

WIRELESS REPEATER

WITHSOLAROR AC-POWER

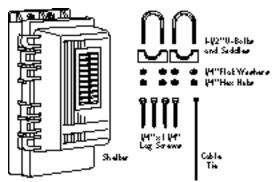
The Wireless Repeater receives data from any DavisTalk[™] compatible transmitter and re-transmits it to any DavisTalk[™] compatible receiver. The repeater extends the transmission range and improves reception between the transmitter and the receiver.

Each repeater has a transmitting and receiving range of between 100' to 1500' (30 to 450 m) depending upon the terrain. The repeater can listen for up to 8 different transmitter signals and can pass those signals on to another repeater or to any number of receivers.

Note: The Wireless Repeater operates on a low power frequency that does not require an FCC license.

The repeater's flexibility allows you to put together your weather system in a number of different ways. The most common setup is to install the repeater in between a transmitter and a receiver to improve reception. Another possibility is to install a *chain* of up to 8 repeaters to carry the transmitter's signal over a longer distance, or around obstacles. And a third option is to establish a *network* of weather stations by linking the chain of repeaters to up to 8 different wireless stations.

This manual describes three different setup options in separate sections based on how many repeaters and transmitters you plan to install.


- The fist section ingler insmittering le Repeater Installation age, discusses the most common and simplest installation—that of one transmitter, one repeater and one or more receivers.
- The second section installation (Multiple Repeaters) discusses daisly aining up to 8 repeaters in succession to increase the range between a single transmitter and one or more receivers.
- And the third sectibustwork Installation (Multiplenitter's) page, discusses setting up a complex network of transmitters, repeaters, and receivers.

These setup instructions apply whether you have a solar-powered or an AC-powered repeater.

COMPONENTS

The Wireless Repeater includes the following components. Please be sure you have everything you need for either the AC-powered or the solar-powered model.

Wireless Repeater Components

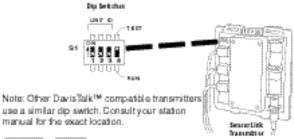
TO O L SA N D MATERIALS

You may need the following tools and materials for either the AC-powered or solar-powered model.

- ♦ Adjustable \\ Adjustable
- ✤ Medium Flat Head Screwdriver
- Medium Phillips Screwdriver
- Compass or Local Area Map
- Pencil or OtherinPted Object

BEFOREBEGINNIN.G.

 Open the shelter door by gently pressing the friction clasp so the catch disengages.

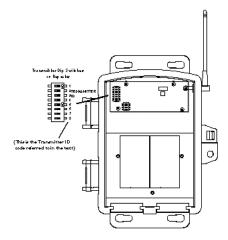

SINGLETRANSMITTERSINGLEREPEATERINSTALLATION

If you have just one DavisTalk[™] transmitter and just one repeater, simply follow the instructions below to install your system. If you have a more complex setup that involves multiple repeaters or multiple transmitters within 1500' (450 m) of each other, see "Advanced Installations" on page 10.

Setting up the Repeater

The repeater is pre-set by the factory to listen for a transmitter whose ID code is also set to the factory default (ID #1). If you *have not reset* your transmitter's ID code from the factory default, then your repeater should pick up your transmitter's signal automatically and you can skip to "Choosing a Location" on page 4.

If you changed the Transmitter ID code to one of the 7 other optional dipswitch settings, you need to set the repeater to listen for that ID code. To do so, first find your current transmitter settings. For stations that do not use dipswitch settings, refer to the station installation manual. For other transmitters, you can find the current transmitter settings by looking at the position of the first three dip-switches.


TRANSMITTERDIP-SWITCHES

Next match the ON/OFF settings to the Transmitter ID code in your transmitter's table. Here's the transmitter ID code table for a typical transmitter.

TRANSMITTER ID C ODE	DIP-SWITCH I	DIP-SWITCH 2	DIP-SWITCH 3	DIP-SWITCH 4
#1 (default)	off	off	off	The position of this dip- switch is not part of the ID code.
#2	off	off	ON	
#3	off	ON	off	
#4	off	ON	ON	
#5	ON	off	off	
#6	ON	off	ON	
#7	ON	ON	off	
#8	ON	ON	ON	

Finally, set your repeater to listen for that transmitter signal by flipping the appropriate dip-switch on your repeater to the ON position. Make sure all other dip-switches are in the OFF position.

CAUTION: Use the larger white numbers (1-8) printed on the green board to indicate which dipswitch belongs to which Transmitter ID code. Smaller numbers printed by default on the switch itself may not agree.

