parkway

Ohio 44087 Twinsburg / UNITED STATES

Phone: +1 (330) 486-0148 Contact: Helmut HORNIS

e-mail: hhornis@us.pepperl-fuchs.com

Manufacturer

Pepperl+Fuchs, Asia Pte. Ltd

18 Ayer Rajah Crescent

139942 Singapore / Singapore

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

frequency devices

RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs)

and Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: UHF Reader

Model name: IUH-F192-V1-FR2-02
FCC ID: IREIUHF192V1B
ISED certification number: 7037A-IUHF192V1B
Frequency: 902MHz - 928MHz

Technology tested: RFID

Antenna: Integrated antenna

Power supply: 20 V to 30 V DC by external power supply

Temperature range: -25°C to +70°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
Hans-Joachim Wolsdorfer	Tobias Wittenmeier

Lab Manager Radio Communications Testing Manager Radio Communications

1 Table of contents

1	Table of contents	2
2	General information	4
	2.1 Notes and disclaimer	4
	2.2 Application details	
	2.3 Test laboratories sub-contracted	4
3	Test standard/s, references and accreditations	
4	Reporting statements of conformity – decision rule	
5	Test environment	
6	Test item	
•		
	6.1 General description	
_		
7	Description of the test setup	
	7.1 Shielded semi anechoic chamber	
	7.2 Shielded fully anechoic chamber	
	7.3 AC conducted	
	7.4 Conducted measurements	13
8	Sequence of testing	14
	8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz	14
	8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz	
	8.3 Sequence of testing radiated spurious 1 GHz to 12.75 GHz	16
9	Measurement uncertainty	17
10	Summary of measurement results	
11	RF measurements	
•	11.1 Additional comments	
12	Measurement results	20
	12.1 Antenna gain	20
	12.2 Carrier Frequency Separation	21
	12.3 Number of Hopping Channels	23
	12.4 Average Time of Occupancy (dwell time)	
	12.5 Spectrum bandwidth of a FHSS system	
	12.6 Maximum Output Power	
	12.7 Detailed spurious emissions @ the band edge – conducted and radiated	
	12.8 Spurious Emissions Conducted	
	12.9 Spurious Emissions Radiated < 30 MHz	
	12.10 Spurious Emissions Radiated > 30 MHz	
	12.10.1 Spurious emissions radiated 30 MHz to 1 GHz	
	12.10.2 Spurious emissions radiated above 1 GHz	
	• ,	
13	Observations	55

14	Glossary	56
15	Document history	57
16	Accreditation Certificate - D-PL-12076-01-04	57
17	Accreditation Certificate - D-PL-12076-01-05	58

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2022-07-25
Date of receipt of test item: 2022-08-05
Start of test:* 2022-08-09
End of test:* 2022-09-14

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 4 of 58

^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

3 Test standard/s, references and accreditations

Test standard	Date	Description			
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices			
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices			
RSS - Gen Issue 5 incl. Amendment 1 & 2	February 2021	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus			
Guidance	Version	Description			
KDB 558074 D01 ANSI C63.4-2014 ANSI C63.10-2013	v05r02 -/- -/-	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices			
Accreditation	Description	n			
D-PL-12076-01-04		nunication and EMC Canada dakks.de/as/ast/d/D-PL-12076-01-04e.pdf Location and EMC Canada Deutsche Akkreditierungsstelle D-PL-12076-01-04			
D-PL-12076-01-05		nunication FCC requirements .dakks.de/as/ast/d/D-PL-12076-01-05e.pdf DAkks Deutsche Akkreditierungsstelle D-PL-12076-01-05			

ISED Testing Laboratory Recognized Listing Number: DE0001 FCC designation number: DE0002

© CTC advanced GmbH Page 5 of 58

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

measured value, measurement uncertainty, verdict measured value measurement uncertainty upper limit (1) (lower limit FAIL FAIL **PASS PASS PASS PASS PASS** FAIL FAIL

© CTC advanced GmbH Page 6 of 58

5 Test environment

			-
		T_{nom}	+22 °C during room temperature tests
Temperature		T_{max}	+70 °C during high temperature tests
		T_{min}	-25 °C during low temperature tests
Relative humidity content			55 %
Barometric pressure			1021 hpa
		V_{nom}	24 V DC by external power supply
Power supply	:	V_{max}	30 V
		V_{min}	20 V

6 Test item

6.1 General description

Kind of test item :	UHF Reader
Model name :	IUH-F192-V1-FR2-02
HMN :	-/-
PMN :	IUHF192V1B
HVIN :	IUHF192V1B
FVIN :	-/-
S/N serial number :	* 1 538 812
Hardware status :	2022-07
Software status :	18-32765 (10.06.2022)
Firmware status :	-/-
Frequency band :	902MHz - 928MHz
Type of radio transmission: Use of frequency spectrum:	FHSS
Type of modulation :	ASK
Number of channels :	50
Antenna :	Integrated antenna
Power supply :	20 V to 30 V DC by external power supply
Temperature range :	-25°C to +70°C

^{*#814679} replaced by #70148095 from PTDE-AM59

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 3876/22-10-02_AnnexA

3876/22-10-02_AnnexB 3876/22-10-02_AnnexD

© CTC advanced GmbH Page 7 of 58

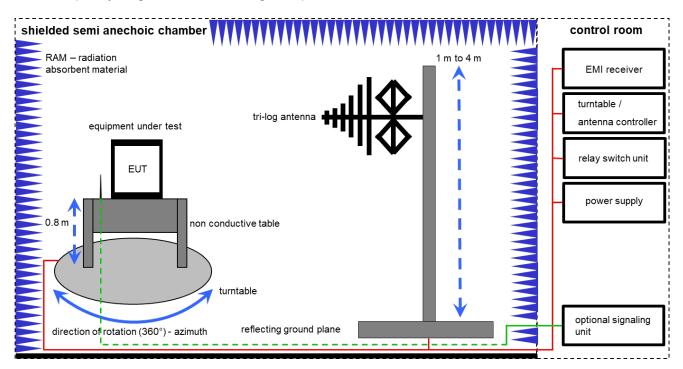
7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 8 of 58

