

0659

FCC Radio Test Report FCC ID: IR5DH8

: BTL-FCCP-2-2205T007 Report No. Equipment : HANDHELD COMPUTER

Model Name : DH8

Brand Name : MilDef Crete Inc. Applicant : MilDef Crete Inc.

Address 7F, No.250, Sec.3, PeiShen Rd., Shen Keng District, New Taipei City,

Taiwan

Radio Function : Bluetooth Low Energy 5.2

FCC Rule Part(s) : FCC CFR Title 47, Part 15, Subpart C

Measurement Procedure(s)

: ANSI C63.10-2013

Date of Receipt : 2022/5/16

Date of Test : 2022/5/16 ~ 2022/6/10

Issued Date : 2022/8/25

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by Eric Lee, Engineer

Jerry Chuang, Supervisor

BTL Inc.

Approved by

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Project No.: 2205T007 Page 1 of 47 Report Version: R01

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2205T007 Page 2 of 47 Report Version: R01

CONTENTS

	0	DV 05 T50T D50U T0	_
1		RY OF TEST RESULTS	5
1.1		FACILITY	6
1.2	_	SUREMENT UNCERTAINTY	6
1.3	_	ENVIRONMENT CONDITIONS	6
1.4		OF PARAMETERS OF TEST SOFTWARE SETTING	6
2	_	AL INFORMATION	7
2.1		RIPTION OF EUT	7
2.2	_	MODES	9
2.3		K DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
2.4		ORT UNITS	11
3		ER LINE CONDUCTED EMISSIONS TEST	12
3.1	LIMIT		12
3.2		PROCEDURE	12
3.3		ATION FROM TEST STANDARD	12
3.4		SETUP	13
3.5	_	RESULT	13
4		ED EMISSIONS TEST	14
4.1	LIMIT		14
4.2		PROCEDURE	15
4.3		ATION FROM TEST STANDARD	15
4.4	_	SETUP	15
4.5		PERATING CONDITIONS	16
4.6	_	RESULT – BELOW 30 MHZ	17
4.7	_	RESULT – 30 MHZ TO 1 GHZ	17
4.8		RESULT – ABOVE 1 GHZ	17
5		POWER TEST	18
5.1	LIMIT		18
5.2	_	PROCEDURE	18
5.3		ATION FROM STANDARD	18
5.4		SETUP	18
5.5	EUT C	PERATION CONDITIONS	18
5.6	TEST	RESULTS	18
6	LIST OF	MEASURING EQUIPMENTS	19
7	EUT TES	ST PHOTO	20
8	EUT PHO	DTOS	20
APPEND	OIX A	AC POWER LINE CONDUCTED EMISSIONS	21
APPEND	IX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	26
APPEND	OIX C	RADIATED EMISSIONS - ABOVE 1 GHZ	29
APPEND	OIX D	OUTPUT POWER	46

Report No.: BTL-FCCP-2-2205T007

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-2-2205T007	R00	Original Report.	2022/8/2	Invalid
BTL-FCCP-2-2205T007	R01	Revised report to address TCB's	2022/8/25	Valid
		comments.		

Project No.: 2205T007 Page 4 of 47 Report Version: R01

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass	
15.247(a)(2)	Bandwidth	NOTE (3)	Pass	
15.247(b)(3)	Output Power	APPENDIX D	Pass	
15.247(e)	Power Spectral Density	NOTE (3)	Pass	
15.247(d)	Antenna conducted Spurious Emission	NOTE (3)	Pass	
15.203	Antenna Requirement		Pass	

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.
- (3) This is to request a Class II permissive change for FCC ID: IR5DH8 (This FCC ID is change ID based on Intel Mobile Communications, the original application information follow as model: AX210NGW, FCC ID: PD9AX210NG, approved on 05/25/2022)

The major change filed under this application is disable RLAN 5 GHz (U-NII 2a, U-NII 2c, U-NII 3) and U-NII 6 GHz.

Since the RF module has been certificated, after evaluation, above test items were criticized and reconfirmed in this report, for other test data can be refer report No.: 200611-03.TR04.

(4) After spot check, this revision does not change original radio parameters.

Project No.: 2205T007 Page 5 of 47 Report Version: R01

Report No.: BTL-FCCP-2-2205T007

□ CB16

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

he test sites and facilities are covered under FCC RN: 674415 and DN: 1 W0659. \square CB08 \square CB11 \square CB15

⊠ SR05

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cispr} requirement.

A. AC power line conducted emissions test:

Test Sit	e Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB15	1 GHz ~ 6 GHz	5.21
CB15	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

Test Item	U,(dB)
Output Power	0.3669

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	19 °C, 51 %	AC 120V	Ronald Kao
Radiated emissions below 1 GHz	Refer to data	AC 120V	Eddie Lee
Radiated emissions above 1 GHz	Refer to data	AC 120V	Eddie Lee
Output Power	22.3 °C, 52 %	AC 120V	Angela Wang

1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

Test Software	DRTU V22.21090.0.0				
Modulation Mode	2402 MHz	2402 MHz 2440 MHz 2480 MHz			
BLE 5.2	36	36	36	1 Mbps	
BLE 5.2	36	36	36	2 Mbps	

