TESTING
CERT \#803.01, 803.02, 803.05, 803.06

ADDENDUM TO DAVIS INSTRUMENTS TEST REPORT FC09-044
 FOR THE

VANTAGE VUE WEATHER STATION CONSOLE, 06351
FCC PART 15 SUBPART B SECTIONS 15.107 \& 15.109 CLASS B, SUBPART C SECTIONS 15.207 \& 15.247 AND RSS-210 ISSUE 7

TESTING

DATE OF ISSUE: MAY 13, 2009

PREPARED FOR:

Davis Instruments
3465 Diablo Avenue
Hayward, CA 94545
P.O. No.: 67365
W.O. No.: 88538

PREPARED BY:

Mary Ellen Clayton
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Date of test: March 2-11, 2009

Report No.: FC09-044A

This report contains a total of 67 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS
Administrative Information 3
Approvals 3
Summary of Results 4
Conditions During Testing 4
FCC 15.31(m) Number Of Channels 4
FCC 15.33(a) Frequency Ranges Tested 4
EUT Operating Frequency 4
Equipment Under Test (EUT) Description 5
Equipment Under Test 5
Peripheral Devices 5
Measurement Uncertainties 6
Report of Emissions Measurements 6
Testing Parameters 6
FCC 15.31(e) Voltage Variations 8
FCC 15.107 AC Conducted Emissions 16
FCC 15.109 Radiated Emissions 25
FCC 15.207 AC Conducted Emissions 30
FCC Part 15.247(a)/RSS-210 20dB Bandwidth 39
FCC Part 15.247(a)(1) Carrier Frequency Separation 43
FCC Part 15.247(a)(1) Number of Hopping Channels 46
FCC Part 15.247(a)(1) Average Time of Occupancy 49
FCC 15.247(b)(2) RF Power Output 53
FCC 15.247(d) OATS Radiated Spurious Emissions 58
FCC Part 15.247(d) Bandedge 63

ADMINISTRATIVE INFORMATION

DATE OF TEST: March 2-11, 2009
REPRESENTATIVE: Perry Dillon
MANUFACTURER:
Davis Instruments
3465 Diablo Avenue
Hayward, CA 94545

DATE OF RECEIPT: March 2, 2009

TEST LOCATION:

CKC Laboratories, Inc.
1120 Fulton Place
Fremont, CA 94539

TEST METHOD: ANSI C63.4 (2003), RSS-210 Issue 7 and RSS GEN Issue 2

PURPOSE OF TEST:

Original Testing: To perform the testing of the Vantage VUE Weather Station Console, 06351 with the requirements for FCC Part 15 Subpart B Sections 15.107 \& 15.109 Class B, Subpart C Sections $15.207 \& 15.247$ and RSS-210 devices.
Addendum A: To replace an incorrect radiated spurious emissions data sheet and add an explanation of the calculation used for RF power output with no new testing.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

Amrinder Brar, EMC Engineer/Lab Manager

TEST PERSONNEL:

Art Rice, Senior EMC Engineer

Norberto Gamez Jr., Test Technologist

SUMMARY OF RESULTS

Test	Specification/Method	Results
Voltage Variation	FCC 15.31(e)	Pass
Conducted Emissions	FCC 15.107 Class B	Pass
Radiated Emissions	FCC 15.109 Class B	Pass
Conducted Emissions	FCC 15.207	Pass
20dB Bandwidth	FCC 15.247(a) RSS-210	Pass
Carrier Frequency Separation	FCC 15.247(a)(1)	Pass
Number of Hopping Channels	FCC 15.247(a)(1)	Pass
Average Time of Occupancy	FCC 15.247(a)(1)	Pass
RF Output Power	FCC 15.247(b)(2)	Pass
OATS Spurious Emissions	FCC 15.247(d)	Pass
Bandedge	FCC 15.247(d)	Pass
99\% Bandwidth	RSS-210 Issue 7 and RSS GEN Issue 2	Pass
Site File No.	FCC 958979 IC 3082B-1	

CONDITIONS DURING TESTING

Added ferrite at PC USB port and AC adapter for PC (support equipment) to reduce signals proven to come from support equipment, not EUT.

FCC 15.31(m) Number Of Channels

This device was tested on three channels.
FCC 15.33(a) Frequency Ranges Tested
15.107 Conducted Emissions: $150 \mathrm{kHz}-30 \mathrm{MHz}$
15.109 Radiated Emissions: $30 \mathrm{MHz}-5000 \mathrm{MHz}$
15.207 Conducted Emissions: $150 \mathrm{kHz}-30 \mathrm{MHz}$
15.247 Radiated Emissions: $30 \mathrm{kHz}-9500 \mathrm{MHz}$

EUT Operating Frequency

The EUT was operating at $902 \mathrm{MHz}-928 \mathrm{MHz}$.

ThYM Ten

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

EQUIPMENT UNDER TEST

Vantage VUE Weather Station Console

Manuf:	Davis Instruments
Model:	06351
Serial:	Davis 1
FCC ID:	pending

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Data Logger

Manuf: Davis Instruments
Model: 06510SER
Serial: NA

Printer/Scanner
Manuf: HP
Model: C5316A
Serial: MY8C4C207Y

AC Adapter for Laptop
Manuf: IBM
Model: PN 08K8212
Serial: UB39P21R

USB-Serial Adapter

Manuf: Keyspan
Model: USA-19HS
Serial: NA

Laptop PC

Manuf: IBM
Model: Type 2373-BU6
Serial: 99-DCBYA

5V 300mA AC Adapter
Manuf: Davis Instruments
Model: 06625
Serial: NA

MEASUREMENT UNCERTAINTIES

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$. Compliance is deemed to occur provided measurements are below the specified limits.

REPORT OF EMISSIONS MEASUREMENTS

TESTING PARAMETERS

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ} \mathrm{C}$ and $+35^{\circ} \mathrm{C}$.
The relative humidity was between 20% and 75%.
The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	(dB)	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. When conducted emissions testing was performed, a 10 dB external attenuator was used with internal offset correction in the analyzer.

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "QP" or an "Ave" on the appropriate rows of the data sheets. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer/receiver readings recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

FCC 15.31(e) VOLTAGE VARIATIONS

Test Setup Photos

Test Data

Channel Frequency	DC Voltage Applied	Resulting Field Strength dBuV/m
902.361	3.8	99.3
902.341	4.5	99.4
902.356	5.2	99.3
914.897	3.8	101.9
914.902	4.5	101.9
914.902	5.2	101.9
927.437	3.8	101.4
927.436	4.5	101.4
927.428	5.2	101.4

Test Location	CKC Laboratories, Inc. •1120 Fulton Prent	mont, CA 94539 • 510-249-1170
Customer:	Davis Instruments	
Specification:	FCC 15.247(b)(2) / 15.209 / 15.205	
Work Order \#:	88538	Date: 3/5/2009
Test Type:	Voltage Variation on Power	Time: 11:06:51
Equipment:	Vantage VUE Weather Station Console	Sequence\#: 23
Manufacturer:	Davis Instruments	Tested By: Art Rice
Model:	06351	
S/N:	Davis 1	

