Customer:	Davis Instruments		
Specification:	FCC 15.249(a)		
Work Order #:	72312	Date:	Fri Aug-06-1999
Test Type:	Maximized Emissions	Time:	13:28:16
Equipment:	Weather Data Telemetry	Sequence#:	3
Manufacturer:	Davis Instruments	Tested By:	Wes Norris
Model:	6230		
S/N:	Prototype		
Equipment Und	<i>der Test</i> (* = EUT):		

Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-0485

Equipment Onder Test (- LUI).		
Function	Manufacturer	Model #	S/N
Weather Data Telemetry*	Davis Instruments	6230	Prototype
Wind Vane and	Davis Instruments	TBD	Prorotype
Anamometer			
Rain Collector	Davis Instruments	TBD	Prototype
AC Adaptor	Davis Instruments	TBD	Prototype
Support Devices:			
Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

The EUT is fully operational, with Wind Vane and Rain Collector connected. The EUT is transmitting in its normal mode of operation, at full power. The carrier is fully modulated, and transmitting for 12.5 milli-seconds each 2.5 seconds. The EUT is receiving its power from the AC Adaptor, which is powered from a 115V/60Hz source. The on time of the transmitter in a 100ms period was measured. This on time divided by the 100ms period is the duty cycle. A 20Log(duty cycle) calculation is then performed and this factor (not to exceed 20dB) is then taken into consideration. This method is specified in CFR 47 Section 15.35(c).

Measurement Data: Reading listed by margin.						Те	est Distance	e: 3 Meters			
			.Amp.	Log31	Bicon	cab3					
#	Freq	Rdng	15.35				Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	916.490M	71.4	-27.3	+0.0	+23.5	+6.8	+0.0	54.4	93.9	-39.5	Vert
			-20.0								
2	916.495M	71.4	-27.3	+0.0	+23.5	+6.8	+0.0	54.4	93.9	-39.5	Vert
	Ave		-20.0								
3	916.490M	60.4	-27.3	+0.0	+23.5	+6.8	+0.0	43.4	93.9	-50.5	Horiz
			-20.0								
4	916.499M	60.4	-27.3	+0.0	+23.5	+6.8	+0.0	43.4	93.9	-50.5	Horiz
	Ave		-20.0								

Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-0485

Customer:	Davis Instruments
Specification:	FCC 15.249(C) / 15.209
Work Order #:	72312
Test Type:	Maximized Emissions
Equipment:	Weather Data Telemetry
Manufacturer:	Davis Instruments
Model:	6230
S/N:	Prototype

Date: Mon Oct-25-1999 Time: 07:41:22 Sequence#: 2 Tested By: Wes Norris

S/N

Function	Manufacturer	Model #	S/N	
Weather Data Telemetry*	Davis Instruments	6230	Prototype	
Wind Vane and	Davis Instruments	TBD	Prorotype	
Anamometer				
Rain Collector	Davis Instruments	TBD	Prototype	
AC Adaptor	Davis Instruments	TBD	Prototype	

Function Manufacturer Model #

Test Conditions / Notes:

The EUT is fully operational, with Wind Vane and Rain Collector connected. The EUT is transmitting continuously, at full power, in CW Mode. The EUT is receiving its power from the AC Adaptor, which is powered from a 115V/60Hz source. The on time of the transmitter in a 100ms period was measured. This on time divided by the 100ms period is the duty cycle. A 20Log(duty cycle) calculation is then performed and this factor (not to exceed 20dB) is then taken into consideration. This method is specified in CFR 47 Section 15.35(c).

Meast	urement Data:	· R	eading li	sted by m	argin.	Test Distance: 3 Meters					
			Horn	Amp_2	1-12.	1-12.					
#	Freq	Rdng	15.35				Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
1	1833.000M	70.9	+26.5	-38.6	+0.3	+3.9	+0.0	63.0	54.0	+9.0	Horiz
	See #8 for av	erage	+0.0								
2	5499.000M	53.5	+34.9	-39.9	+0.4	+7.3	+0.0	56.2	54.0	+2.2	Horiz
	See #19 for a	verage	+0.0								
3	1833.000M	63.6	+26.5	-38.6	+0.3	+3.9	+0.0	55.7	54.0	+1.7	Vert
	See #20 for a	verage	+0.0								
4	6415.500M	50.9	+35.4	-40.3	+0.6	+7.9	+0.0	54.5	54.0	+0.5	Vert
See #21 for average			+0.0								
5	6415.500M	50.8	+35.4	-40.3	+0.6	+7.9	+0.0	54.4	54.0	+0.4	Horiz
	See #22 for a	verage	+0.0								
6	5499.000M	49.5	+34.9	-39.9	+0.4	+7.3	+0.0	52.2	54.0	-1.8	Vert
	See #24 for a	verage	+0.0								
7	3666.000M	67.1	+32.4	-38.9	+0.5	+5.8	+0.0	46.9	54.0	-7.1	Horiz
			-20.0								
8	1833.000M	70.9	+26.5	-38.6	+0.3	+3.9	+0.0	43.0	54.0	-11.0	Horiz
	Ave		-20.0								
9	4582.500M	60.8	+32.3	-39.7	+0.6	+6.6	+0.0	40.6	54.0	-13.4	Horiz
			-20.0								
10	3666.000M	60.3	+32.4	-38.9	+0.5	+5.8	+0.0	40.1	54.0	-14.0	Vert
			-20.0								

11 9165.000M	50.1	+38.5 -20.0	-39.0	+0.6	+9.4	+0.0	39.6	54.0	-14.4	Vert
12 9165.100M	49.2	+38.5 -20.0	-39.0	+0.6	+9.4	+0.0	38.7	54.0	-15.3	Horiz
13 2749.500M	60.4	+29.7 -20.0	-37.6	+0.4	+5.0	+0.0	37.9	54.0	-16.1	Horiz
14 8248.500M	50.1	+37.6 -20.0	-40.2	+0.8	+9.1	+0.0	37.4	54.0	-16.6	Vert
15 7332.000M	51.0	+36.6 -20.0	-39.2	+0.3	+8.3	+0.0	37.0	54.0	-17.0	Horiz
16 8248.500M	49.7	+37.6 -20.0	-40.2	+0.8	+9.1	+0.0	37.0	54.0	-17.1	Horiz
17 4582.500M	57.1	+32.3 -20.0	-39.7	+0.6	+6.6	+0.0	36.9	54.0	-17.1	Vert
18 7332.000M	50.6	+36.6 -20.0	-39.2	+0.3	+8.3	+0.0	36.6	54.0	-17.4	Vert
19 5499.000M Ave	53.5	+34.9 -20.0	-39.9	+0.4	+7.3	+0.0	36.2	54.0	-17.8	Horiz
20 1833.000M Ave	63.6	+26.5 -20.0	-38.6	+0.3	+3.9	+0.0	35.7	54.0	-18.3	Vert
21 6415.500M Ave	50.9	+35.4 -20.0	-40.3	+0.6	+7.9	+0.0	34.5	54.0	-19.5	Vert
22 6415.500M Ave	50.8	+35.4 -20.0	-40.3	+0.6	+7.9	+0.0	34.4	54.0	-19.6	Horiz
23 2749.500M	55.6	+29.7 -20.0	-37.6	+0.4	+5.0	+0.0	33.1	54.0	-20.9	Vert
24 5499.000M Ave	49.5	+34.9 -20.0	-39.9	+0.4	+7.3	+0.0	32.2	54.0	-21.8	Vert