REPEATERDIP-SWITCHESTO SELECTTRANSMITTER

Choosing a Location

The range of the radio transmission depends on several factors. Position the repeater as close to the transmitter and receiver as possible for best results.

Note: Given the maximum ranges below, the repeater may need to be somewhat closer to the receiver than to the transmitter.

Typical maximum ranges between the transmitter and the repeater:

- ◆ Line of Sight: 1500 feet (450 m)
- Through Walls and Ceilings: 700 feet (225 m)
- ◆ Through Trees and Foliage: 700 feet (225 m)

Typical maximum ranges between the repeater and the receiver:

- Line of Sight: 400 feet (120 m)
- ◆ Through Walls and Ceilings: 100 to 200 feet (30 to 60 m)
- ◆ Through Trees and Foliage: 100 to 200 feet (30 to 60 m)

AC-Powered Repeaters

Look for a sheltered location with access to an AC-power outlet. For example, you could mount the repeater in a room or garage.

Solar-Powered Repeaters

Look for a location where you can position the solar panel to receive maximum exposure to the sun's rays as follows:

- The solar panel works best when the surface of the panel receives full sunlight. Mount the panel away from fences, buildings, trees or other obstructions that may cast shadows over the panel.
- The solar panel should be mounted facing south in the Northern Hemisphere and north in the Southern Hemisphere for maximum sun exposure.

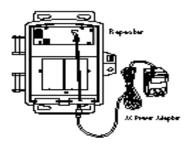
Testing Proposed Locations

Test your proposed transmitter, repeater and receiver locations to ensure successful data transmission as follows:

I. Make sure your transmitter and receiver are in position and are operating in test mode.

To place the transmitter in test mode, flip dip-switch #4 to "TEST" and then power it up. Verify that the receiver is in test mode. Please refer to your receiver manual to learn how to start the test mode.

In test mode, depending on your model, the transmitter either beeps or flashes when it is transmitting and the receiver beeps or flashes whenever it receives data from the transmitter (approximately every 2.5 seconds if the signal is within range).


2. Place the repeater temporarily where you plan to mount it.

3. Apply power to the repeater

* AC-Power Model

Plug the AC-power adapter into the jack marked POWER, and into an AC-power outlet. Watch for the LEDs to light up (as described below).

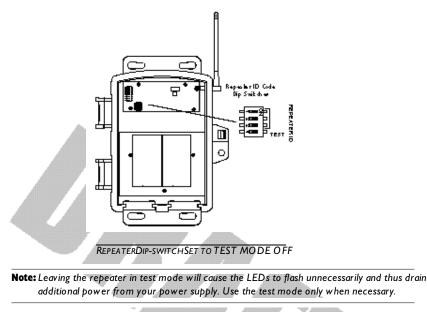
APPLYINGPOWER TO THE AC-POWERED REPEATER

Solar- Wer Model

Plug the power cord from the battery to the jack marked POWER as shown below. Watch for the LEDs to light up, (as described below).

APPLYINGPOWER TO THE SOLARPOWERED REPEATER

Both LEDs flash once when you apply power. The repeater performs a selfdiagnostic test that lasts about 7 seconds and then, both LEDs flash again twice. After that second double-flash, the repeater begins listening for a signal. If it finds one, the lower LED flashes as it receives a signal and then the upper LED flashes as the data is transmitted out again.


If the repeater still cannot find a signal one minute after you apply power, it double-flashes three times and then shuts itself down in order to save power. If this happens, check that your transmitter is transmitting and try repositioning your repeater for better reception. Remove and reapply power to the repeater to make it listen for the signal.

Once the repeater receives and re-transmits reliably, check your console/ receiver's reception. If you're using a Vantage Pro Console/Receiver, enter Setup mode. The first screen in Setup mode will show you what transmitters the console is receiving. For other Davis products, the receiver flashes, beeps, or otherwise indicates it received a data packet approximately every 2.5 seconds in test mode. If there is no indication that data has been received, reposition the repeater for better reception.

Note: To overcome difficult terrain or excessive obstructions, you can add additional repeaters to boost the signal through—or carry it around—various obstacles.

4. When yourfil a location that works, switch all three units out of test mode.

If the transmitter is in test mode, restore to OFF mode to conserve power. If you're using a Vantage Pro Console/Receiver, use Setup mode to temporarily deactivate all transmitter IDs. Similarly, to switch the repeater out of test mode, flip the Repeater ID dip-switch #4 from the TEST position to the off position as shown below.