Project No.: 2205T007 Page 6 of 47 Report Version: R01

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

	UNIDUE D. COMPUTED
Equipment	HANDHELD COMPUTER
Model Name	DH8
Brand Name	MilDef Crete Inc.
Model Difference	N/A
Power Source	#1 DC voltage supplied from External Power Supply. #2 Supplied from battery.
Power Rating	#1 I/P: 100-240V~50-60Hz 1.5A MAX. O/P: 5.0V==3.0A 15.0W or 9.0V==3.0A 27.0W or 12.0V==3.0A 36.0W or 15.0V==3.0A 45.0W or 20.0V==3.0A 60.0W #2 7.2V==2500mAh/18Wh
Products Covered	1 * Adapter: ADAPTER TECH / CDP060A1-P200 1 * Battery: BDH82A
WIFI+BT Module	Intel / AX210NGW
Operation Band	2400 MHz ~ 2483.5 MHz
Operation Frequency	2402 MHz ~ 2480 MHz
Maximum Output Power	1 Mbps: 9.66 dBm (0.0092 W) 2 Mbps: 9.96 dBm (0.0099 W)
Test Model	DH8
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

Project No.: 2205T007 Page 7 of 47 Report Version: R01

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

(3) Table for Filed Antenna:

Antenna	Manufacture	Part Number	Туре	Connector	Frequency Range (MHz)	Gain (dBi)
VALLANIO DE					2400	-1.46
WLAN&BT Antenna	N/A	G983190000	PIFA	N/A	2450	2.33
Antenna					2500	0.19

Project No.: 2205T007 Page 8 of 47 Report Version: R01

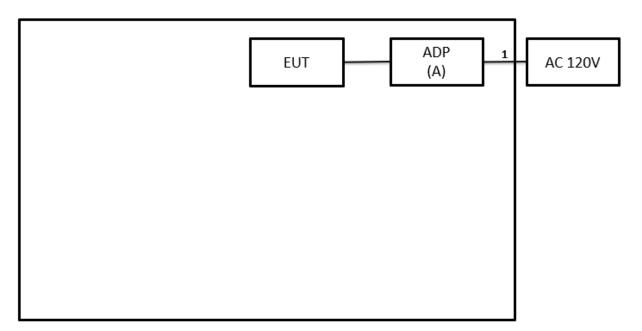
Report No.: BTL-FCCP-2-2205T007

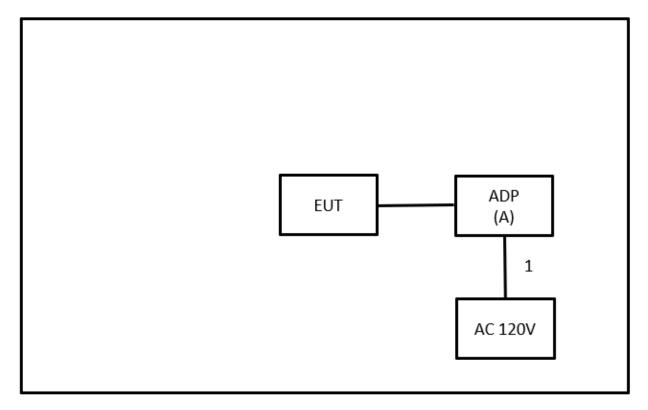
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	2 Mbps	19	-
Transmitter Radiated Emissions	1, 2 Mbps	00/39	Bandedge
(above 1GHz)	1, 2 Mbps	00/19/39	Harmonic
Output Power	1, 2 Mbps	00/19/39	-

NOTE:

- (1) The Radiated emissions test was verified based on the worst conducted power and Bandwidth test results reported in the original report.
- (2) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (3) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.


Project No.: 2205T007 Page 9 of 47 Report Version: R01


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC Power Line Conducted Emissions Test

Radiated Emissions Test

Project No.: 2205T007 Page 10 of 47 Report Version: R01

Report No.: BTL-FCCP-2-2205T007

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	Adapter	ADAPTER TECH	CDP060A1-P200	N/A	Supplied by test requester.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	1.8m	Power Cord	Supplied by test requester.

Project No.: 2205T007 Page 11 of 47 Report Version: R01

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

	Frequency	Limit (dBµV)		
	(MHz)	Quasi-peak	Average	
	0.15 - 0.5	66 - 56 *	56 - 46 *	
	0.50 - 5.0	56	46	
П	5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

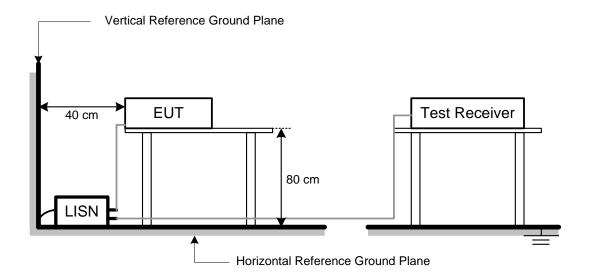
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2205T007 Page 12 of 47 Report Version: R01

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

Report No.: BTL-FCCP-2-2205T007

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated (dBu	Measurement Distance	
(IVITIZ)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value	
19.11	+	2.11	II	21.22	

Measurement Value		Limit Value		Margin Level
21.22	ı	54	II	-32.78

Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RBW / VBW	1MHz / 3MHz for Peak,		
(Emission in restricted band)	1MHz / 1/T for Average		