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

EMC32 software version: 10.59.00

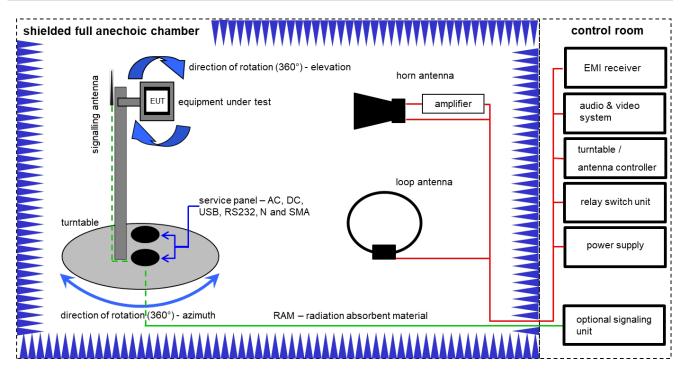
FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

© CTC advanced GmbH Page 9 of 58


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	А	DC power supply, 60Vdc, 50A, 1200 W	6032A	НР	2920A04466	300000580	ne	-/-	-/-
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vlKI!	30.09.2021	29.09.2023
7	Α	Turntable	2089-4.0	EMCO		300004394	ne	-/-	-/-
8	Α	PC	TecLine	F+W		300004388	ne	-/-	-/-
9	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	20.05.2022	31.05.2023

© CTC advanced GmbH Page 10 of 58

7.2 Shielded fully anechoic chamber

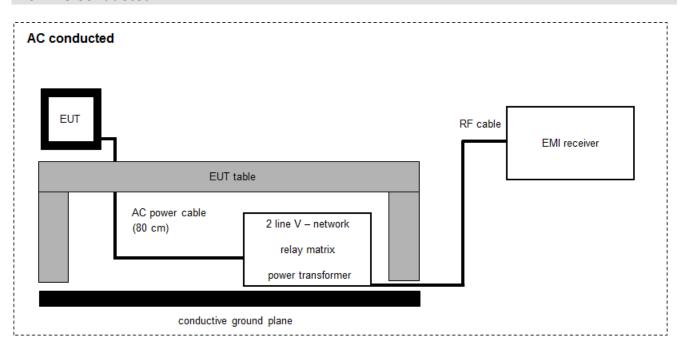
Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A,B,C	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vIKI!	09.12.2020	08.12.2023
2	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKI!	01.07.2021	31.07.2023
3	A,B,C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
4	A,B,C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	С	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3089	300000307	vlKI!	11.02.2022	29.02.2024
6	A,B,C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	09.12.2021	31.12.2022
7	С	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
8	В	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vlKI!	30.09.2021	29.09.2023
9	С	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
10	A,B,C	NEXIO EMV- Software	BAT EMC V3.21.0.32	EMCO		300004682	ne	-/-	-/-
11	A,B,C	PC	ExOne	F+W		300004703	ne	-/-	-/-

© CTC advanced GmbH Page 11 of 58

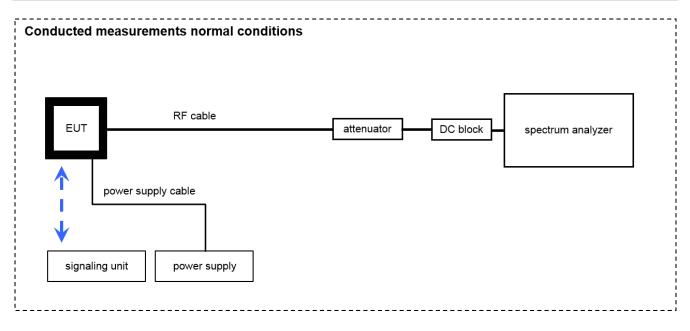
7.3 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

FS $[dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 <math>\mu V/m$)


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	Rohde & Schwarz	892475/017	300002209	vlKI!	14.12.2021	31.12.2023
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	g	-/-	-/-
4	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vlKI!	29.12.2021	31.12.2023
5	Α	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-
6	Α	PC	TecLine	F+W		300003532	ne	-/-	-/-

© CTC advanced GmbH Page 12 of 58

7.4 Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Signal analyzer	FSW26	Rohde&Schwarz	101455	300004528	k	14.12.2021	31.12.2022
2	A	RF-Cable SRD021 No. 1	Enviroflex 316 D	Huber & Suhner		400001311	ev	-/-	-/-
3	A	Power Supply	HMP2020	Rohde & Schwarz	102219	300006192	k	08.04.2021	07.04.2023

© CTC advanced GmbH Page 13 of 58

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

© CTC advanced GmbH Page 14 of 58

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable
 angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 15 of 58

8.3 Sequence of testing radiated spurious 1 GHz to 12.75 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna
 polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 16 of 58

9 Measurement uncertainty

Measurement uncertainty							
Test case	Uncertainty						
Antenna gain	± 3 dB						
Carrier frequency separation	± 21.5 kHz						
Number of hopping channels	-/-						
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative						
Maximum output power	± 1 dB						
Detailed conducted spurious emissions @ the band edge	± 1 dB						
Band edge compliance radiated	± 3 dB						
Spurious emissions conducted	± 3 dB						
Spurious emissions radiated below 30 MHz	± 3 dB						
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB						
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB						
Spurious emissions radiated above 12.75 GHz	± 4.5 dB						

© CTC advanced GmbH Page 17 of 58

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained	
	There were deviations from the technical specifications ascertained	
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.	

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 2	Passed	2022-10-26	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (d)	Antenna gain	Nominal	Nominal	CW	×				-/-
§15.247(a)(1) RSS - 247 / 5.1 (b)	Carrier frequency separation	Nominal	Nominal	DBPSK	X				-/-
§15.247(a)(1) RSS - 247 / 5.1 (d)	Number of hopping channels	Nominal	Nominal	DBPSK	×				-/-
§15.247(a)(1) (iii) RSS - 247 / 5.1 (d)	Time of occupancy (dwell time)	Nominal	Nominal	DBPSK	X				-/-
§15.247(a)(1) RSS - 247 / 5.1 (a)	Spectrum bandwidth of a FHSS system bandwidth	Nominal	Nominal	DBPSK	×				-/-
§15.247(b)(1) RSS - 247 / 5.4 (b)	Maximum output power	Nominal	Nominal	DBPSK	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	Nominal	Nominal	DBPSK	×				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	DBPSK	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	Nominal	DBPSK	×				-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	Nominal	Nominal	DBPSK	×				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	Nominal	Nominal	DBPSK / RX mode			\boxtimes		-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	Nominal	Nominal	DBPSK / RX mode			\boxtimes		-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	Nominal	Nominal	DBPSK	×				-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© CTC advanced GmbH Page 18 of 58

11 RF measurements

11.1 Additional comments

Reference documents: quick_reference_IUH-F192-V1-FR2-02_FCC+IC_V02.pdf

Special test descriptions: None

Configuration descriptions: power setting: 3000mW: wp1UPT.00.02.0B.B8;

will be compensated by changed manufacturer configuration, i.e. that 4000mW set by customer will be the same power as power setting 3000mW during test

Test mode: Special software is used.