5. Remove power from the repeater

MOUNTINGHE REPEATER

Once you determine that your chosen locations transmits and receives the signal, continue with the installation by mounting the repeater. Mounting hardware has been included for the most common installations (see figures on pages 8 and 9 for instructions).

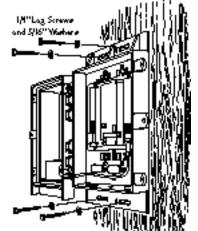
CAUTION: Any metal object can attract a lightning strike, including any outside-mounted repeater. If lightning strikes your unit or strikes somewhere nearby, the unit's internal electronics may suffer anywhere between little to extensive damage. The unit itself has been designed with considerable surge protection, but to safeguard nearby equipment and structures, we recommend following local recommendations on properly *grounding*your installation. For more information, contact your local lightning protection authority and/or refer to the following articles:

- MILHDBK419A Grounding, Bonding, and Shielding for Electronic Equipments and Facilities, 29 Dec 1987.
- National FireoRection Association, 1997: Standard for Installation of Lightning Protection Systems, 1997 ANSI/NFP80, National Firetection Association, QMAcy
- NEC, National Electrical Code, 1996 Edition: National Fire Rection Information, QuincyMA

Mounting the Repeater

Mounting the AC-powered Repeater

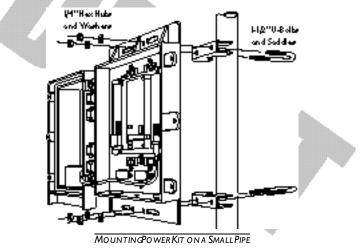
- I. Choose a location with accessowAr
- 2. Mount the shelter against a wall or post, or on a pipe.


Mounting the Solar-powered Repeater

I. Mount the shelter against a wall or post, or on a pipe.

CAUTION: Remember to face the solar panel south in the Northern Hemisphere and north in the Southern Hemisphere for maximum sun exposure.

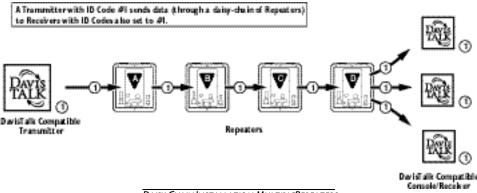
♦ Wall or dist


Attach the shelter to the mounting surface in the desired location using the lag screws and 1/4" flat washers as shown below.

MOUNTINGOLARPOWERED REPEATERON A WALLOR POST

◆ Pipe - 3/4" to I I/4" (19 cmmt) 31

Use the 1-1/2" U-Bolts and saddles, and the 1/4" washers and hex nuts as shown below.



2. Apply powersee step 3 on pagentic) close the shelter door

Advanced nstallations

Daisy-Chain Installation (Multiple Repeaters)

To transmit data up to one and a half miles (two and a half kilometers), or to improve reception in hilly, heavily-wooded or urban areas, you can daisychain up to eight repeaters together. For instructions on daisy-chaining multiple repeaters, see below; for instructions on adding multiple transmitters to the network as well, see page 12.

DAISY-CHAIN INSTALLATION MULTIPLEREPEATERS

To install a chain of more than one repeater, follow the instructions as if for a single repeater installation. Before you apply power to test the system, set Repeater ID codes so that each listens to the repeater before it in succession.

The first repeater (i.e., the repeater closest to the transmitter) needs no adjustment. The second repeater needs to be set to Repeater ID code B; and the third, to C; and so on. In this way, the second repeater (B) only tunes into signals from the first (A), and the third (C) only tunes into signals from the second (B), and so on, thereby improving reception.

Note: The repeater "closest to the transmitter" means the repeater with the best connection to that transmitter (i.e., whether or not it is the shortest distance away may be less important than a clear line of sight).


Setting the Repeater ID Codes on the Repeater

To set each repeater's ID code (except the first), use the table on page 11 to set the Repeater ID dip-switches:

Note: If you have only one repeater, you do NOT need to set any Repeater ID code dip-switches. If you have more than one repeater, use the chart on page 11.

REPEATER ID CODE	DIP-SWITCH I	DIP-SWITCH 2	DIP-SWITCH 3	DIP-SWITCH 4
A (default)	off	off	off	The position of this dip- switch is not part of the ID code.
В	off	off	ON	
С	off	ON	off	
D	off	ON	ON	
Е	ON	off	off	
F	ON	off	ON	
G	ON	ON	off	
Н	ON	ON	ON	

So, for example, the second (B) repeater's dip-switches will be set to OFF, OFF, ON, while the third (C) will be set to OFF, ON, OFF, as shown below.