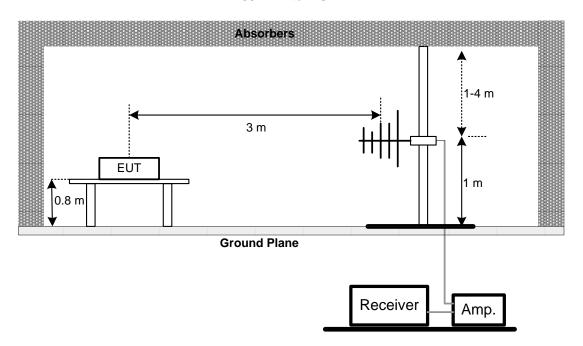
Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Project No.: 2205T007 Page 14 of 47 Report Version: R01

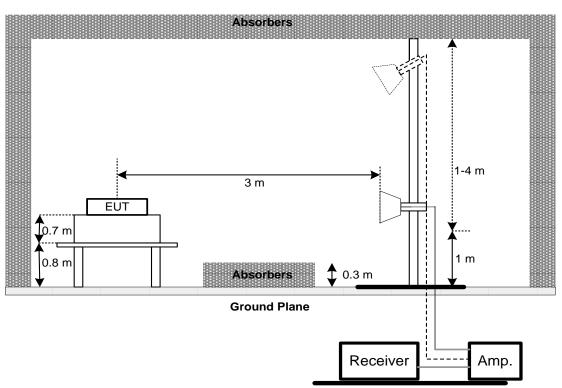

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD


No deviation.

4.4 TEST SETUP



30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

Report No.: BTL-FCCP-2-2205T007

4.6 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2205T007 Page 17 of 47 Report Version: R01

Report No.: BTL-FCCP-2-2205T007

5 OUTPUT POWER TEST

5.1 LIMIT

FCC Part15 (15.247) , Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(b)(3)	Maximum Output Power	1 watt or 30dBm	2400-2483.5	PASS			

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. The maximum peak conducted output power was performed in accordance with method 9 b) of FCC KDB 558074 D01 DTS Meas Guidance.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT	Power Meter
	i circi wicici

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

Project No.: 2205T007 Page 18 of 47 Report Version: R01

6 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions									
Item	Kind of Equipment	Manufacturer	Type No. Serial No.		Calibrated Date	Calibrated Until				
1	TWO-LINE V-NETWORK	R&S	ENV216	101051	2022/3/29	2023/3/28				
2	Test Cable	EMCI	EMCCFD300-BM -BMR-6000	170714	2022/5/2	2023/5/1				
3	EMI Test Receiver	R&S	ESR 7	101433	2021/11/24	2022/11/23				
4	Measurement Software	Measurement F7		N/A	N/A	N/A				

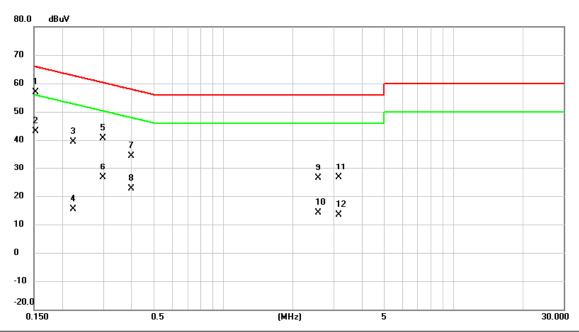
Radiated Emissions								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	Preamplifier	EMCI	EMC02325	980217	2022/4/6	2023/4/5		
2	Preamplifier	EMCI	EMC012645B	980222	2022/4/6	2023/4/5		
3	Preamplifier	EMCI	EMC001340	980555	2022/4/6	2023/4/5		
4	Test Cable	EMCI	EMC104-SM-100 0	180809	2022/4/6	2023/4/5		
5	Test Cable	EMCI	EMC104-SM-SM- 2500	160413	2022/4/6	2023/4/5		
6	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2022/4/6	2023/4/5		
7	Signal Analyzer	Agilent	N9010A	MY56480554	2021/8/25	2022/8/24		
8	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2021/6/1	2022/5/31		
9	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9120 D	9120D-1333	2021/11/18	2022/11/17		
10	Horn Ant	Schwarzbeck	BBHA 9170	340	2021/7/9	2022/7/8		
11	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-352	2021/8/11	2022/8/10		
12	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2021/8/11	2022/8/10		
13	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A		

			Output Power	•		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Power Meter	Anritsu	ML2487A	6K00004714	2021/8/15	2022/8/14
2	Power Sensor	Anritsu	MA2491A	034138	2021/8/15	2022/8/14

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

7 EUT TEST PHOTO								
Please refer to document Appendix No.: TP-2205T007-FCCP-1 (APPENDIX-TEST PHOTOS).								
8 EUT PHOTOS								
Please refer to document Appendix No.: EP-2205T007-1 (APPENDIX-EUT PHOTOS).								