EUT is transmitting pseudo random data by itself

© CTC advanced GmbH Page 19 of 58

12 Measurement results

12.1 Antenna gain

Description:

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	1 MHz		
Video bandwidth	3 MHz		
Span	5 MHz		
Trace mode	Max hold		
Toot patur	See sub clause 7.2 B (radiated)		
Test setup	See sub clause 7.4 A (conducted)		
Measurement uncertainty	See sub clause 9		

Limits:

FCC	IC	
Antenna gain		

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Results:

	Low channel	Middle channel	High channel
Conducted power	28.7 dBm	28.8 dBm	28.5 dBm
Radiated power	35.05 dBm	34.95 dBm	35.15 dBm
Gain Calculated	6.35 dBi	6.15 dBi	6.65 dBi

© CTC advanced GmbH Page 20 of 58

12.2 Carrier Frequency Separation

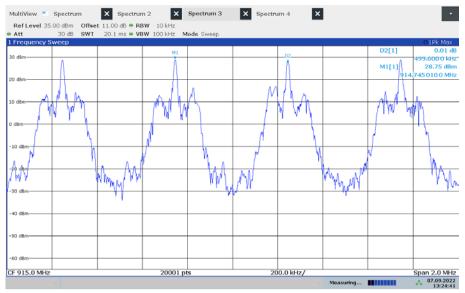
Description:

Measurement of the carrier frequency separation of a hopping system. The carrier frequency separation is constant for all modulation-modes. We use DBPSK-modulation to show compliance. EUT in hopping mode.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	10 kHz		
Video bandwidth	30 kHz		
Span	See plots		
Trace mode	Max hold		
Test setup	See sub clause 7.3 A		
Measurement uncertainty	See sub clause 9		

Limits:

FCC	IC			
Carrier frequency separation				
Minimum 25 kHz or two-thirds of the 20 dB bandwidth of the hopping system whichever is greater. The two-thirds of the 20 dB bandwidth for IC is only valid for the ISM band 2400 – 2483.5 MHz.				


Result: The channel separation is 500kHz

© CTC advanced GmbH Page 21 of 58

Plots:

Plot 1: Frequency separation

13:24:41 07.09.2022

© CTC advanced GmbH Page 22 of 58

12.3 Number of Hopping Channels

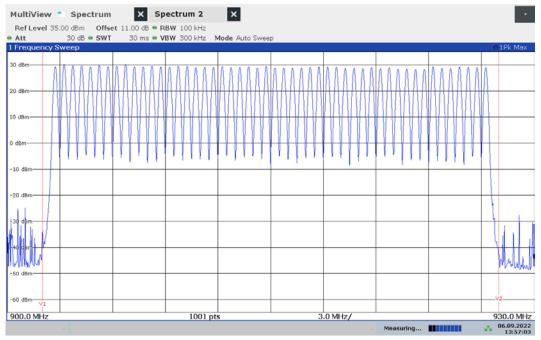
Description:

Measurement of the total number of used hopping channels. The number of hopping channels is constant for all modulation-modes. We use DBPSK -modulation to show compliance. EUT in hopping mode.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	See plots		
Video bandwidth	See plots		
Span	See plots		
Trace mode	Max hold		
Test setup	See sub clause 7.4 A		
Measurement uncertainty	See sub clause 9		

Limits:

FCC	IC			
Number of hopping channels				
At least 25 non overlapping hopping channels. If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels.				


Result: in summary the EUT uses 50 channels.

© CTC advanced GmbH Page 23 of 58

Plots:

Plot 1: Number of channels

13:57:04 06.09.2022

© CTC advanced GmbH Page 24 of 58

12.4 Average Time of Occupancy (dwell time)

Description:

The measurement is performed in zero span mode to show that none of the 50 used channels is allocated more than 0.4 seconds within a 10 seconds interval (50 channels times 0.4s).

Limits:

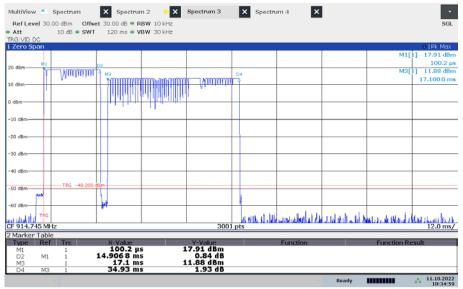
FCC	IC			
Average time of occupancy				

For frequency hopping systems operating in the 902-928 MHz band: If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within 10 second period.

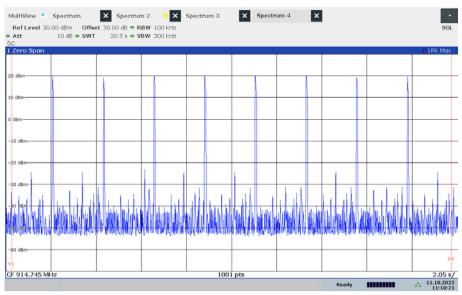
Result: The time slot length is = 49.8ms

Number of hops / channel @ 20s = 8

Within 20 s period, the average time of occupancy in 20 s: 398.4ms


→ The average time of occupancy = 398.4ms

© CTC advanced GmbH Page 25 of 58


Plots:

Plot 1: Time slot length: 14.9ms + 34.9ms=49.8ms

10:35:00 11.10.2022

Plot 2: hops / channel @ 20s = 8

11:18:21 11.10.2022

© CTC advanced GmbH Page 26 of 58

12.5 Spectrum bandwidth of a FHSS system

Description:

Measurement of the 20dB bandwidth and 99% bandwidth of the modulated signal. The measurement is performed according to the "Measurement Guidelines" (DA 00-705, March 30, 2000). EUT in single channel mode.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	3kHz		
Video bandwidth	100kHz		
Span	See plots		
Trace mode	Max hold		
Test setup	See sub clause 7.3 A		
Measurement uncertainty	See sub clause 9		

Limits:

FCC	IC	
Spectrum bandwidth of a FHSS system		
DBPSK < 1500 kHz		

Result:

Test Conditions		20dB BANDWIDTH		
		Low channel	Middle channel	High channel
T _{nom}	V_{nom}	167.2kHz	167.1kHz	170.2kHz

Test Conditions		99% BANDWIDTH		
		Low channel	Middle channel	High channel
T_nom	V_{nom}	191.9kHz	192.6kHz	192.6kHz

© CTC advanced GmbH Page 27 of 58

Plots:

Plot 1: low Channel 20dB bandwidth

07:24:39 07.09.2022

Plot 2: low Channel 99% bandwidth

06:57:22 07.09.2022

© CTC advanced GmbH Page 28 of 58

Plot 3: middle Channel 20dB bandwidth

07:13:58 07.09.2022

Plot 4: middle Channel 99% bandwidth

06:59:27 07.09.2022

© CTC advanced GmbH Page 29 of 58

Plot 5: high Channel 20dB bandwidth

07:10:48 07.09.2022

Plot 6: Low Channel 99% bandwidth

07:04:11 07.09.2022

© CTC advanced GmbH Page 30 of 58

12.6 Maximum Output Power

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth:	1 MHz	
Video bandwidth:	3 MHz	
Span:	5 MHz	
Trace-Mode:	Max Hold	
Used equipment:	See chapter 7.4 A	
Measurement uncertainty:	See chapter 9	

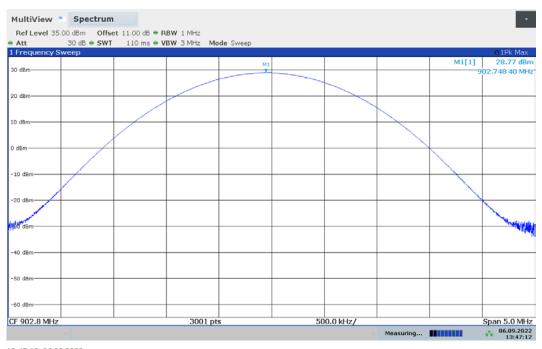
Limits:

FCC	IC		
Maximum Output Power Conducted			

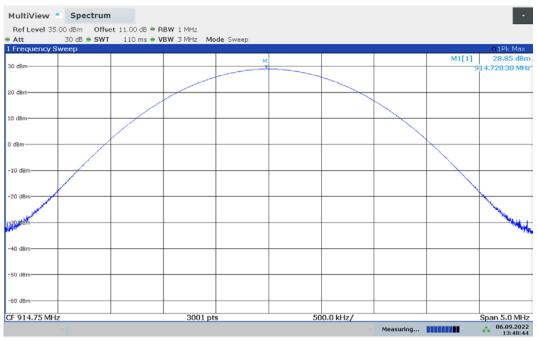
For frequency hopping systems operating in the 902–928 MHz band: 1 watt (30 dBm) for systems employing at least 50 hopping channels; and, 0.25 watts (24 dBm) for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Result:

Test Conditions		Maximum Output Power Conducted		
Test conditions		low channel	middle channel	high channel
T _{nom}	V_{nom}	28.7 dBm	28.8 dBm	28.5 dBm


Test Conditions		EIRP		
		low channel	middle channel	high channel
T _{nom}	V_{nom}	35.05 dBm	34.95 dBm	35.15 dBm

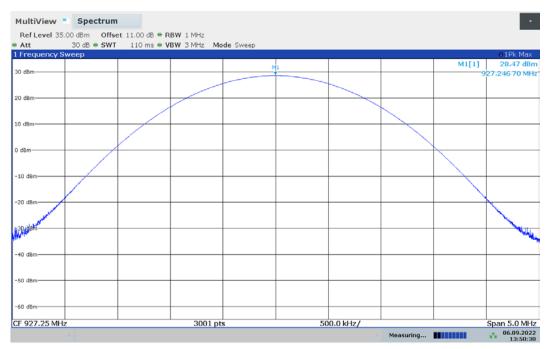
© CTC advanced GmbH Page 31 of 58


Plots:

Plot 1: low Channel

13:47:13 06.09.2022

Plot 2: middle Channel



13:48:45 06.09.2022

© CTC advanced GmbH Page 32 of 58

Plot 3: high Channel

13:50:31 06.09.2022

© CTC advanced GmbH Page 33 of 58

12.7 Detailed spurious emissions @ the band edge - conducted and radiated

Description:

Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel and hopping mode. The measurement is repeated for all modulations.

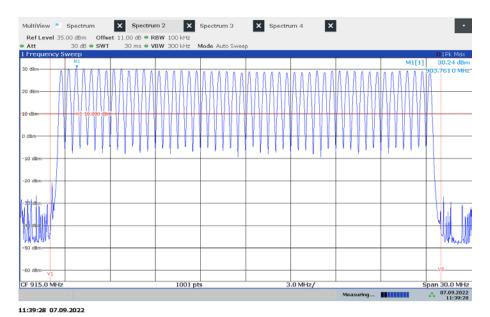
Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	300 kHz / 500 kHz	
Span	Lower Band Edge: 902 MHz Upper Band Edge: 928 MHz	
Trace mode	Max hold	
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 9	

Limits:

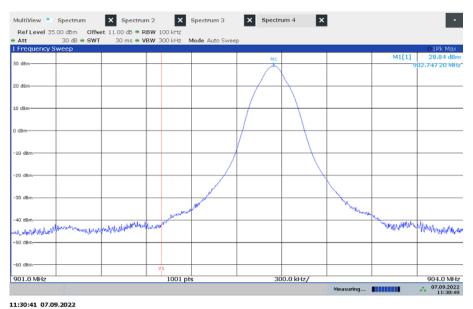
FCC	IC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

Results conducted:


Scenario	Spurious band edge conducted		
Modulation	lowest channel	middle channel	highest channel
Lower band edge – hopping on	> 20 dB	> 20 dB	> 20 dB
Upper band edge – hopping on	> 20 dB	> 20 dB	> 20 dB

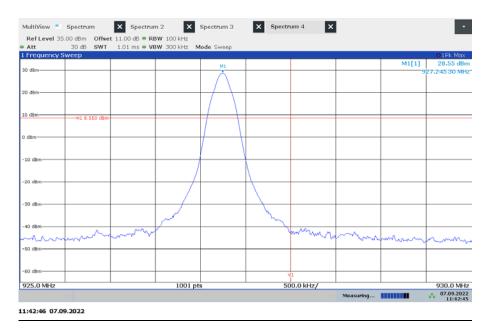
© CTC advanced GmbH Page 34 of 58



Plots:

Plot 1: 20 dB - hopping on

Plot 2: 20 dB – hopping off, lower band edge



11:30:41 07:09.2022

© CTC advanced GmbH Page 35 of 58

Plot 3: 20 dB – hopping off, upper band edge

© CTC advanced GmbH Page 36 of 58

Results radiated:

No restricted band in the range \pm 2 channel bandwidths of the Band-edges of the specified emission band! (608 MHz - 614 MHz and 960 MHz - 1240 MHz).