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Cable	None	$04 / 02 / 2007$	$04 / 02 / 2009$	P05299
Cable	None	$04 / 05 / 2007$	$04 / 05 / 2009$	P05300
Cable	None	$04 / 21 / 2008$	$04 / 21 / 2010$	P05440
Antenna	2630	$12 / 22 / 2008$	$12 / 22 / 2010$	00852
Preamp, HP8447D	$2443 A 03707$	$02 / 09 / 2009$	$02 / 09 / 2011$	00730
SA - Agilent E4446A	US44300438	$07 / 23 / 2008$	$07 / 23 / 2010$	02672
Tenma Power Supply	0201714	$10 / 06 / 2008$	$10 / 06 / 2010$	P05574
DMM, Fluke 85	65380320	$07 / 17 / 2008$	$07 / 17 / 2010$	02361

Equipment Under Test (($=$ EUT):
Function Manufacturer Model \# S/N Vantage VUE Weather Davis Instruments 06351 Davis 1 Station Console*

Support Devices:

Function	Manufacturer	Model \#	S/N
5 V 300mA AC adapter	Davis Instruments	06625	none

Test Conditions / Notes:

The EUT is placed on a 1 inch thick styrofoam block on top of the wooden test table. The EUT antenna is placed in the vertical position.
AC adapter is plugged into the outlet located on the turntable floor.
Transmitting continuously on selected channel, with hopping disabled.
Using FSK modulation at maximum data rate.
The transmitter ERP limit is based on stated 2dBi gain antenna with maximum conducted power of 1 watt or 30 dBm.

RBW $=100 \mathrm{kHz}$, VBW=300kHz.
Radiated emissions 902-928 MHz.

Transducer Legend:

T1=ANT AN00852 25-1000MHz	T2=Cable Calibration ANP05440
T3=Cable Calibration ANP05299	T4=Cable Calibration ANP05300
T5=AMP-AN00730-020909.01-1000	

Measurement Data: Reading listed by margin. Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \text { T1 } \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	T2 dB	T3 dB	T4 dB	Dist	Corr $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Spec Margin $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ dB	Polar Ant
1	914.897M	103.8	+22.7	+1.9	+0.2	+0.7	+0.0	101.9	127.2 -25.3	Vert
			-27.4				56	Mid ch, 3.8V		101
2	914.902M	103.8	+22.7	+1.9	+0.2	+0.7	+0.0	101.9	$127.2-25.3$	Vert
			-27.4				56	Mid ch, 4.5V		101
3	914.902M	103.8	+22.7	+1.9	+0.2	+0.7	+0.0	101.9	$127.2-25.3$	Vert
			-27.4				56	Mid ch, 5.2V		101
4	927.428M	103.1	+23.0	+1.9	+0.2	+0.7	+0.0	101.4	$127.2-25.8$	Vert
			-27.5				56	High ch, 5.2V		101
5	927.436M	103.1	+23.0	+1.9	+0.2	+0.7	+0.0	101.4	$127.2-25.8$	Vert
			-27.5				56	High ch, 4.5V		101
6	927.437M	103.1	+23.0	+1.9	+0.2	+0.7	+0.0	101.4	$127.2-25.8$	Vert
			-27.5				56	High ch, 3.8V		101
7	902.341M	101.3	+22.5	+1.9	+0.3	+0.8	+0.0	99.4	$127.2-27.8$	Vert
			-27.4				56	Low ch, 4.5VDC, nominal		101
8	902.356M	101.2	+22.5	+1.9	+0.3	+0.8	+0.0	99.3	$127.2-27.9$	Vert
			-27.4				56	Low ch, 5.2V		101
9	902.361M	101.2	+22.5	+1.9	+0.3	+0.8	+0.0	99.3	$127.2-27.9$	Vert
			-27.4				56	Low ch, 3.8V		101

FCC 15.31(e) VOLTAGE VARIATIONS - LOW CHANNEL 3.8V

FCC 15.31(e) VOLTAGE VARIATIONS - MID CHANNEL 3.8V

FCC 15.31(e) VOLTAGE VARIATIONS - HIGH CHANNEL 3.8V

FCC 15.31(e) VOLTAGE VARIATIONS - LOW CHANNEL 4.5V

FCC 15.31(e) VOLTAGE VARIATIONS - MID CHANNEL 4.5V

FCC 15.31(e) VOLTAGE VARIATIONS - HIGH CHANNEL 4.5V

FCC 15.31(e) VOLTAGE VARIATIONS - LOW CHANNEL 5.2V

FCC 15.31(e) VOLTAGE VARIATIONS - HIGH CHANNEL 5.2V

FCC 15.31(e) VOLTAGE VARIATIONS - HIGH CHANNEL 5.2V

FCC 15.107 AC CONDUCTED EMISSIONS
Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer:	Davis Instruments		
Specification:	FCC 15.107 B COND [AVE]		Date:
Work Order \#:	$\mathbf{8 8 5 3 8}$	Time:	$5: 53: 44 \mathrm{PM}$
Test Type:	Conducted Emissions	Sequence\#:	26
Equipment:	Vantage VUE Weather Station		
	Console	Tested By: Art Rice	
Manufacturer:	Davis Instruments		$120 \mathrm{~V} \mathrm{60Hz}$
Model:	06351		

S/N: Davis 1

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
S.A., RF Section HP-8568B	2601A02492	$01 / 06 / 2009$	$01 / 06 / 2011$	02663
S.A., Display HP-85662A	2542A12169	$01 / 06 / 2009$	$01 / 06 / 2011$	02662
QP Adapter HP-85650A	$2521 A 00909$	$01 / 07 / 2009$	$01 / 07 / 2011$	00683
TTE High Pass Filter	H4120	$12 / 18 / 2008$	$12 / 18 / 2010$	05258
Cable	None	$05 / 13 / 2008$	$05 / 13 / 2010$	00880
10 dB Pad		$04 / 05 / 2007$	$04 / 05 / 2009$	00081
LISN, Emco 3816/2	$9408-1006$	$04 / 02 / 2007$	$04 / 02 / 2009$	00493

Equipment Under Test (* $=$ EUT):

Function	Manufacturer	Model \#	S/N
Vantage VUE Weather	Davis Instruments	06351	Davis 1
Station Console*			

Support Devices:

Function	Manufacturer	Model \#	S/N
Data Logger	Davis Instruments	06510 SER	n / a
Printer/Scanner	HP	C5316A	MY8C4C207Y
5V 300mA AC adapter	Davis Instruments	06625	none
Laptop PC	Impression	N30W-14	0038760 B 110236 A
AC adapter for laptop	Acbel Polytech	API-7629	061629

Test Conditions / Notes:

The EUT is placed on top of the wooden test table. The EUT antenna is placed in the vertical position.
Data logger is installed on the bottom of the EUT, and is connected to the serial port of the laptop. Hyperterminal program is running on the PC.
Printer/Scanner is connected to the parallel port of the PC.
AC adapter for the laptop is on the floor.
Low channel $=902.355835 \mathrm{MHz}$ (Ch 0)
Mid channel=914.899597 MHz (Ch 25)
High channel=927.443359 MHz (Ch 50)
Receiving on all channels in hop mode.
Conducted emissions $0.15-30 \mathrm{MHz}$.