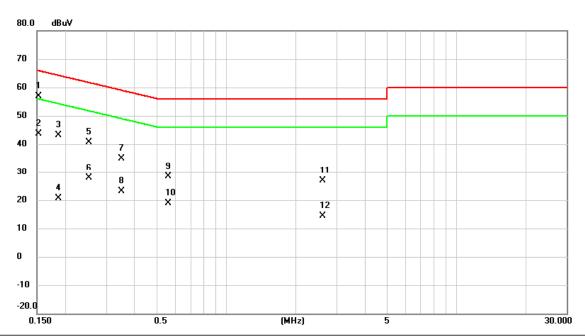
Project No.: 2205T007 Page 20 of 47 Report Version: R01



APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2205T007 Page 21 of 47 Report Version: R01

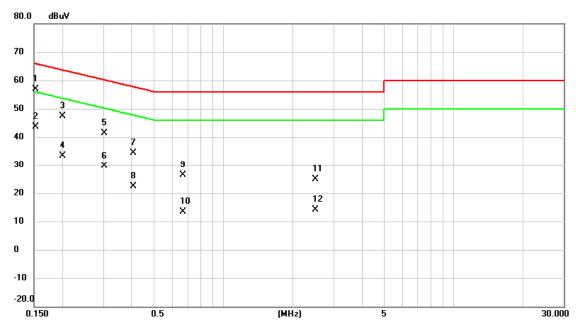
Test Mode	Normal	Tested Date	2022/5/27
Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.1522	47.10	9.67	56.77	65.88	-9.11	QР	
2		0.1522	33.50	9.67	43.17	55.88	-12.71	AVG	
3		0.2220	29.60	9.67	39.27	62.74	-23.47	QP	
4		0.2220	5.80	9.67	15.47	52.74	-37.27	AVG	
5		0.2985	30.90	9.66	40.56	60.28	-19.72	QP	
6		0.2987	17.00	9.66	26.66	50.28	-23.62	AVG	
7		0.3997	24.80	9.67	34.47	57.86	-23.39	QP	
8		0.3997	12.90	9.67	22.57	47.86	-25.29	AVG	
9		2.5778	16.50	9.83	26.33	56.00	-29.67	QP	
10		2.5778	4.20	9.83	14.03	46.00	-31.97	AVG	
11		3.1514	16.70	9.86	26.56	56.00	-29.44	QP	
12		3.1514	3.60	9.86	13.46	46.00	-32.54	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

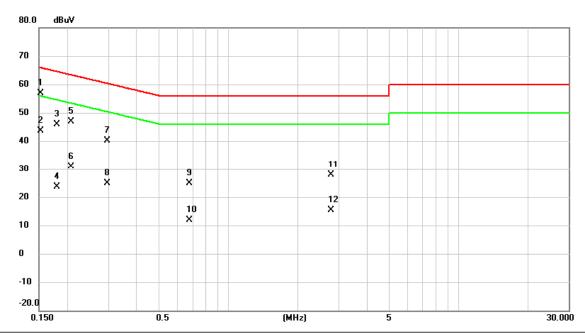
Test Mode	Normal	Tested Date	2022/5/27
Test Frequency	-	Phase	Neutral



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.1522	47.10	9.67	56.77	65.88	-9.11	QР	
2		0.1522	34.00	9.67	43.67	55.88	-12.21	AVG	
3		0.1864	33.50	9.66	43.16	64.20	-21.04	QР	
4		0.1864	10.90	9.66	20.56	54.20	-33.64	AVG	
5		0.2513	31.00	9.65	40.65	61.71	-21.06	QP	
6		0.2513	18.30	9.65	27.95	51.71	-23.76	AVG	
7		0.3502	25.10	9.66	34.76	58.96	-24.20	QP	
8		0.3502	13.50	9.66	23.16	48.96	-25.80	AVG	
9		0.5595	18.70	9.69	28.39	56.00	-27.61	QP	
10		0.5595	9.10	9.69	18.79	46.00	-27.21	AVG	
11		2.6115	17.00	9.83	26.83	56.00	-29.17	QP	
12		2.6115	4.50	9.83	14.33	46.00	-31.67	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