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	GHz		
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15	
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46	
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75	
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5	
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2	
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5	
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7	
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4	
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5	
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2	
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4	
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12	
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0	
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8	
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5	
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)	
13.36 - 13.41				

© CTC advanced GmbH Page 37 of 58

12.8 Spurious Emissions Conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode. The measurement is repeated for low, mid and high channel.

Measurement:

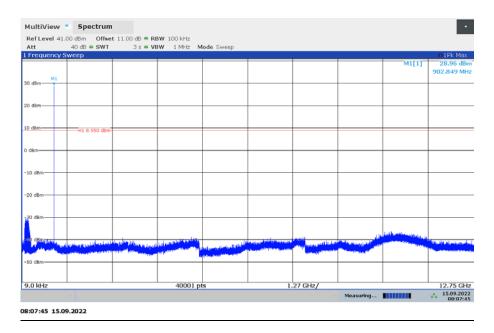
Measurement parameter						
Detector:	Peak					
Sweep time:	Auto					
Video bandwidth:	F < 1 GHz: 1 MHz F > 1 GHz: 1 MHz					
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 100 kHz					
Span:	9 kHz to 12.75 GHz					
Trace-Mode:	Max Hold					
Used equipment:	See chapter 7.4A					
Measurement uncertainty:	See chapter 9					

Limits:

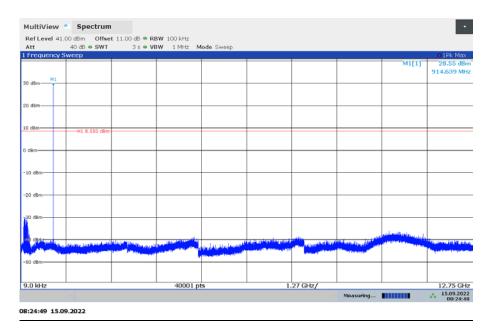
FCC	IC
TX spurious emis	ssions conducted

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

Result:

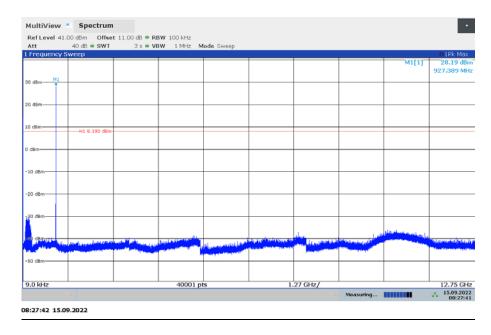

	Emission Limitation								
Frequency		Amplitude of	Limit max.	actual attenuation	Results				
[MHz]		emission	allowed emission	below frequency of					
		[dBm]	power	operation [dB]					
904			24 dBm		Operating frequency				
No e	missions dete	ected!	-20 dBc						
904			24 dBm		Operating frequency				
No emissions detected!		-20 dBc							
906			24 dBm		Operating frequency				
No e	missions dete	ected!	-20 dBc						

© CTC advanced GmbH Page 38 of 58



Plots:

Plot 1: Low channel, 9 kHz - 12.75 GHz


Plot 3: Middle channel, 9 kHz - 12.75 GHz

© CTC advanced GmbH Page 39 of 58

Plot 5: High channel, 9 kHz - 12.75 GHz

© CTC advanced GmbH Page 40 of 58

12.9 Spurious Emissions Radiated < 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channels are 00; 39 and 78. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

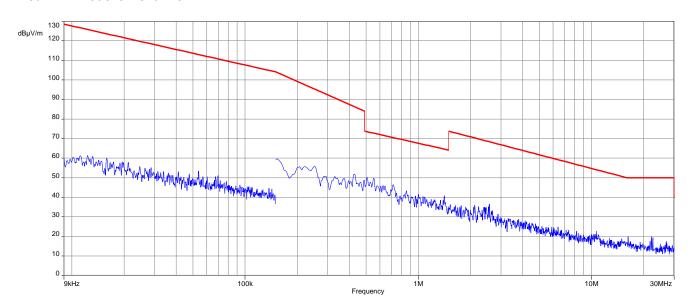
Measurement:

Measurement parameter							
Detector:	Peak / Quasi Peak						
Sweep time:	Auto						
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz						
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz						
Span:	9 kHz to 30 MHz						
Trace-Mode:	Max Hold						
Used equipment:	See chapter 7.2 A						
Measurement uncertainty:	See chapter 9						

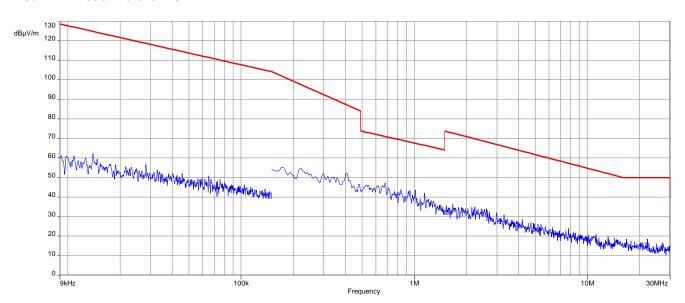
Limits:

FCC			IC	
	TX spurious emissio	ns radiated < 30 MHz	2	
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance	
0.009 - 0.490	2400/I	-(kHz)	300	
0.490 - 1.705	24000/	F(kHz)	30	
1.705 – 30.0	3	0	30	

Result:

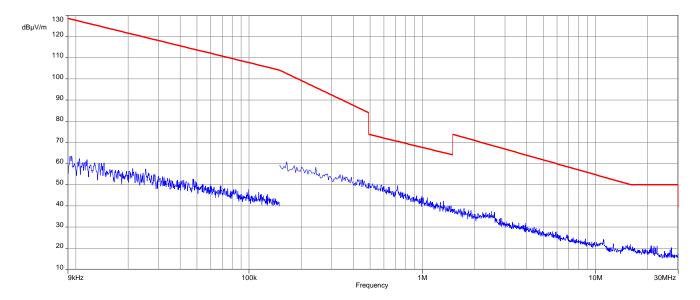

SPURIOUS EMISSIONS LEVEL [dBµV/m]								
Lowest channel Middle channel Highest channel								
Frequency Detector Level Frequency Detector Level Frequency Detector Level								Level
All emissions were more than 10 dB below the limit.								

