Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-0485

Customer: Davis Instruments
Specification: FCC 15.249(a)

Work Order #: 72312 Date: Fri Aug-06-1999

Test Type: Maximized Emissions Time: 14:38:48

Equipment: Weather Data Telemetry Sequence#: 6

Manufacturer: Davis Instruments Tested By: Wes Norris

Model: 7617 S/N: Prototype

Equipment Under Test (* = EUT):

() +			
Function	Manufacturer	Model #	S/N	
Weather Data Telemetry*	Davis Instruments	7617	Prototype	

Support Devices:

Function	Manufacturer	Model #	S/N
Weather Console	Davis Instruments	7425	WC80921B67
PC Link	Davis Instruments	7862	LC90802A32

Test Conditions / Notes:

The EUT is fully operational, with Wind Vane and Rain Collector connected. The EUT is transmitting continuously, at full power, in CW Mode. The EUT is receiving its power from the AC Adaptor, which is powered from a 115V/60Hz source. The on time of the transmitter in a 100ms period was measured. This on time divided by the 100ms period is the duty cycle. A 20Log(duty cycle) calculation is then performed and this factor (not to exceed 20dB) is then taken into consideration. This method is specified in CFR 47 Section 15.35(c).

Measu	rement Data:	Rea	ding liste	ed by ord	ler taken.	en. Test Distance: 3 Meters					
			AMP	LOG	CABLE	15.35					
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	916.513M	79.1	-27.1	+22.5	+4.8	+0.0	+0.0	79.3	93.9	-14.6	Vert
2	916.510M	71.3	-27.1	+22.5	+4.8	+0.0	+0.0	71.5	93.9	-22.4	Horiz
3	916.522M	79.1	-27.1	+22.5	+4.8	-20.0	+0.0	59.3	93.9	-34.6	Vert
	Ave										
4	916.523M	71.3	-27.1	+22.5	+4.8	-20.0	+0.0	51.5	93.9	-42.4	Horiz
	Ave										

Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Rd., Site A • Hollister, Ca 95023 • (831) 637-0485

Customer: **Davis Instruments**Specification: FCC 15.249(C) / 15.209

Work Order #: 72312 Date: Mon Oct-25-1999

Test Type: Maximized Emissions Time: 07:19:04

Equipment: Weather Data Telemetry Sequence#: 2

Manufacturer: Davis Instruments Tested By: Wes Norris

Model: 7617 S/N: Prototype

Equipment Under Test (* = EUT):

Equipment Citates 1 cot (201).			
Function	Manufacturer	Model #	S/N	
Weather Data Telemetry*	Davis Instruments	7617	Prototype	

Support Devices:

Function	Manufacturer	Model #	S/N
Weather Console	Davis Instruments	7425	WC80921B67
PC Link	Davis Instruments	7862	LC90802A32
AC Adaptor	Ablex	7916	N/A

Test Conditions / Notes:

The EUT is fully operational, receiving weather data from the Weather Console. The EUT is transmitting continuously, at full power, in CW Mode. The EUT is receiving its power from the Weather Console, which is powered from the AC Adaptor, which is powered from a 115V/60Hz source. The on time of the transmitter in a 100ms period was measured. This on time divided by the 100ms period is the duty cycle. A 20Log(duty cycle) calculation is then performed and this factor (not to exceed 20dB) is then taken into consideration. This method is specified in CFR 47 Section 15.35(c).