I	Test Mode	Idle	Tested Date	2022/5/27
ı	Test Frequency	-	Phase	Line

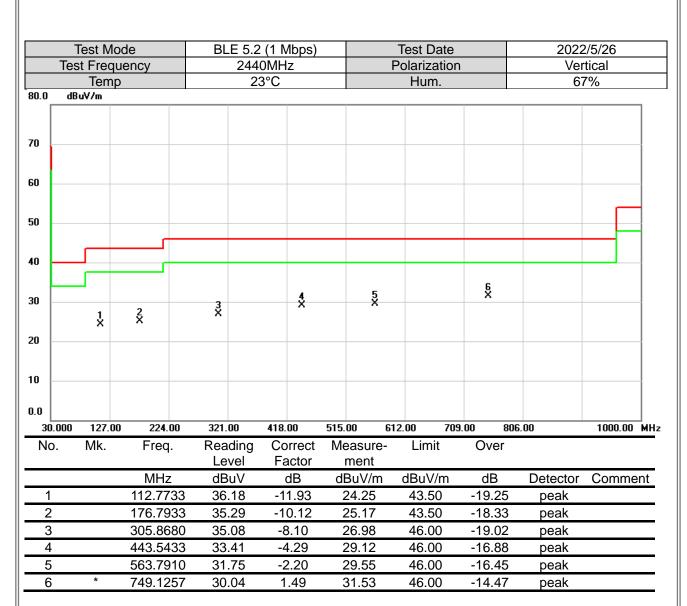


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∀	dB	dBu∨	dBu∀	dB	Detector	Comment
1 *	0.1522	47.30	9.67	56.97	65.88	-8.91	QP	
2	0.1522	33.90	9.67	43.57	55.88	-12.31	AVG	
3	0.1995	37.80	9.67	47.47	63.63	-16.16	QP	
4	0.1995	23.70	9.67	33.37	53.63	-20.26	AVG	
5	0.3030	31.70	9.65	41.35	60.16	-18.81	QP	
6	0.3030	20.10	9.65	29.75	50.16	-20.41	AVG	
7	0.4087	24.70	9.67	34.37	57.67	-23.30	QP	
8	0.4087	12.60	9.67	22.27	47.67	-25.40	AVG	
9	0.6673	16.80	9.70	26.50	56.00	-29.50	QP	
10	0.6673	3.60	9.70	13.30	46.00	-32.70	AVG	
11	2.5013	15.10	9.83	24.93	56.00	-31.07	QP	
12	2.5013	4.20	9.83	14.03	46.00	-31.97	AVG	

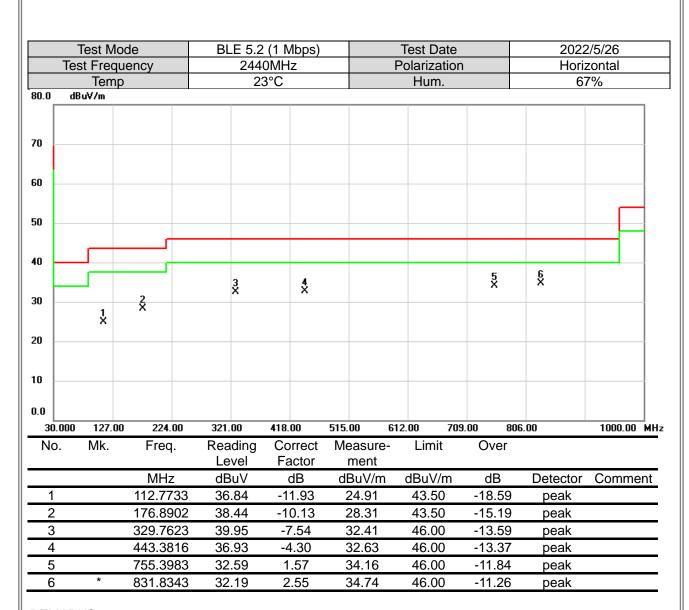
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2022/5/27
Test Frequency	-	Phase	Neutral

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.1522	47.20	9.67	56.87	65.88	-9.01	QP	
2		0.1522	34.00	9.67	43.67	55.88	-12.21	AVG	
3		0.1793	36.30	9.66	45.96	64.52	-18.56	QP	
4		0.1793	14.00	9.66	23.66	54.52	-30.86	AVG	
5		0.2063	37.20	9.66	46.86	63.35	-16.49	QP	
6		0.2063	21.10	9.66	30.76	53.35	-22.59	AVG	
7		0.2962	30.50	9.65	40.15	60.35	-20.20	QP	
8		0.2962	15.30	9.65	24.95	50.35	-25.40	AVG	
9		0.6765	15.30	9.70	25.00	56.00	-31.00	QP	
10		0.6765	2.30	9.70	12.00	46.00	-34.00	AVG	
11		2.7938	18.00	9.84	27.84	56.00	-28.16	QP	
12		2.7938	5.50	9.84	15.34	46.00	-30.66	AVG	


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ


Project No.: 2205T007 Page 26 of 47 Report Version: R01

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

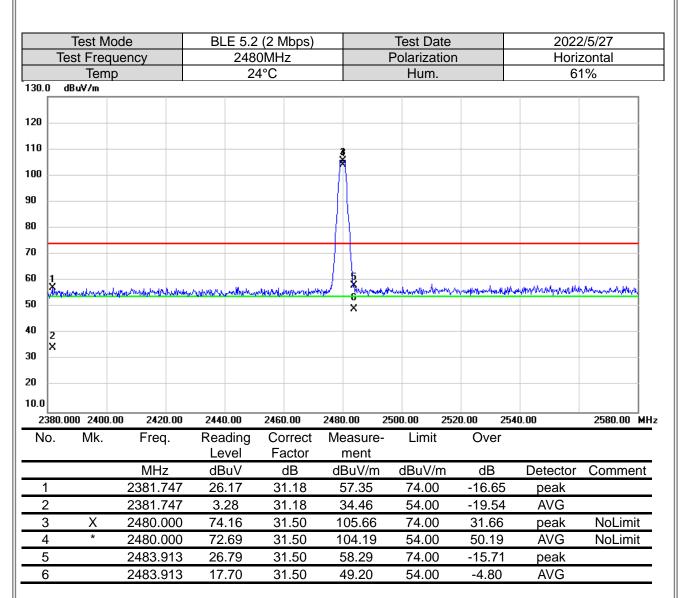
	Report No.: BTE-PCCP-2-22031007
APPENDIX C	RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2205T007 Page 29 of 47 Report Version: R01