© CTC advanced GmbH Page 41 of 58



Plots:

Plot 1: TX-Mode low channel


Plot 2: TX-Mode mid channel

© CTC advanced GmbH Page 42 of 58

Plot 3: TX-Mode high channel

© CTC advanced GmbH Page 43 of 58

12.10 Spurious Emissions Radiated > 30 MHz

12.10.1 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at channel low, mid and high.

Measurement:

Measurement parameters					
Detector	Peak / Quasi Peak				
Sweep time	Auto				
Resolution bandwidth	3 x VBW				
Video bandwidth	120 kHz				
Span	30 MHz to 1 GHz				
Trace mode	Max hold				
Measured modulation	DBPSK				
Test setup	See sub clause 7.1 A				
Measurement uncertainty	See sub clause 9				

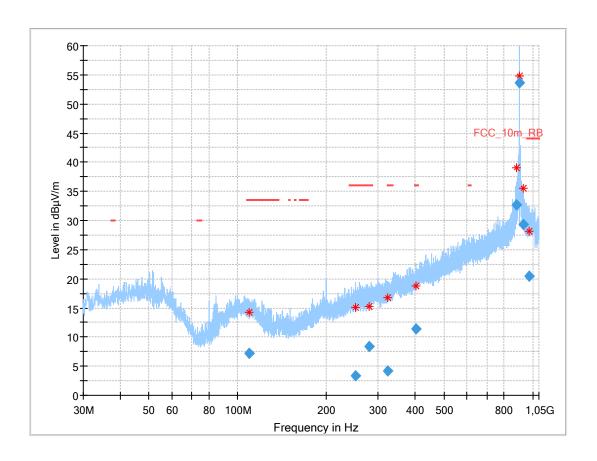
Limits:

FCC	IC			
Band-edge Compliance of conducted and radiated emissions				

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3

© CTC advanced GmbH Page 44 of 58

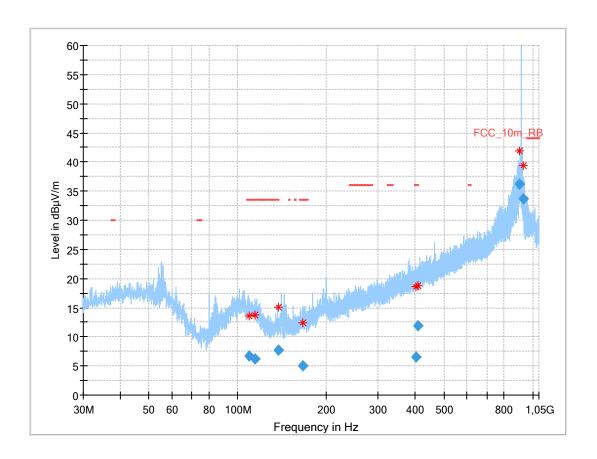


Result:

See result table below the plots.

Plots:

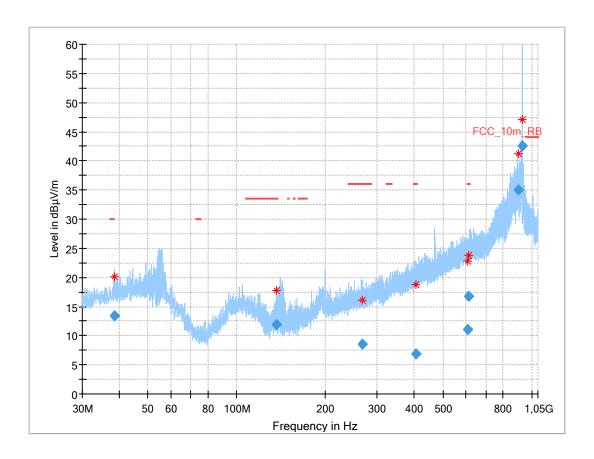
Plot 1: 30 MHz - 1 GHz, horizontal & vertical polarisation (lowest channel)


Final_Result

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB/m)
109.229	7.16	33.5	26.3	1000	120.0	200.0	V	146	13
251.051	3.39	36.0	32.6	1000	120.0	400.0	V	45	14
279.164	8.30	36.0	27.7	1000	120.0	400.0	V	0	15
323.022	4.12	36.0	31.9	1000	120.0	292.0	V	-45	16
401.020	11.44	36.0	24.6	1000	120.0	286.0	Н	225	18
881.985	32.74			1000	120.0	339.0	V	26	25
902.600	wa	nted frequenc	У	1000	120.0	324.0	V	1	26
927.918	29.41			1000	120.0	306.0	V	18	26
974.319	20.49	44.0	23.5	1000	120.0	393.0	٧	-45	26

© CTC advanced GmbH Page 45 of 58

Plot 2: 30 MHz – 1 GHz, horizontal & vertical polarisation (middle channel)


Final_Result

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB/m)
109.083	6.77	33.5	26.7	1000	120.0	400.0	V	180	13
114.332	6.15	33.5	27.4	1000	120.0	200.0	V	45	13
137.286	7.77	33.5	25.7	1000	120.0	200.0	V	180	10
166.297	5.05	33.5	28.5	1000	120.0	400.0	Н	-45	11
403.084	6.47	36.0	29.5	1000	120.0	124.0	٧	50	18
408.906	11.82	36.0	24.2	1000	120.0	400.0	٧	-45	18
902.164	36.19			1000	120.0	100.0	Н	7	26
914.744	wa	nted frequenc	у	1000	120.0	100.0	Н	6	26
927.841	33.61			1000	120.0	100.0	Н	6	26

© CTC advanced GmbH Page 46 of 58

Plot 3: 30 MHz – 1 GHz, horizontal & vertical polarisation (highest channel)

Final_Result

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB/m)
38.527	13.38			1000	120.0	113.0	V	264	15
136.786	11.93	33.5	21.6	1000	120.0	281.0	V	164	10
266.529	8.56	36.0	27.4	1000	120.0	394.0	Н	-43	14
406.713	6.84	36.0	29.2	1000	120.0	100.0	V	225	18
607.843	11.12			1000	120.0	115.0	V	207	22
613.599	16.77	36.0	19.2	1000	120.0	400.0	Н	135	22
901.944	34.95			1000	120.0	229.0	Н	-6	26
927.243	wanted frequency		1000	120.0	100.0	Н	8	26	

© CTC advanced GmbH Page 47 of 58

12.10.2 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed in the mode with the highest output power.