Transducer Legend:

T1=LISN - AN00493 - Black - ELC "OUT"	T2=AN P00081 10dB Attenuator
T3=FIL-ANP05258-121808 CE HP Filter	T4=Cable Calibration ANP00880

Measurement Data: \quad Reading listed by margin. Test Lead: Black

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T3} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \text { dB } \\ & \hline \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	Margin dB	Polar Ant
1	684.492k	27.5	+0.0	+10.1	+0.0	+0.1	+0.0	37.7	46.0	-8.3	Black
2	2.608 M	26.8	-0.1	+10.0	+0.1	+0.2	+0.0	37.0	46.0	-9.0	Black
3	4.888M	26.5	+0.1	+10.0	+0.1	+0.2	+0.0	36.9	46.0	-9.1	Black
4	3.352M	26.5	-0.1	+10.0	+0.1	+0.2	+0.0	36.7	46.0	-9.3	Black
5	4.003M	26.3	+0.0	+10.1	+0.1	+0.2	+0.0	36.7	46.0	-9.3	Black
6	3.692M	26.2	+0.0	+10.1	+0.1	+0.2	+0.0	36.6	46.0	-9.4	Black
7	2.064 M	26.2	+0.0	+10.0	+0.1	+0.2	+0.0	36.5	46.0	-9.5	Black
8	3.531M	26.1	+0.0	+10.1	+0.1	+0.2	+0.0	36.5	46.0	-9.5	Black
9	4.807 M	26.1	+0.1	+10.0	+0.1	+0.2	+0.0	36.5	46.0	-9.5	Black
10	1.872M	26.2	+0.0	+10.0	+0.1	+0.1	+0.0	36.4	46.0	-9.6	Black
11	2.969 M	26.3	-0.1	+10.0	+0.1	+0.1	+0.0	36.4	46.0	-9.6	Black
12	2.578 M	26.1	-0.1	+10.0	+0.1	+0.2	+0.0	36.3	46.0	-9.7	Black
13	3.565M	25.9	+0.0	+10.1	+0.1	+0.2	+0.0	36.3	46.0	-9.7	Black
14	3.969M	25.9	+0.0	+10.1	+0.1	+0.1	+0.0	36.2	46.0	-9.8	Black
15	4.688 M	25.8	+0.1	+10.0	+0.1	+0.2	+0.0	36.2	46.0	-9.8	Black
16	459.787k	26.6	+0.1	+10.1	+0.0	+0.0	+0.0	36.8	46.7	-9.9	Black
17	3.135M	26.0	-0.1	+10.0	+0.1	+0.1	+0.0	36.1	46.0	-9.9	Black
18	3.293M	26.0	-0.1	+10.0	+0.1	+0.1	+0.0	36.1	46.0	-9.9	Black
19	243.082k	31.9	+0.0	+10.0	+0.1	+0.0	+0.0	42.0	52.0	-10.0	Black
20	2.263M	25.7	+0.0	+10.0	+0.1	+0.2	+0.0	36.0	46.0	-10.0	Black
21	2.753M	25.9	-0.1	+10.0	+0.1	+0.1	+0.0	36.0	46.0	-10.0	Black
22	3.718M	25.6	+0.0	+10.1	+0.1	+0.2	+0.0	36.0	46.0	-10.0	Black
23	3.867M	25.7	+0.0	+10.1	+0.1	+0.1	+0.0	36.0	46.0	-10.0	Black

24	2.821 M	25.8	-0.1	+10.0	+0.1	+0.1	+0.0	35.9	46.0	-10.1	Black
25	4.696M	25.5	+0.1	+10.0	+0.1	+0.2	+0.0	35.9	46.0	-10.1	Black
26	210.358k	32.8	+0.0	+10.0	+0.1	+0.1	+0.0	43.0	53.2	-10.2	Black
27	752.849k	25.7	+0.0	+10.0	+0.1	+0.0	+0.0	35.8	46.0	-10.2	Black
28	2.387M	25.5	+0.0	+10.0	+0.1	+0.2	+0.0	35.8	46.0	-10.2	Black
29	2.463M	25.6	-0.1	+10.0	+0.1	+0.2	+0.0	35.8	46.0	-10.2	Black
30	1.349M	25.4	+0.0	+10.1	+0.1	+0.1	+0.0	35.7	46.0	-10.3	Black
31	1.485M	25.5	+0.0	+10.0	+0.1	+0.1	+0.0	35.7	46.0	-10.3	Black
32	1.957M	25.4	+0.0	+10.0	+0.1	+0.2	+0.0	35.7	46.0	-10.3	Black
33	2.229 M	25.5	+0.0	+10.0	+0.1	+0.1	+0.0	35.7	46.0	-10.3	Black
34	2.293M	25.4	+0.0	+10.0	+0.1	+0.2	+0.0	35.7	46.0	-10.3	Black
35	3.433M	25.5	-0.1	+10.0	+0.1	+0.2	+0.0	35.7	46.0	-10.3	Black
36	641.587k	25.4	+0.0	+10.1	$+0.0$	+0.1	+0.0	35.6	46.0	-10.4	Black
37	2.025M	25.3	+0.0	+10.0	+0.1	+0.2	+0.0	35.6	46.0	-10.4	Black
38	3.033M	25.4	-0.1	+10.0	+0.1	+0.1	+0.0	35.5	46.0	-10.5	Black
39	3.229M	25.4	-0.1	+10.0	+0.1	+0.1	+0.0	35.5	46.0	-10.5	Black
40	592.865k	25.1	+0.1	+10.1	+0.0	+0.1	+0.0	35.4	46.0	-10.6	Black
41	693.218k	25.2	+0.0	+10.1	$+0.0$	+0.1	+0.0	35.4	46.0	-10.6	Black
42	816.842k	25.2	+0.0	+10.0	+0.1	+0.1	+0.0	35.4	46.0	-10.6	Black
43	1.166M	25.1	+0.0	+10.1	+0.1	+0.1	+0.0	35.4	46.0	-10.6	Black
44	377.614k	27.3	+0.1	+10.1	$+0.0$	+0.1	+0.0	37.6	48.3	-10.7	Black
45	1.443M	25.1	+0.0	+10.0	+0.1	+0.1	+0.0	35.3	46.0	-10.7	Black
46	2.242M	25.0	+0.0	+10.0	+0.1	+0.2	+0.0	35.3	46.0	-10.7	Black

47	2.863 M	25.2	-0.1	+10.0	+0.1	+0.1	+0.0	35.3	46.0	-10.7	Black
48	2.991 M	25.2	-0.1	+10.0	+0.1	+0.1	+0.0	35.3	46.0	-10.7	Black
49	2.787 M	25.1	-0.1	+10.0	+0.1	+0.1	+0.0	35.2	46.0	-10.8	Black
50	3.067 M	25.1	-0.1	+10.0	+0.1	+0.1	+0.0	35.2	46.0	-10.8	Black