DIP-SWITCHESON REPEATERSA, B, AND C

Setting the Transmitter ID Codes on the Repeater

Once you have set the Repeater ID codes, determine whether you need to set Transmitter ID codes. If you have only one transmitter and its dip-switches are set to the default ID code (#1), then you do not need to set any transmitter ID codes on the repeater closest to the transmitter. All other repeaters must have all transmitter ID dipswitches turned off.

If the transmitter's dip-switches are set to some code other than the default (#1), then the *closest* repeater to a transmitter is the only repeater that should have its transmitter dip-switch set to that transmitter's ID Code (see "Setting up the Repeater" on page 3 for details). All other repeaters in the chain should have their transmitter dip-switches set to OFF because there is only one transmitter in this chain and its signal is already being picked up.

If you have more than one transmitter, see "Network Installation (Multiple Transmitters)" on page 12. Otherwise, simply continue with the installation where you left off (see "Choosing a Location" on page 4).

Network Installation (Multiple Transmitters)

If you have two or more transmitters in your network, follow the instructions as if for a multiple repeater installation. Before you apply power to test your chosen locations, set unique ID codes for each transmitter and then set the closest repeater to each transmitter to listen to that transmitter.

Note: Each transmitter in your network must have a different ID code so that its signal remains distinct and identifiable throughout the network. See your Wireless Weather Station or the appropriate DavisTalk[™] compatible product manual for instructions on how to set the Transmitter and Receiver ID codes.

There are a number of ways you can configure your network. The only rule is that each transmitter's data should only enter the network at one point, through one repeater. No two repeaters should be set to listen to the same transmitter directly.

Multipleransmitter Network

You can set one repeater to listen to up to eight transmitters directly, and then re-transmit those signals to your consoles. To set the repeater to listen to each transmitter, flip the appropriate dip-switches on the repeater.



In the diagram above, the Repeater/Transmitter ID dip-switches would have #1, #2, #3, and #4 set to ON, and the rest set to OFF.

The Repeater's ID Code dip-switches, on the other hand, would simply be set to default ID Code A (OFF, OFF, OFF) because the repeater in the above diagram does not need to listen to any other repeaters.

* Combo Network - Multiplesinitters AND Multiple Repeaters

A Combo Network can have any combinations of the multiple transmitter network on page 12 and the daisy-chain network on page 10. In the example below, the data all flows in one direction; it enters the network at a point somewhere upstream and exits the network somewhere downstream.

COMBONETWORK MULTIPLETRANSMITTERSAND MULTIPLEREPEATERS

Warning: No matter how closely they are spaced, no two repeaters should be set up to listen to the same transmitter directly—this only generates interference and can cause the network to fail.

To set up a network:

I. Set ID codes for each transmitter and receiver

See your DavisTalkTM compatible transmitter and receiver installation manual for instructions on how to set transmitter and receiver ID Codes.

2. Choose locations for the farthest traitsmittenter and its receiver Set the repeater to listen for that transmitter's signal (see "Setting up the Repeater" on page 3 for details). Make sure the repeater is receiving and

then re-transmitting the signal properly.

- **3.** Add any additional repeaters as **gennesst** a time. Make sure you set each one's Repeater ID code (see "Setting the Repeater ID Codes on the Repeater" on page 10 for details).
- 4. Put all the units in test mode to test the transmission of the data from the transmittethrough each repetitethe receiver

Advanced Installations

- 5. Turn off the "farthest" transmitter and then add the second farthest transmitter (and its receiver) to your network. Check the reception of that second signal at each point. Ensure that your network is functioning properly at every stage so that if, at some point, you add a transmitter, repeater, or receiver that is malfunctioning or is poorly positioned, you will know immediately.
- 6. Add additional transmitter/receiver pairs one at a time, making sure to test only one signal (i.e., one pair) at a time.
- 7. Once each transmitter/receiver pair has been testetil bygitatelf(i.e., the transmitters you tested above) slowly to the network as follows:
 - A. Turn all the repeaters off. Turn off all transmitter ID dip-switches except Transmitter 1 dip-switch.
 - B. Turn on Transmitter 1 and Repeater A only. Verify that Repeater A is retransmitting to Transmitter 1 by observing the LED (as illustrated on page 6)
 - C. *Apply power to repeater B, C, and* Data is transmitted and repeated to the consoles/receivers through repeaters B, C, and D.
 - D. *Turn on Transmitter 2 and flip dip-switch #2 on Repeater A to Dava* is transmitted and repeated to the consoles/receivers through repeaters B, C, and D.
 - E. Turn on Transmitter 3 and flip dip-switch #3 on Repeater B to Data is transmitted and repeated to the consoles/receivers through repeaters B, C, and D.
 - F. *Turn on Transmitter 4 and flip dip-switch #4 on Repeater C to Data* is transmitted and repeated to the consoles/receivers through repeaters C, and D.
 - Note: The steps above tell how to set up and test a network like the network illustrated on page 13. The exact steps vary according to your particular repeater, transmitter and receiver combination.