	Test Mo			2 (1 Mbps)		Test Date			2/5/24
Te	st Frequ			2MHz		Polarizatior	1		zontal
1000 11	Temp		2:	2°C		Hum.		66	5%
130.0 dl	3uV/m								
120									
110									
100									
90									
80									
70									
60		1			A				<u>5</u>
50 MyA	Hard South States		hyddianely Andrewski	Wagydown water	MANUAL MA	madament of the control of the contr	military), hit (the east year of bifu	44hransapan,agabi	gradely which was drawn of the
40		2 X							
30									×
20									
10.0									
	00 2322.00	0 2342.00	2362.00	2382.00	2402.00 24	422.00 244	12.00 24 6	2.00	2502.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2344.787	26.14	31.06	57.20	74.00	-16.80	peak	
2		2344.787	13.33	31.06	44.39	54.00	-9.61	AVG	
3	Χ	2402.000	72.69	31.24	103.93	74.00	29.93	peak	NoLimit
4	*	2402.000	72.04	31.24	103.28	54.00	49.28	AVG	NoLimit
5		2502.000	25.86	31.57	57.43	74.00	-16.57	peak	
6		2502.000	3.19	31.57	34.76	54.00	-19.24	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo	ode	BLE 5.2	2 (1 Mbps)		Test Date		2022	2/5/24
Te	st Frequ	uency	248	0MHz		Polarizatior)	Horiz	zontal
	Temp)	2	2°C		Hum.		66	6%
130.0 d	BuV/m								
120									
110									
100					$ \!$				
90 -									
80									
70									
60	1 X	alante de la granditation de	Marin de la company	whiteholden	man Sharing	man and the deptor	handra of the district	الإياريات المستعودة المستوادة المستوادة المستوادة المستوادة المستوادة المستوادة المستوادة المستوادة المستوادة	physiological and the second
50		•			6 X				
- 1 :	2 X								
30									
20									
10.0									
	00 2400.0		2440.00	2460.00				10.00	2580.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2388.127	26.26	31.20	57.46	74.00	-16.54	peak	
2		2388.127	2.88	31.20	34.08	54.00	-19.92	AVG	
3	Χ	2480.000	74.34	31.50	105.84	74.00	31.84	peak	NoLimit
4	*	2480.000	73.80	31.50	105.30	54.00	51.30	AVG	NoLimit
5		2490.767	27.61	31.53	59.14	74.00	-14.86	peak	
6		2490.767	14.26	31.53	45.79	54.00	-8.21	AVG	


- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo		BL		2 (2 Mb)	os)			Test Da				2/5/27	
Tes	st Frequ				2MHz				Polariza				zontal	
1000 10	Temp			2	4°C				Hum.			6′	1%	
130.0 dB	uV/m													7
120														-
110							4	<u> </u>						-
100							Ĭ							-
90							$-\parallel$							-
80														-
70														-
60			1 X 				\mathbf{J}					wayaanayah.dana	5 X	_
بنبميام	المال ومعودته الأوادوة	an habaya ettaregal	2	Jagori Hallanda	deligen _e estes les	4.Anv. ha	ALO.	Tollhoundston	Alternative dell'Alternative	MANAGA	ajkrajuskijkaje-sevauv	44-03/476/m/ 14 6/25-4 ¹⁷⁶ -076	AN CHARLES AND CONTRACT OF THE	4
40			×										6	-
30													×	-
20														
10.0														
2302.00	0 2322.0	0 2342.00	2362	2.00	2382.00)	2402	.00 2	422.00	2442	.00 246	62.00	2502.00	_мн
No.	Mk.	Freq.	Rea Le		Corre Fact			asure- nent	Limit		Over			
		MHz	dB		dB			BuV/m	dBuV/ı	m	dB	Detector	Comme	ent
1		2353.207	26.		31.0	9		8.04	74.00		-15.96	peak		
2		2353.207	13.	32	31.0	9	4	4.41	54.00)	-9.59	AVG		
3	Χ	2402.000	71.	76	31.2	4	10	03.00	74.00)	29.00	peak	NoLim	nit
4	*	2402.000	70.	97	31.2	4	10	02.21	54.00)	48.21	AVG	NoLim	nit
5		2491.060	27.	80	31.5	3	5	8.61	74.00)	-15.39	peak		
6		2491.060	3.0	06	31.5	3	3	34.59	54.00)	-19.41	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	Te	st Mo	de		BL	E 5.2	(1 Mb	ps)				Test Da	ate			2022	2/5/24	
•	Test I	Frequ	iency				2MHz				Ρ	olariza	tion				tical	
		Temp)			2	2°C					Hum				6	6%	
30.0	dBuV	//m																_
120																		
10																		-
00																		-
0																		-
io																		-
o																		-
:0 _																		\perp
io			1 X															7
o																		4
0			2 X															4
0																		4
0.0																		
		3550.0			8650		11200.		1375			300.00		50.00	21400	.00	26500.0	10 MI
No.	P	Иk.	Freq	-	Rea Le	ding vel	Corr Fact			easure ment	;-	Limit	[Ove	er 			
			MHz	7	dB	uV	dE		dE	3uV/m)	dBuV/	m	dB		Detector	Comm	ent
1			4804.0	000	45	.48	-0.0	9	4	5.39		74.00)	-28.6	31	peak		
2		*	4804.0	000	33	.69	-0.0	9	3	33.60		54.00)	-20.4	10	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		t Mo			BL	E 5.2						Test D					2/5/24
	Test F						2MH	Z			F	Polariza					zontal
100.0		emp	1			22	2°C					Hum	۱.			66	5%
30.0	dBuV/	m															
20																	
10																	
00																	
10																	
30 <u> </u>																	
o																	
0																	
o			1														
			1 X														
:0			2 X														
0																	
0.0																	
1000	0.000 3	3550.0	0 6100).00	8650	.00	1120	0.00	1375	0.00	16	300.00	188	50.00	2140	0.00	26500.00 M
No.	M	lk.	Freq		Rea Le			rrect		easure ment	9-	Limi	t	Ove	r		
			MHz	7	dB			dΒ		3uV/n	n	dBuV	/m	dB		Detector	Commen
1			4804.0	000	44.	30	-0	.09		14.21		74.0		-29.7	'9	peak	
2		*	4804.0	000	33.	14	-0	.09		33.05		54.0	0	-20.9	95	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M		E		(1 Mbps)		Test Date			2/5/24
1	Test Freq				0MHz		Polarization	on		tical
130.0	Tem dBuV/m	р		2	2°C		Hum.		60	6%
130.0	ag u v / m									
120										
110										
100										
90										
30										
'o										
io <u> </u>										
50		1 X								
10		2 X								
30 <u> </u>										
20										
10.0										
	.000 3550.			50.00	11200.00	13750.00			400.00	26500.00 MH
No.	Mk.	Freq.		eading evel	Correct Factor	Measure ment	- Limit	Over		
		MHz	C	lBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4880.00	00 4	7.06	0.05	47.11	74.00	-26.89	peak	
2	*	4880.00	00 3	7.46	0.05	37.51	54.00	-16.49	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