CKC Laboratories, Inc. Date: 3/5/2009 Time: 5:53:44 PM Davis Instruments WO\#: 88538 FCC 15.107 B COND [AVE] Test Lead: Black 120 V 60 Hz Sequence\#: 26

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer:	Davis Instruments		
Specification:	FCC 15.107 B COND [AVE]		Date:
3/5/2009			
Work Order \#:	$\mathbf{8 8 5 3 8}$	Time:	$5: 58: 45 \mathrm{PM}$
Test Type:	Conducted Emissions	Sequence\#:	27
Equipment:	Vantage VUE Weather Station Console	Tested By: Art Rice	
Manufacturer:	Davis Instruments		120 V 60 Hz
Model:	06351		

S/N: Davis 1
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
S.A., RF Section HP-8568B	2601A02492	$01 / 06 / 2009$	$01 / 06 / 2011$	02663
S.A., Display HP-85662A	2542A12169	$01 / 06 / 2009$	$01 / 06 / 2011$	02662
QP Adapter HP-85650A	2521 A00909	$01 / 07 / 2009$	$01 / 07 / 2011$	00683
TTE High Pass Filter	H4120	$12 / 18 / 2008$	$12 / 18 / 2010$	05258
Cable	None	$05 / 13 / 2008$	$05 / 13 / 2010$	00880
10 dB Pad		$04 / 05 / 2007$	$04 / 05 / 2009$	00081
LISN, Emco 3816/2	$9408-1006$	$04 / 02 / 2007$	$04 / 02 / 2009$	00493

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Vantage VUE Weather	Davis Instruments	06351	Davis 1
Station Console*			

Support Devices:

Function	Manufacturer	Model \#	S/N
Data Logger	Davis Instruments	06510 SER	n/a
Printer/Scanner	HP	C5316A	MY8C4C207Y
$5 V ~ 300 \mathrm{~mA} \mathrm{AC} \mathrm{adapter}$	Davis Instruments	06625	none
Laptop PC	Impression	N30W-14	0038760 B 110236 A
AC adapter for laptop	Acbel Polytech	API-7629	061629

Test Conditions / Notes:

The EUT is placed on top of the wooden test table. The EUT antenna is placed in the vertical position.
Data logger is installed on the bottom of the EUT, and is connected to the serial port of the laptop. Hyperterminal program is running on the PC.
Printer/Scanner is connected to the parallel port of the PC.
AC adapter for the laptop is on the floor.
Low channel=902.355835 MHz (Ch 0)
Mid channel=914.899597 MHz (Ch 25)
High channel=927.443359 MHz (Ch 50)
Receiving on all channels in hop mode.
Conducted emissions $0.15-30 \mathrm{MHz}$.

Transducer Legend:
T1=LISN - AN00493 - White - ELC "OUT" T2=AN P00081 10dB Attenuator
T3=FIL-ANP05258-121808 CE HP Filter T4=Cable Calibration ANP00880

Measurement Data: \quad Reading listed by margin. Test Lead: White

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \\ \hline \end{gathered}$	Polar Ant
1	684.492k	26.9	+0.0	+10.1	+0.0	+0.1	+0.0	37.1	46.0	-8.9	White
2	3.327M	26.7	+0.1	+10.0	+0.1	+0.1	+0.0	37.0	46.0	-9.0	White
3	3.569M	26.5	+0.1	+10.1	+0.1	+0.2	+0.0	37.0	46.0	-9.0	White
4	233.628k	32.9	+0.0	+10.0	+0.1	+0.0	+0.0	43.0	52.3	-9.3	White
5	4.943M	26.4	+0.0	+10.0	+0.1	+0.2	+0.0	36.7	46.0	-9.3	White
6	208.176k	33.8	+0.0	+10.0	+0.1	+0.0	+0.0	43.9	53.3	-9.4	White
7	243.082k	32.2	+0.0	+10.0	+0.1	+0.0	+0.0	42.3	52.0	-9.7	White
8	3.718M	25.8	+0.1	+10.1	+0.1	+0.2	+0.0	36.3	46.0	-9.7	White
9	2.774 M	25.7	+0.1	+10.0	+0.1	+0.1	+0.0	36.0	46.0	-10.0	White
10	4.479M	25.7	+0.0	+10.0	+0.1	+0.2	+0.0	36.0	46.0	-10.0	White
11	3.654M	25.4	+0.1	+10.1	+0.1	+0.2	+0.0	35.9	46.0	-10.1	White
12	4.033M	25.4	+0.1	+10.1	+0.1	+0.2	+0.0	35.9	46.0	-10.1	White
13	3.395M	25.4	+0.1	+10.0	+0.1	+0.2	+0.0	35.8	46.0	-10.2	White
14	3.246M	25.4	+0.1	+10.0	+0.1	+0.1	+0.0	35.7	46.0	-10.3	White
15	3.271M	25.4	+0.1	+10.0	+0.1	+0.1	+0.0	35.7	46.0	-10.3	White
16	2.263M	25.3	+0.0	+10.0	+0.1	+0.2	+0.0	35.6	46.0	-10.4	White
17	2.659M	25.3	+0.1	+10.0	+0.1	+0.1	+0.0	35.6	46.0	-10.4	White
18	1.698M	25.3	+0.0	+10.0	+0.1	+0.1	+0.0	35.5	46.0	-10.5	White
19	3.956M	25.1	+0.1	+10.1	+0.1	+0.1	+0.0	35.5	46.0	-10.5	White
20	2.510M	25.0	+0.1	+10.0	+0.1	+0.2	+0.0	35.4	46.0	-10.6	White
21	2.629M	24.9	+0.1	+10.0	+0.1	+0.2	+0.0	35.3	46.0	-10.7	White
22	2.727 M	25.0	+0.1	+10.0	+0.1	+0.1	+0.0	35.3	46.0	-10.7	White
23	4.224M	24.8	+0.1	+10.1	+0.1	+0.2	+0.0	35.3	46.0	-10.7	White