If a repeater is set to listen for more than one signal, the repeater waits until it has acquired all the signals you have told it to listen for, before it begins repeating. If it fails to acquire one or more of the signals after one minute, the repeater will begin repeating the signals it has found and will check again for the missing signals once every hour.

Note: If the repeater fails to acquire any signals at all, it will time out after one minute. Reposition the repeater, check that its dip-switches are set correctly and that the transmitter/repeater it is listening for is functioning properly, and then power the repeater up again.

Whether the repeater acquires all the signals or not, the LEDs flash three times. For each successful transmission of a signal, the lower LED flash followed by the upper LED. Count the number of distinct pairs of flashes to determine if any signals are missing.

8. Take all the units out of test mode.

Consult your installation manuals to find out how to take the units out of test mode. Leaving any of the units in test mode drains power.

TROUBLESHOOTING

Please check the troubleshooting list below if you experience a problem with your unit. If you still are unable to solve the problem, we encourage you to call Technical Support at (510) 732-7814 for assistance (Mon-Fri, 7:00am – 5:30pm Pacific Time).

Please do not return your unit for repair without prior authorization.

◆ The LEDs do notifi on power up.

Make sure that your power cord connections are secure. If your unit is AC-powered, try plugging the repeater into another outlet and some other (functioning) device into the outlet you are using.

If your unit is solar-powered and the rechargeable battery is over 5 years old, try replacing the battery. (Do not incinerate the used battery, it may burst. Arrange for proper recycling in your locality.)

If your unit is solar-powered and the battery is less than 5 years old, make sure the panel is not being shaded by the sun. Open the shelter and check that the wire connections are secure and that the battery is free from corrosion and excessive deposits on the terminals. Clean the solar panel using a water spray, or a soft cloth and soapy water followed by a clean water rinse. Check the battery's voltage with a voltmeter; the battery must have at least 3.8 V to power the station. (More than 4 V indicates an adequately-charged battery.) Try exposing the panel to ample sunlight for a week, or use a charger designed to recharge a 4 V gel cell battery.

✤ The LEDs do natsli twiceter the self-diagnostic.

Upon power up, if you consistently get a first flash but no double-flash 7 seconds later, something is wrong with the unit's circuitry. Please contact Technical Support for assistance (see above).

The lower LED is not lighting up, but the upper one is.

When the repeater fails to receive a valid data packet, it still sends out a "no data" packet to keep downstream repeaters in sync. Even if no data packet is received, the lower *receive LED*will not light but the upper *transmit LED* will. This is useful in a network situation because it can show where the last good packet was received in a chain of repeaters.

If the lower LED consistently fails to light up, make sure the transmitter (or repeater) that it is listening to is powered up and functioning correctly. You can also try moving the repeater closer to the transmitter (or prior repeater) or for better reception.

SPECIFICATIONS

Transmit frequency: 916.5 MHz ID codes: 8 user-selectable License: Low power (less than 1 mW), no license required Temperature range: -40 to 60 °C Power Input: 4 to 12 VDC output @ 1.5 mA

FCC PARTIS CLASSB REGISTRATIO WARNING

This equipment has been tested and found to comply with the limits for a class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- * Reorient or relocate the receiving antenna.
- + Increase the separation between the equipment and receiver
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- * Consult the dealer or an experienced radio/TV technician for help.

Shielded cables and I/O cords must be used for this equipment to comply with the relevant FCC regulations. Changes or modifications not expressly approved in writing by Davis Instruments may void the user's authority to operate this equipment.

This product complies with the essential protection requirements of the EC EMC Directive 89/336/EC. © 2000 Davis Instruments Corp. All rights reserved.

3465 Diablo Avenue, Hayverd, 08.94545-2778 510-732.9229 «Fax: 510-732.9118 E-mail: inlo@davismel.com « www.davismel.com

Product Numbers: 7624 & 7625

Davis Instruments Part Number: 7395-105 Wireless Repeater with Solar or AC-Power Rev. C Manual (11/17/00)