T/	Test Nest Fre				BL	E 5.2	2 (1 M 0MH:					Test D					2/5/24 zontal	
10	Ten		ПСУ				2°C	<u></u>				Hun					2011(a) 5%	
130.0 c	dBuV/m																	_
120																		
110																		-
100																		
90																		4
80																		
70																		-
60																		
50			1 X															
40			2															-
30			×															_
20																		_
10.0																		
1000.0	000 3550	0.00	6100).00	8650	.00	1120	0.00	1375	0.00	16	300.00		50.00	214	00.00	26500.0	O MHz
No.	Mk.		Freq			ding vel		rrect ctor		easur ment		Lim	it	Ove	er			
			MHz	<u>-</u>	dB	uV	(ΙB	dl	3uV/r	n	dBuV	/m	dE	3	Detector	Comme	ent
1			4880.C			.00		.05		14.05		74.0		-29.		peak		
2	*		4880.0	000	34	.97	0	.05	3	35.02		54.0	0	-18.	98	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test I				BL	E 5.2						Test D					2/5/24	
16	est Fre		ency				OMH:	Z				<u>Polariza</u>					tical	
30.0 d	lei dBuV/m	mp				2	2°C					Hum	۱.			66	5%	
30.0 (JDUY/III																	1
20																		
10																		
00																		
0																		
:0																		1
o 🗀																		
0																		1
o 🗀			1															1
			1 X															
			2 X															
0																		
0.0																		
1000.0	000 355	50.00	6100).00	8650).00	1120	0.00	1375	50.00	16	300.00	188	50.00	2140	0.00	26500.00	мн
No.	Mk.		Freq			ding vel		rrect ctor		easur ment	e-	Limi	t	Ove	er			
			MHz	<u>'</u>		uV		B		3uV/r	n	dBuV/	/m	dE	}	Detector	Comme	nt
1			4960.0			.44		.20		14.64		74.0		-29.		peak		
2	*		4960.0	000	35	.15	0	.20	3	35.35		54.0	0	-18.	65	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			(1 Mbps)		Test Date			2/5/24
10	est Frequ			<u>0MHz</u> 2°C		Polarization Hum.	n		zontal 5%
130.0	Temp			2 0		nuiii.		00	0%
120									
110									
100									
90									
80									
00									
70 —									
60									
50									
ວບ		1 X							
40		2							
30		×							
20									
10.0	000 3550.0	0 6100.00	8650.00	11200.00	13750.00	16300.00 18	850.00 214	100.00	26500.00 MHz
No.	ооо зээо.о Mk.	Freq.	Reading	Correct	Measure		850.00 214 Over	100.00	Z63UU.UU MHZ
INO.	IVIN.	ттеч.	Level	Factor	ment	- LIIIII(Ovei		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	44.86	0.20	45.06	74.00	-28.94	peak	
2	*	4960.000	34.05	0.20	34.25	54.00	-19.75	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