24	4.462M	24.8	+0.1	+10.1	+0.1	+0.2	+0.0	35.3	46.0	-10.7	White
25	379.795k	27.2	+0.1	+10.1	+0.0	+0.1	+0.0	37.5	48.3	-10.8	White
26	1.149M	24.9	+0.0	+10.1	+0.1	+0.1	+0.0	35.2	46.0	-10.8	White
27	2.093M	24.9	+0.0	+10.0	+0.1	+0.2	+0.0	35.2	46.0	-10.8	White
28	2.748M	24.9	+0.1	+10.0	+0.1	+0.1	+0.0	35.2	46.0	-10.8	White
29	3.752M	24.7	+0.1	+10.1	+0.1	+0.2	+0.0	35.2	46.0	-10.8	White
30	1.221M	24.8	+0.0	+10.1	+0.1	+0.1	+0.0	35.1	46.0	-10.9	White
31	1.336M	24.8	+0.0	+10.1	+0.1	+0.1	+0.0	35.1	46.0	-10.9	White
32	4.352M	24.5	+0.1	+10.1	+0.1	+0.2	+0.0	35.0	46.0	-11.0	White
33	203.813k	32.3	+0.0	+10.0	+0.1	+0.0	+0.0	42.4	53.5	-11.1	White
34	1.783M	24.7	+0.0	+10.0	+0.1	+0.1	+0.0	34.9	46.0	-11.1	White
35	2.191M	24.7	+0.0	+10.0	+0.1	+0.1	+0.0	34.9	46.0	-11.1	White
36	2.051M	24.5	+0.0	+10.0	+0.1	+0.2	+0.0	34.8	46.0	-11.2	White
37	4.973M	24.5	+0.0	+10.0	+0.1	+0.2	+0.0	34.8	46.0	-11.2	White
38	1.957M	24.4	+0.0	+10.0	+0.1	+0.2	+0.0	34.7	46.0	-11.3	White
39	2.693M	24.4	+0.1	+10.0	+0.1	+0.1	+0.0	34.7	46.0	-11.3	White
40	219.811k	30.1	+0.0	+10.0	+0.1	+0.1	+0.0	40.3	52.8	-12.5	White
41	224.902k	29.9	+0.0	+10.0	+0.1	+0.0	+0.0	40.0	52.6	-12.6	White
42	6.058M	26.3	+0.1	+10.1	+0.1	+0.2	+0.0	36.8	50.0	-13.2	White
43	164.544k	31.4	+0.0	+10.0	+0.4	+0.1	+0.0	41.9	55.2	-13.3	White
44	5.517M	25.8	+0.1	+10.1	+0.1	+0.2	+0.0	36.3	50.0	-13.7	White
45	11.734M	25.9	+0.0	+10.0	+0.1	+0.3	+0.0	36.3	50.0	-13.7	White
46	26.142M	25.3	+0.4	+10.0	+0.2	+0.4	+0.0	36.3	50.0	-13.7	White
47	15.887M	25.5	+0.1	+10.1	+0.2	$+0.3$	+0.0	36.2	50.0	-13.8	White

48	12.562 M	25.7	+0.0	+10.0	+0.1	+0.3	+0.0	36.1	50.0	-13.9	White
49	22.671 M	25.0	+0.4	+10.1	+0.2	+0.4	+0.0	36.1	50.0	-13.9	White
50	$25.793 M$	25.1	+0.4	+10.0	+0.2	+0.4	+0.0	36.1	50.0	-13.9	White

CKC Laboratories, Inc. Date: 3/5/2009 Time: 5:58:45 PM Davis Instruments WO\#: 88538 FCC 15.107 B COND [AVE] Test Lead: White 120 V 60 Hz Sequence\#: 27

FCC 15.109 RADIATED EMISSIONS
Test Setup Photos

Test Data Sheets

Test Location:	CKC Laboratories, Inc. •1120 Fulton Place•Fremont, CA 94539•510-249-1170		
Customer:	Davis Instruments		
Specification:	FCC 15.109 Class B Radiated		
Work Order \#:	$\mathbf{8 8 5 3 8}$	Date:	3/5/2009
Test Type:	Maximized Emissions	Time:	19:39:40
Equipment:	Vantage VUE Weather Station Console	Sequence\#: 30	
Manufacturer:	Davis Instruments	Tested By: Art Rice	
Model:	06351		
S/N:	Davis 1		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
E4446A Spectrum Analyzer	US44300408	$03 / 05 / 2007$	$03 / 05 / 2009$	02668
Preamp, HP8447D	$2443 A 03707$	$02 / 09 / 2009$	$02 / 09 / 2011$	00730
Antenna, Bilog	2630	$12 / 22 / 2008$	$12 / 22 / 2010$	00852
Cable	None	$04 / 21 / 2008$	$04 / 21 / 2010$	P05440
Cable	None	$04 / 05 / 2007$	$04 / 05 / 2009$	P05300
Cable	None	$04 / 02 / 2007$	$04 / 02 / 2009$	P05299
SA - Agilent E4446A	US44300438	$07 / 23 / 2008$	$07 / 23 / 2010$	02672
Horn - DRG-118A	1064	$01 / 09 / 2009$	$01 / 09 / 2011$	02061
HF Pre-Amp - 83051A	00323	$02 / 05 / 2008$	$02 / 05 / 2010$	02810
Cable - HF $-32022-2-$ 29094K-24TC	n/a	$02 / 04 / 2008$	$02 / 04 / 2010$	03015
Cable HF FSJ1P-50A-4	HOL-HF-025-06	$05 / 06 / 2008$	$05 / 06 / 2010$	P05138
Cable, HF	$05 / 06 / 2008$	$05 / 06 / 2010$	P04241	

Equipment Under Test (* $=$ EUT):

Function	Manufacturer	Model \#	S/N
Vantage VUE Weather Station Console*	Davis Instruments	06351	Davis 1

Support Devices:

Function	Manufacturer	Model \#	S/N
5V 300mA AC adapter	Davis Instruments	06625	none
Data Logger	Davis Instruments	06510 SER	n/a
USB-Serial adapter	Keyspan	USA-19HS	
Printer/Scanner	HP	C5316A	MY8C4C207Y
Laptop PC	IBM	Type 2373-BU6	99-DCBYA
AC adapter for laptop	IBM	PN 08K8212	...UB39P21R

Test Conditions / Notes:

The EUT is placed on a 1 inch thick styrofoam block on top of the wooden test table. The EUT antenna is placed in the vertical position.
AC adapter is plugged into the outlet located on the turntable floor.
Data logger is installed on the bottom of the EUT, and is connected to the serial port of the USB-Serial Adapter. USB-Serial adapter is connected to the USB port of the laptop. Hyperterminal program is running on the PC.
Printer/Scanner is connected to the parallel port of the PC.
AC adapter for the laptop is on the floor.
Added ferrite at PC USB port and AC adapter for PC (support equipment) to reduce signals proven to come from support equipment, not EUT.

Low channel=902.355835 MHz (Ch 0)
Mid channel=914.899597 MHz (Ch 25)
High channel $=927.443359 \mathrm{MHz}$ (Ch 50)
Receiving on mid channel.
Radiated emissions 30MHz-5GHz
Transducer Legend:

T1=ANT AN00852 25-1000MHz	T2=Cable Calibration ANP05440
T3=Cable Calibration ANP05299	T4=Cable Calibration ANP05300
T5=AMP-AN00730-020909 .01-1000	T6=AMP-AN02810-020508
T7=ANT AN02061 900MHz-18.5GHz	T8=CAB-AN03015-020408
T9=CAB-ANP04241-050608	T10=CAB-ANP05138-050608