Measurement Data: Reading listed by margin.					argin.	Test Distance: 3 Meters					
			Horn	Amp_2	1-12.	1-12.					
#	Freq	Rdng	15.35				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	1833.000M	73.9	+26.5	-38.6	+0.3	+3.9	+0.0	66.0	54.0	+12.0	Horiz
	See #7 for av	erage	+0.0								
2	1833.000M	66.8	+26.5	-38.6	+0.3	+3.9	+0.0	58.9	54.0	+4.9	Vert
	See #9 for av	erage	+0.0								
3	5499.000M	51.2	+34.9	-39.9	+0.4	+7.3	+0.0	53.9	54.0	-0.1	Vert
	See #17 for a	verage	+0.0								
4	5499.000M	50.5	+34.9	-39.9	+0.4	+7.3	+0.0	53.2	54.0	-0.8	Horiz
	See #19 for a	verage	+0.0								
5	6415.500M	47.7	+35.4	-40.3	+0.6	+7.9	+0.0	51.3	54.0	-2.7	Vert
	See #21 for a	verage	+0.0								
6	6415.500M	46.0	+35.4	-40.3	+0.6	+7.9	+0.0	49.6	54.0	-4.4	Horiz
	See #22 for a	verage	+0.0								
7	1833.000M	73.9	+26.5	-38.6	+0.3	+3.9	+0.0	46.0	54.0	-8.0	Horiz
	Ave		-20.0								
8	3666.000M	62.5	+32.4	-38.9	+0.5	+5.8	+0.0	42.3	54.0	-11.7	Horiz
			-20.0								
9	1833.000M	66.8	+26.5	-38.6	+0.3	+3.9	+0.0	38.9	54.0	-15.1	Vert
	Ave		-20.0								
10	9165.000M	47.8	+38.5	-39.0	+0.6	+9.4	+0.0	37.3	54.0	-16.7	Vert
			-20.0								

11 4582.500M	57.1	+32.3	-39.7	+0.6	+6.6	+0.0	36.9	54.0	-17.1	Horiz
12 9165.100M	46.5	+38.5	-39.0	+0.6	+9.4	+0.0	36.0	54.0	-18.0	Horiz
		-20.0								
13 4582.500M	55.9	+32.3	-39.7	+0.6	+6.6	+0.0	35.7	54.0	-18.3	Vert
		-20.0								
14 7332.000M	49.0	+36.6	-39.2	+0.3	+8.3	+0.0	35.0	54.0	-19.0	Vert
		-20.0								
15 8248.500M	47.2	+37.6	-40.2	+0.8	+9.1	+0.0	34.5	54.0	-19.5	Horiz
		-20.0								
16 8248.500M	46.8	+37.6	-40.2	+0.8	+9.1	+0.0	34.1	54.0	-19.9	Vert
		-20.0								
17 5499.000M	51.2	+34.9	-39.9	+0.4	+7.3	+0.0	33.9	54.0	-20.1	Vert
Ave		-20.0								
18 7332.000M	47.3	+36.6	-39.2	+0.3	+8.3	+0.0	33.3	54.0	-20.7	Horiz
10 7100 0007		-20.0	20.0	0.4			22.2	7.1. 0	20.0	** .
19 5499.000M	50.5	+34.9	-39.9	+0.4	+7.3	+0.0	33.2	54.0	-20.8	Horiz
Ave	50.0	-20.0	20.0	.0.5	0	. 0. 0	22.1	540	21.0	X7 .
20 3666.000M	52.3	+32.4	-38.9	+0.5	+5.8	+0.0	32.1	54.0	-21.9	Vert
21 (415 500)/	17.7	-20.0	40.2	10.6	.70		21.2	<i>510</i>	22.7	XIt
21 6415.500M	47.7	+35.4	-40.3	+0.6	+7.9	+0.0	31.3	54.0	-22.7	Vert
Ave 22 6415.500M	46.0	-20.0	-40.3	+0.6	+7.9	+ O O	29.6	54.0	24.4	Horiz
Ave	46.0	+35.4	-40.3	+0.0	+1.9	+0.0	29.0	34.0	-24.4	попх
23 2749.500M	52.0	+29.7	-37.6	+0.4	+5.0	+0.0	29.5	54.0	-24.5	Horiz
23 2749.300W	32.0	-20.0	-57.0	⊤∪. 1	±3.0	⊤0.0	49.3	J 4 .0	-4 -1 .J	110112
24 2749.500M	49.9	+29.7	-37.6	+0.4	+5.0	+0.0	27.4	54.0	-26.6	Vert
21 2749.300141	17.7	-20.0	37.0	10.4	13.0	10.0	27.4	3 1.0	20.0	, 011
		20.0								