Measurement parameters				
Detector	Peak / RMS			
Sweep time	Auto			
Resolution bandwidth	1 MHz			
Video bandwidth	3 x RBW			
Span	1 GHz to 26 GHz			
Trace mode	Max hold			
Measured modulation	DBPSK			
Test setup	See sub clause 7.2 C (1 GHz – 12.75 GHz)			
Measurement uncertainty	See sub clause 9			

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

ANSI C63.10

The average emission shall be determined by using Video averaging (VBW = 10 Hz). If the dwell time of the hopping signal is less than 100 ms (per channel), the VBW=10 Hz reading may be adjusted by a factor: F = $20\log \text{ (dwell time/}100 \text{ ms)}$

FCC	IC		
TX spurious emissions radiated			

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

§15.209						
Frequency	Field strength	Measurement distance				
Above 960 MHz	54.0 dBμV/m	3 m				

© CTC advanced GmbH Page 48 of 58

Result:

For radiated spurious emission the limits of 15.209 applies for all frequencies mentioned in 15.205. According to FCC Public Notice DA 00-705 (ANSI C63.10) the average emission shall be determined by using Video averaging (VBW = 10 Hz). If the dwell time of the hopping signal is less than 100 ms (per channel), the VBW=10 Hz reading may be adjusted by a factor:

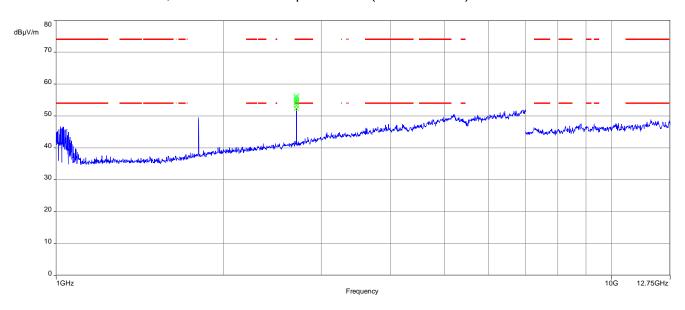
F = 20*log (dwell time/100 ms)

TX spurious emissions radiated [dBμV/m]									
L	Lowest channel			Middle channel			Highest channel		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	
2708.0	Peak	55.19	2743.6	Peak	54.26	2782.0	Peak	59.61	
2708.0	AVG	49.14*	2143.0	AVG	48.21*	2182.0	AVG	53.56*	
,	Peak	-/-	,	Peak	-/-	,	Peak	-/-	
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-	
,	Peak	-/-	,	Peak	-/-	,	Peak	-/-	
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-	
-/-	Peak	-/-	,	Peak	-/-	,	Peak	-/-	
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-	

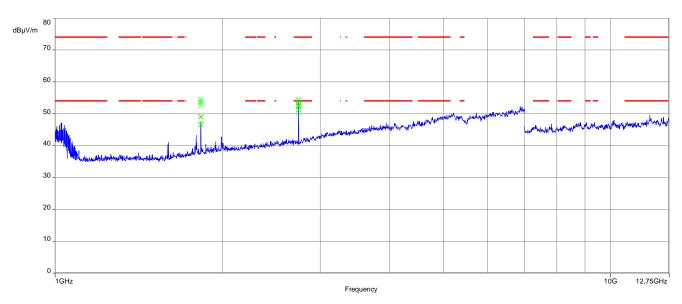
^{*)} average emission adjusting factor:

F = 20 * log (dwell time ms / 100 ms)

In a period of 100 ms, we have a maximum of 1 transmission of 49.8ms (see chapter 12.4) and that implies a correction factor for spurious measurement emissions:

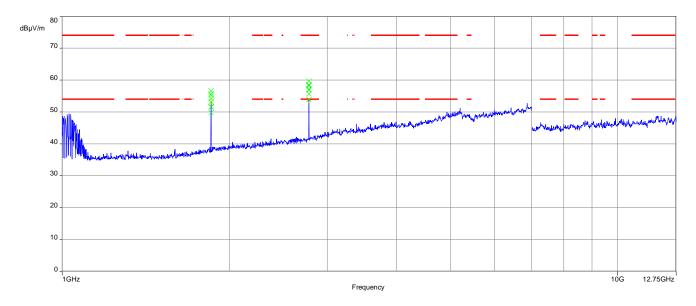

$$F = 20 * log (1* 49.8 ms / 100 ms) = -6.05dB$$

© CTC advanced GmbH Page 49 of 58



Plots:

Plot 1: 1 GHz - 12.75 GHz, horizontal & vertical polarisation (lowest channel)


Plot 2: 1 GHz - 12.75 GHz, horizontal & vertical polarisation (middle channel)

© CTC advanced GmbH Page 50 of 58

Plot 3: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (highest channel)

© CTC advanced GmbH Page 51 of 58

12.11 Spurious emissions conducted below 30 MHz (AC conducted)

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode. This measurement is representative for all channels and modes. The measurement is performed in the mode with the highest output power. Both power lines, phase and neutral line, are measured. Found peaks are remeasured with average and quasi peak detection to show compliance to the limits.

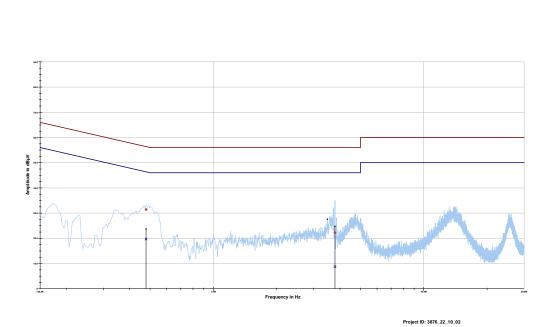
Measurement parameters					
Detector	Peak - Quasi peak / average				
Sweep time	Auto				
Resolution bandwidth	F < 150 kHz: 200 Hz				
hesolution bandwidth	F > 150 kHz: 9 kHz				
Video bandwidth	F < 150 kHz: 1 kHz				
video bandwidth	F > 150 kHz: 100 kHz				
Span	9 kHz to 30 MHz				
Trace mode	Max hold				
Measured modulation	ASK				
Test setup	See sub clause 7.3 A				
Measurement uncertainty	See sub clause 9				