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\# Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \text { T1 } \\ & \text { T5 } \\ & \text { T9 } \\ & \text { dB } \end{aligned}$	$\begin{gathered} \hline \mathrm{T} 2 \\ \mathrm{~T} 6 \\ \mathrm{~T} 10 \\ \mathrm{~dB} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{T} 3 \\ & \text { T7 } \\ & \text { dB } \end{aligned}$	T4 T8 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
$\begin{aligned} & 1{ }^{30.313 M} \\ & \text { QP } \end{aligned}$	45.0	$\begin{array}{r} \hline+18.9 \\ -27.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 157 \end{aligned}$	37.0	40.0	-3.0	$\begin{gathered} \hline \text { Vert } \\ 101 \end{gathered}$
$\wedge 30.363 \mathrm{M}$	50.2	$\begin{array}{r} \hline+18.8 \\ -27.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 157 \end{aligned}$	42.1	40.0	+2.1	$\begin{gathered} \hline \text { Vert } \\ 101 \end{gathered}$
$\begin{aligned} & 388.801 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	56.9	$\begin{gathered} +5.8 \\ -27.3 \\ +0.0 \end{gathered}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 113 \end{aligned}$	36.2	40.0	-3.8	$\begin{gathered} \hline \text { Vert } \\ 103 \end{gathered}$
$\wedge 58.724 \mathrm{M}$	61.6	$\begin{array}{r} +5.9 \\ -27.3 \\ +0.0 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 113 \end{aligned}$	41.0	40.0	+1.0	$\begin{gathered} \hline \text { Vert } \\ 103 \end{gathered}$
$\wedge 58.752 \mathrm{M}$	56.7	$\begin{array}{r} \hline+5.8 \\ -27.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 300 \end{aligned}$	36.0	40.0	-4.0	$\begin{gathered} \hline \text { Vert } \\ 103 \end{gathered}$
$\begin{aligned} & 637.998 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	47.8	$\begin{array}{r} \hline+14.9 \\ -27.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 208 \end{aligned}$	35.9	40.0	-4.1	$\begin{gathered} \hline \text { Vert } \\ 103 \end{gathered}$
$\wedge 38.016 \mathrm{M}$	50.9	$\begin{array}{r} \hline+14.9 \\ -27.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 208 \end{aligned}$	39.0	40.0	-1.0	$\begin{gathered} \hline \text { Vert } \\ 103 \end{gathered}$
$\begin{aligned} & 8 \underset{\text { QP }}{ } \begin{array}{l} 61.526 \mathrm{M} \\ \hline \end{array} \\ & \hline \end{aligned}$	56.8	$\begin{array}{r} \hline+5.6 \\ -27.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 111 \end{aligned}$	35.8	40.0	-4.2	$\begin{gathered} \hline \text { Vert } \\ 103 \end{gathered}$
$\wedge 61.521 \mathrm{M}$	61.1	$\begin{array}{r} +5.6 \\ -27.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 111 \end{aligned}$	40.1	40.0	+0.1	$\begin{gathered} \hline \text { Vert } \\ 103 \end{gathered}$
$\begin{aligned} & 10 \quad 46.321 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	51.3	$\begin{array}{r} \hline+10.4 \\ -27.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 98 \end{aligned}$	35.0	40.0	-5.0	$\begin{gathered} \hline \text { Vert } \\ 103 \end{gathered}$
$\wedge 46.254 \mathrm{M}$	55.4	$\begin{array}{r} \hline+10.4 \\ -27.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 98 \end{aligned}$	39.1	40.0	-0.9	$\begin{array}{r} \hline \text { Vert } \\ 103 \end{array}$

$12{ }^{\text {PP }}$ 729.013M		44.0	+20.7	+1.7	+0.3	+0.7	${ }^{+0.0}$	40.3	46.0	-5.7	Vert	
			-27.1	+0.0	+0.0	+0.0	358				121	
\wedge	728.988M	44.8	+20.7	+1.7	+0.3	+0.7	+0.0	41.1	46.0	-4.9	$\begin{array}{r} \hline \text { Vert } \\ 121 \end{array}$	
			-27.1	+0.0	+0.0	+0.0	358					
			+0.0	+0.0								
14	4782.887M	36.5	+0.0	+0.0	+0.0	+0.0	$+0.0$	48.2	54.0	-5.8	$\begin{gathered} \hline \text { Horiz } \\ 101 \end{gathered}$	
			+0.0	-26.6	+32.9	+0.7	-2		Noise floor			
			+1.1	+3.6								
15	4746.618M	35.9	+0.0	+0.0	+0.0	+0.0	+0.0	47.6	54.0	-6.4	$\begin{gathered} \hline \text { Horiz } \\ 101 \end{gathered}$	
			+0.0	-26.6	+32.9	+0.7			Noise floor			
			+1.1	+3.6								
16	928.508M	41.2	+23.0	+1.9	+0.2	+0.7	+0.0	39.5	46.0	-6.5	Vert122	
			-27.5	+0.0	+0.0	+0.0	150					
			+0.0	+0.0								
17 4764.283M		35.7	+0.0	+0.0	+0.0	+0.0	+0.0	47.4	54.0	-6.6	$\begin{gathered} \hline \text { Horiz } \\ 101 \end{gathered}$	
		+0.0	-26.6	+32.9	+0.7	-2		Noise floor				
		+1.1	+3.6									
18	4775.492M		35.3	+0.0	+0.0	+0.0	+0.0	+0.0	47.0	54.0 Noise floor	-7.0	$\begin{gathered} \hline \text { Vert } \\ 101 \end{gathered}$
				+0.0	-26.6	+32.9	+0.7					
		+1.1		+3.6								
19	4782.258M	35.2	+0.0	+0.0	+0.0	$+0.0$	+0.0	46.9	54.0 Noise floor	-7.1	$\begin{array}{r} \hline \text { Vert } \\ 101 \end{array}$	
			+0.0	-26.6	+32.9	+0.7						
			+1.1	+3.6								
20	4927.850M	33.9	+0.0	+0.0	+0.0	+0.0	+0.0	46.4	54.0 Noise floor	-7.6	$\begin{array}{r} \hline \text { Vert } \\ 101 \end{array}$	
			+0.0	-26.3	+33.2	+0.7	-2					
			+1.2	+3.7								
21	4921.101M	33.9	+0.0	+0.0	+0.0	$+0.0$	+0.0	46.4	54.0 Noise floor	-7.6	$\begin{array}{r} \hline \text { Vert } \\ 101 \end{array}$	
			+0.0	-26.3	+33.2	+0.7	-2					
			+1.2	+3.7								
22	931.990M	39.9	+23.0	+1.9	+0.2	+0.7	${ }^{+0.0}$	38.2	46.0	-7.8	Horiz133	
			-27.5	+0.0	+0.0	+0.0	101					
			+0.0	+0.0								
23	4766.933M	34.4	+0.0	+0.0	+0.0	+0.0	${ }^{+0.0}$	46.1	54.0 Noise floor	-7.9	$\begin{gathered} \hline \text { Horiz } \\ 101 \end{gathered}$	
			+0.0	-26.6	+32.9	+0.7						
			+1.1	+3.6								
24 4762.031M		34.2	+0.0	+0.0	+0.0	+0.0	+0.0	45.9	54.0 Noise floor	-8.1	$\begin{gathered} \hline \text { Horiz } \\ 101 \end{gathered}$	
		+0.0	-26.6	+32.9	+0.7	-2						
		+1.1	+3.6									
25	4764.895M		33.7	+0.0	+0.0	+0.0	+0.0	+0.0	45.4	54.0 Noise floor	-8.6	$\begin{array}{r} \hline \text { Vert } \\ 101 \end{array}$
				+0.0	-26.6	+32.9	+0.7					
		+1.1		+3.6								
$\begin{gathered} 26 \text { 114.009M } \\ \text { QP } \end{gathered}$		49.5	+11.1	+0.6	+0.1	+0.3	+0.0	34.4	43.5	-9.1	$\begin{array}{r} \hline \text { Vert } \\ 101 \end{array}$	
		-27.2	+0.0	+0.0	+0.0	301						
		+0.0	+0.0									
\wedge	113.995M		53.3	+11.0	+0.6	+0.1	+0.3	+0.0	38.1	43.5	-5.4	$\begin{array}{r} \hline \text { Vert } \\ 101 \end{array}$
				-27.2	+0.0	+0.0	+0.0	301				
		+0.0		+0.0								