_	Test Mo				2 (2 Mbps)		Test Date			2/5/27
T	est Frequ				2MHz		Polarizatio	n		tical
130.0	Temp)		2	4°C		Hum.		6	1%
130.0	abuy/m									
120										
110										
100										
90										
80										
70										
60										
50		1 X								
40										
30		2 X								
20										
10.0										
	000 3550.0			8650.00	11200.00	13750.00			100.00	26500.00 MHz
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure ment	- Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.0	00	44.32	-0.09	44.23	74.00	-29.77	peak	
2	*	4804.0	00	34.39	-0.09	34.30	54.00	-19.70	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M					Mbps)				est Da				2/5/27
	Test Fred			2	402N		_		P	olariza				zontal
130.0	Tem dBuV/m	ıp			24°(<i></i>				Hum			0	1%
120														
110 📙														
100														
90 _														
80														
70 🗀														
60 _														
50		1												
40		1 × 2												
30		×												
20														
10.0														
	.000 3550		00.00	8650.00		1200.00	1375			00.00	1885		1400.00	26500.00 MH
No.	Mk.	Fre	eq.	Readir Level		Correct Factor		asure nent	-	Limit		Over		
		MI	Ηz	dBuV		dB		BuV/m		dBuV/	m	dB	Detector	Comment
1		4804	.000	44.55		-0.09	4	4.46		74.00)	-29.54	peak	
2	*	4804	.000	35.50		-0.09	3	5.41		54.00)	-18.59	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		st Mc			BL		(2 MI					Test D					2/5/27
			uency				0MHz				<u> </u>	Polariza					tical
130.0	dBuV	Temp)		24°C				Hum.						61%		
130.0	aBuv.	/m															
120																	
10																	
100																	
90 <u> </u>																	
30																	
o																	
0																	
0																	
10			X X														
0			2 X														
20																	
0.0																	
1000	0.000	3550.0	00 6100).00	8650	0.00	11200	.00	1375	0.00	16	300.00	188	50.00	2140	00.00	26500.00 M
No.	N	Λk.	Freq		Rea Le		Cor Fac			easur ment		Limi	t	Ove	er		
			MHz	<u>-</u>	dB		d			3uV/r		dBuV	/m	dE	}	Detector	Commen
1			4880.0		43.		0.0)5		13.95		74.0		-30.	05	peak	
2		*	4880.0	000	34.	.59	0.0)5	3	34.64		54.0	0	-19.3	36	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			2 (2 Mbps)		Test Date			2/5/27	
	Test Frequ			0MHz		Polarization	1		zontal	
130.0	Temp dBuV/m		2	4°C		Hum.		61%		
130.0	agna/w									
120										
110 —										
100 _										
90 _										
80										
70										
60										
50		1								
40		*								
30		2 X								
20										
10.0										
1000	.000 3550.0	0 6100.00	8650.00	11200.00	13750.00	16300.00 188	850.00 214	00.00	26500.00 MHz	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4880.000		0.05	45.05	74.00	-28.95	peak		
2	*	4880.000	35.04	0.05	35.09	54.00	-18.91	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo		В		(2 Mbps)			est Date			2/5/27
Te	est Frequ				0MHz		Po	olarizatio	n		tical
100.0	Temp)		24	4°C			Hum.		6′	1%
130.0	dBuV/m										
120											
110											
100											
90											
80											
70											
60											
50		1 X									
40											
30		2 X									
20											
10.0											
	000 3550.0			0.00	11200.00	13750.00				100.00	26500.00 MHz
No.	Mk.	Freq.		ading evel	Correct Factor	Measur ment		Limit	Over		
		MHz	dE	3uV	dB	dBuV/r		dBuV/m	dB	Detector	Comment
1		4960.00	0 46	6.06	0.20	46.26		74.00	-27.74	peak	
2	*	4960.00	0 34	.06	0.20	34.26		54.00	-19.74	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		st Mo			BL		(2 MI					Test D					2/5/27
			uency				0MHz				F	Polariza					zontal
130.0	dBu∖	Temp)		24°C				Hum.						61%		
130.0	aBuv	//M															
120																	
10																	
00																	
90																	
30																	
o																	
io																	
io			1														
10 L			1 X														
0			2 X														
20																	
0.0																	
1000	0.000	3550.0	00 6100).00	8650	0.00	11200	.00	1375	0.00	16	300.00	188	50.00	2140	0.00	26500.00 N
No.	1	Mk.	Freq	•	Rea Le	ding vel	Cor Fac			easur ment	e-	Limi	t	Ove	er		
			MHz	<u>-</u>	dB		d			3uV/r	n	dBuV	/m	dB	,	Detector	Commen
1			4960.0		44.		0.2			14.57		74.0		-29.4	43	peak	
2		*	4960.0	000	34.	.30	0.2	20	3	34.50		54.0		-19.5	50	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

<u> SLL</u>		Report No	.: BTL-FCCP-2-2205T007
	APPENDIX D	OUTPUT POWER	

Project No.: 2205T007 Page 46 of 47 Report Version: R01

Report No.: BTL-FCCP-2-2205T007

Test Mode: BLE 5.2 (1Mbps) Tested Date 2022/5/30
--

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	9.55	0.0090	30.00	1.0000	Pass
2440	9.60	0.0091	30.00	1.0000	Pass
2480	9.66	0.0092	30.00	1.0000	Pass

Test Mode:	BLE5.0 (2Mbps)	Tested Date	2022/5/30
------------	----------------	-------------	-----------

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	9.88	0.0097	30.00	1.0000	Pass
2440	9.96	0.0099	30.00	1.0000	Pass
2480	9.84	0.0096	30.00	1.0000	Pass

End of Test Report