Limits:

FCC		IC			
TX spurious emissions conducted < 30 MHz					
Frequency (MHz)	Quasi-peak (dBµV/m)		Average (dBμV/m)		
0.15 - 0.5	66 to 56*		56 to 46*		
0.5 - 5	56		46		
5 - 30.0	60		50		

^{*}Decreases with the logarithm of the frequency

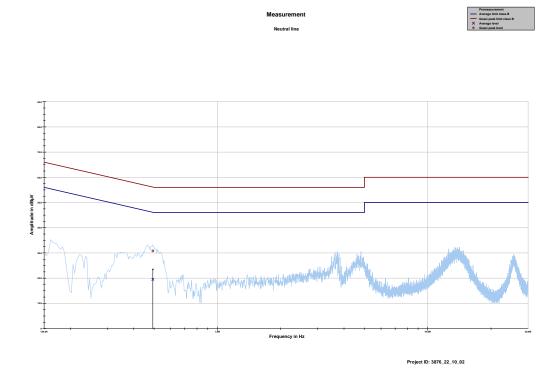
Results:


See result table below the plots.

© CTC advanced GmbH Page 52 of 58

Plots:

Plot 1: 150 kHz to 30 MHz, phase line



Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBμV	dB	dΒμV	dΒμV	dB	dΒμV
	-		•	-		-
0.478350	31.43	24.94	56.368	19.71	26.91	46.619
3.784238	22.23	33.77	56.000	8.78	37.22	46.000

© CTC advanced GmbH Page 53 of 58

Plot 2: 150 kHz to 30 MHz, neutral line

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin Average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.493275	30.80	25.31	56.112	19.48	26.71	46.192

© CTC advanced GmbH Page 54 of 58

13 Observations

No observations except those reported with the single test cases have been made.

© CTC advanced GmbH Page 55 of 58

14 Glossary

EUT Equipment under test DUT Device under test UUT Unit under test	
UUT Unit under test	
GUE GNSS User Equipment	
ETSI European Telecommunications Standards Institute	
EN European Standard	
FCC Federal Communications Commission	
FCC ID Company Identifier at FCC	
IC Industry Canada	
PMN Product marketing name	
HMN Host marketing name	
HVIN Hardware version identification number	
FVIN Firmware version identification number	
EMC Electromagnetic Compatibility	
HW Hardware	
SW Software	
Inv. No. Inventory number	
S/N or SN Serial number	
C Compliant	
NC Not compliant	
NA Not applicable	
NP Not performed	
PP Positive peak	
QP Quasi peak	
AVG Average	
OC Operating channel	
OCW Operating channel bandwidth	
OBW Occupied bandwidth	
OOB Out of band	
DFS Dynamic frequency selection	
CAC Channel availability check	
OP Occupancy period	
NOP Non occupancy period	
DC Duty cycle	
PER Packet error rate	
CW Clean wave	
MC Modulated carrier	
WLAN Wireless local area network	
RLAN Radio local area network	
DSSS Dynamic sequence spread spectrum	
OFDM Orthogonal frequency division multiplexing	
FHSS Frequency hopping spread spectrum	
GNSS Global Navigation Satellite System	
C/N₀ Carrier to noise-density ratio, expressed in dB-Hz	

© CTC advanced GmbH Page 56 of 58

15 Document history

Version	Applied changes	Date of release
-/-	Initial release	2022-10-26

16 Accreditation Certificate - D-PL-12076-01-04

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken Is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian	Deutsche Akkreditierungsstelle GmbH Office Berün Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-PL-12076-01-04 Frankfurt am Main, 09.06.2020 by orde (Figl-Img. (Figh-Ref Egner Head of Division) The certificate together with its annex reflects the steas at the time of the date of issue. The current status of the scope of excreditation can be found in the database of excredited bodies of Divisiohe Askireditarungsisteic Grabit. MISSE, Frankfurt am Addition of the Content of Occredited Bodies of Divisiohe Askireditarungsisteic Grabit. MISSE, Frankfurt am Addition of the Content of Occredited Bodies of Divisiohe Askireditarungsisteic Grabit. MISSE, Frankfurt am Addition of the Content of Occredited Bodies of Divisiohe Askireditarungsisteic Grabit.	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Askreditierungsstelle GmbH (DAMS). Exempted is the unchanged form of separate disseminations of the cover shee by the confirmity assessment body mentioned overlead. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAMS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkdStelleG) of 31 July 2009 (Federal Law Gazette Ip. 2023) and the Regulation (EC) No 765/2008 of the European in L28 of 91 July 2008, as in the Council of 9 July 2008 esting out the requirements for accreditation and market surreillance relating to the marketing of products (Diffical Journal of the European L128 of 91 July 2008, p. 30). DAMS is a signatory to the Nutrilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), international Accreditation Formul (AF) and international Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EX: www.european-accreditation.org ILAC: www.lac.org IAF: www.lac.org

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-04e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-04_Canada_TCEMC.pdf

© CTC advanced GmbH Page 57 of 58

17 Accreditation Certificate - D-PL-12076-01-05

first page	last page
Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025-2018 to carry out tests in the following fields: Telecommunication (FCC Requirements) The accreditation certificate shall only apply in connection with the notice of accreditation of 09:06-2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05	Deutsche Akkreditierungsstelle GmbH Office Braunschweig Spittelmarkt 10 10117 Berlin G0327 Frankfurt am Main Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 38:116 Braunschweig Bundesallee 100 38:116 Braunschweig Bundesallee 100 38:116 Braunschweig Bundesallee 100 38:116 Braunschweig No impression shall be made that the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DA&S). Exempted is the unchanged form of separate dissemnations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attessed by DA&S. The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 [Federal Law Gazette I p. 26:25] and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of July 2008 Stelling out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union 1.218 of 3 July 2008, p. 30). DA&S is a signatory to the Multilateral Agreements for Natural Recognition of the European Co-poration for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (IAC), the signatories to these agreements recognition each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org IAF: www.iaf.nru
Frankfurt am Main, 09.06.2020 by ordy foot-ing, (Fritgain Eigner Head of Division The certificate together with its one-or reflects the status at the time of the date of issue. The current status of the scope of occreditation can be found in the database of occredited bodies of Deutsche Akhrediterrungsteile GmbH. http://www.dakk.de/en/content/accredited-bodies-dakks Toe ratio evalual.	

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05_TCB_USA.pdf

© CTC advanced GmbH Page 58 of 58