$28 \mathrm{QP}^{88.085 \mathrm{M}}$		52.5	+8.3	+0.6	+0.0	+0.2	+0.0	34.3	43.5	-9.2	$\begin{gathered} \hline \text { Vert } \\ 103 \end{gathered}$	
			-27.3	+0.0	+0.0	+0.0	310					
			+0.0	+0.0								
\wedge	88.081M	56.1	+8.3	+0.6	+0.0	+0.2	+0.0	37.9	43.5	-5.6	$\begin{gathered} \hline \text { Vert } \\ 103 \end{gathered}$	
			-27.3	+0.0	+0.0	+0.0	310					
			+0.0	+0.0								
30	$54.400 \mathrm{M}$ QP	48.7	+7.1	+0.4	+0.0	+0.2	+0.0	29.1	40.0	-10.9	$\begin{gathered} \hline \text { Vert } \\ 101 \end{gathered}$	
			-27.3	+0.0	+0.0	+0.0	131					
			+0.0	+0.0								
\wedge	54.313M	55.0	+7.1	+0.4	+0.0	+0.2	+0.0	35.4	40.0	-4.6	$\begin{gathered} \hline \text { Vert } \\ 101 \end{gathered}$	
			-27.3	+0.0	$+0.0$	+0.0	131					
			+0.0	+0.0								
$\begin{gathered} 32664.303 \mathrm{M} \\ \mathrm{QP} \end{gathered}$		29.9	+20.0	+1.6	+0.2	+0.7	+0.0	25.4	46.0	-20.6	$\begin{array}{r} \hline \text { Vert } \\ 116 \end{array}$	
		-27.0	+0.0	+0.0	+0.0	171						
		+0.0	+0.0									
\wedge	664.271M		45.5	+20.0	+1.6	+0.2	+0.7	+0.0	41.0	46.0	-5.0	$\begin{array}{r} \hline \text { Vert } \\ 116 \end{array}$
				-27.0	+0.0	+0.0	+0.0	171				
		+0.0		+0.0								
$\begin{aligned} & 34 \text { 1194.713M } \\ & \text { Ave } \end{aligned}$		26.2	+0.0	+0.0	+0.0	+0.0	+0.0	25.1	54.0	-28.9	$\begin{array}{r} \hline \text { Vert } \\ 101 \end{array}$	
		+0.0	-27.7	+24.1	+0.3	179						
		+0.5	+1.7									
\wedge	1194.741M		55.8	+0.0	+0.0	+0.0	+0.0	+0.0	54.7	54.0	+0.7	$\begin{gathered} \hline \text { Vert } \\ 101 \end{gathered}$
				+0.0	-27.7	+24.1	+0.3	179				
		+0.5		+1.7								

FCC 15.207 AC CONDUCTED EMISSIONS
Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer:	Davis Instruments		
Specification:	FCC 15.207 COND [AVE]		Date:
Work Order \#:	88538	Time:	$08: 57: 32$
Test Type:	Conducted Emissions	Sequence\#:	38
Equipment:	Vantage VUE Weather Station Console		
Manufacturer:	Davis Instruments	Tested By:	N. Gamez
Model:	06351		120 V 60 Hz
S/N.	Davis 1		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
S.A., RF Section HP-8568B	2601A02492	$01 / 06 / 2009$	$01 / 06 / 2011$	02663
S.A., Display HP-85662A	2542A12169	$01 / 06 / 2009$	$01 / 06 / 2011$	02662
QP Adapter HP-85650A	$2521 A 00909$	$01 / 07 / 2009$	$01 / 07 / 2011$	00683
TTE High Pass Filter	H4120	$12 / 18 / 2008$	$12 / 18 / 2010$	05258
Cable	None	$05 / 13 / 2008$	$05 / 13 / 2010$	00880
10 dB Pad		$04 / 05 / 2007$	$04 / 05 / 2009$	00081
LISN, Emco 3816/2	$9408-1006$	$04 / 02 / 2007$	$04 / 02 / 2009$	00493

Equipment Under Test (* $=$ EUT):

Function	Manufacturer	Model \#	S/N
Vantage VUE Weather	Davis Instruments	06351	Davis 1
Station Console*			

Support Devices:

Function	Manufacturer	Model \#	S/N
Data Logger	Davis Instruments	06510 SER	n/a
Printer/Scanner	HP	C5316A	MY8C4C207Y
5V 300mA AC adapter	Davis Instruments	06625	none
Laptop PC	Impression	N30W-14	0038760B110236A
AC adapter for laptop	Acbel Polytech	API-7629	061629

Test Conditions / Notes:

The EUT is placed on top of the wooden test table. The EUT antenna is placed in the vertical position.
Data logger is installed on the bottom of the EUT, and is connected to the serial port of the laptop. Hyperterminal program is running on the PC.
Printer/Scanner is connected to the parallel port of the PC.
AC adapter for the laptop is on the floor.
Low channel $=902.355835 \mathrm{MHz}$ (Ch 0)
Mid channel=914.899597 MHz (Ch 25)
High channel=927.443359 MHz (Ch 50)
Transmitting continuously with modulation on worst case channel.
Conducted emissions $0.15-30 \mathrm{MHz}$.

Transducer Legend:

T1=LISN - AN00493 - Black - ELC "OUT"	T2=AN P00081 10dB Attenuator
T3=FIL-ANP05258-121808 CE HP Filter	T4=Cable Calibration ANP00880

Measurement Data: \quad Reading listed by margin. Test Lead: Black

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	Margin dB	$\begin{gathered} \hline \text { Polar } \\ \text { Ant } \end{gathered}$
1	872.110k	26.7	+0.0	+10.0	+0.1	+0.2	+0.0	37.0	46.0	-9.0	Black
2	817.570k	26.4	+0.0	+10.0	+0.1	+0.1	+0.0	36.6	46.0	-9.4	Black
3	464.878k	26.9	+0.1	+10.1	+0.0	+0.0	+0.0	37.1	46.6	-9.5	Black
4	4.586M	26.0	+0.1	+10.0	+0.1	+0.2	+0.0	36.4	46.0	-9.6	Black
5	3.573M	25.9	+0.0	+10.1	+0.1	+0.2	+0.0	36.3	46.0	-9.7	Black
6	4.224M	25.9	+0.0	+10.1	+0.1	+0.2	+0.0	36.3	46.0	-9.7	Black
7	541.234 k	26.0	+0.0	+10.1	+0.0	+0.1	+0.0	36.2	46.0	-9.8	Black
8	1.966M	25.8	+0.0	+10.0	+0.1	+0.2	+0.0	36.1	46.0	-9.9	Black
9	242.354 k	31.9	+0.0	+10.0	+0.1	+0.0	+0.0	42.0	52.0	-10.0	Black
10	3.731M	25.6	+0.0	+10.1	+0.1	+0.2	+0.0	36.0	46.0	-10.0	Black
11	2.502M	25.7	-0.1	+10.0	+0.1	+0.2	+0.0	35.9	46.0	-10.1	Black
12	3.646M	25.5	+0.0	+10.1	+0.1	+0.2	+0.0	35.9	46.0	-10.1	Black
13	2.655M	25.5	-0.1	+10.0	+0.1	+0.2	+0.0	35.7	46.0	-10.3	Black
14	2.115M	25.4	+0.0	+10.0	+0.1	+0.1	+0.0	35.6	46.0	-10.4	Black
15	2.013M	25.2	+0.0	+10.0	+0.1	+0.2	+0.0	35.5	46.0	-10.5	Black
16	4.420 M	25.1	+0.0	+10.1	+0.1	+0.2	+0.0	35.5	46.0	-10.5	Black
17	2.391M	25.1	+0.0	+10.0	+0.1	+0.2	+0.0	35.4	46.0	-10.6	Black
18	2.344 M	25.0	+0.0	+10.0	+0.1	+0.2	+0.0	35.3	46.0	-10.7	Black
19	4.756M	24.9	+0.1	+10.0	+0.1	+0.2	+0.0	35.3	46.0	-10.7	Black
20	4.811M	24.9	+0.1	+10.0	+0.1	+0.2	+0.0	35.3	46.0	-10.7	Black
21	4.964M	24.9	+0.1	+10.0	+0.1	+0.2	+0.0	35.3	46.0	-10.7	Black
22	378.341 k	27.2	+0.1	+10.1	+0.0	+0.1	+0.0	37.5	48.3	-10.8	Black
23	648.132k	25.0	+0.0	+10.1	+0.0	+0.1	+0.0	35.2	46.0	-10.8	Black

24	656.131k	25.0	+0.0	+10.1	+0.0	+0.1	+0.0	35.2	46.0	-10.8	Black
25	2.195M	25.0	+0.0	+10.0	+0.1	+0.1	+0.0	35.2	46.0	-10.8	Black
26	713.580k	25.0	+0.0	+10.1	+0.0	+0.0	+0.0	35.1	46.0	-10.9	Black
27	2.765M	24.9	-0.1	+10.0	+0.1	+0.1	+0.0	35.0	46.0	-11.0	Black
28	213.994k	31.7	+0.0	+10.0	+0.1	+0.1	+0.0	41.9	53.0	-11.1	Black
29	672.857 k	24.7	+0.0	+10.1	+0.0	+0.1	+0.0	34.9	46.0	-11.1	Black
30	806.662k	24.7	+0.0	+10.0	+0.1	+0.1	+0.0	34.9	46.0	-11.1	Black
31	2.527M	24.5	-0.1	+10.0	+0.1	+0.2	+0.0	34.7	46.0	-11.3	Black
32	11.914M	27.6	+0.1	+10.0	+0.1	+0.3	+0.0	38.1	50.0	-11.9	Black
33	427.063k	25.1	+0.1	+10.1	$+0.0$	+0.0	+0.0	35.3	47.3	-12.0	Black
34	351.434k	26.2	+0.0	+10.1	+0.1	+0.0	+0.0	36.4	48.9	-12.5	Black
35	6.409M	26.7	+0.1	+10.1	+0.1	+0.2	+0.0	37.2	50.0	-12.8	Black
36	11.301M	26.6	+0.0	+10.0	+0.1	+0.3	+0.0	37.0	50.0	-13.0	Black
37	28.493M	26.2	+0.1	+10.0	$+0.2$	+0.4	+0.0	36.9	50.0	-13.1	Black
38	12.400M	26.3	+0.1	+10.0	+0.1	+0.3	+0.0	36.8	50.0	-13.2	Black
39	683.000k ve	22.6	+0.0	+10.1	$+0.0$	+0.1	+0.0	32.7	46.0	-13.3	Black
\wedge	683.000k	31.1	+0.0	+10.1	+0.0	+0.1	+0.0	41.3	46.0	-4.7	Black
41	11.508M	26.2	+0.1	+10.0	+0.1	+0.3	+0.0	36.7	50.0	-13.3	Black
42	199.450k	30.1	+0.0	+10.0	+0.1	+0.0	+0.0	40.2	53.6	-13.4	Black
43	366.706k	25.0	+0.0	+10.1	+0.1	+0.0	+0.0	35.2	48.6	-13.4	Black
44	5.797M	26.1	+0.1	+10.1	+0.1	+0.2	+0.0	36.6	50.0	-13.4	Black
45	12.112M	25.9	+0.1	+10.0	+0.1	+0.3	+0.0	36.4	50.0	-13.6	Black
46	24.991M	25.4	+0.2	+10.0	+0.2	+0.5	+0.0	36.3	50.0	-13.7	Black
47	25.628M	25.5	+0.2	+10.0	+0.2	+0.4	+0.0	36.3	50.0	-13.7	Black
48	10.103M	25.8	+0.0	+10.1	+0.1	+0.2	+0.0	36.2	50.0	-13.8	Black

49	12.725 M	25.8	+0.0	+10.0	+0.1	+0.3	+0.0	36.2	50.0	-13.8	Black
50	13.463 M	25.6	+0.0	+10.1	+0.2	+0.3	+0.0	36.2	50.0	-13.8	Black
51	27.246 M	25.4	+0.2	+10.0	+0.2	+0.4	+0.0	36.2	50.0	-13.8	Black
52 QP	253.000 k	+0.0	+10.1	+0.0	+0.1	+0.0	36.0	56.0	-20.0	Black	

CKC Laboratories, Inc. Date: 3/11/2009 Time: 08:57:32 Davis Instruments WO\#: 88538 FCC 15.207 COND [AVE] Test Lead: Black 120V 60Hz Sequence\#: 38
Black-120V

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer:	Davis Instruments		
Specification:	FCC 15.207 COND [AVE]		
Work Order \#:	88538	Date:	3/11/2009
Test Type:	Conducted Emissions	Time:	8:44:06 AM
Equipment:	Vantage VUE Weather Station Console	Sequence\#:	37
Manufacturer:	Davis Instruments	Tested By:	N. Gamez
Model:	06351		120 V 60 Hz

S/N: Davis 1
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
S.A., RF Section HP-8568B	2601A02492	$01 / 06 / 2009$	$01 / 06 / 2011$	02663
S.A., Display HP-85662A	2542 A12169	$01 / 06 / 2009$	$01 / 06 / 2011$	02662
QP Adapter HP-85650A	2521 A00909	$01 / 07 / 2009$	$01 / 07 / 2011$	00683
TTE High Pass Filter	H4120	$12 / 18 / 2008$	$12 / 18 / 2010$	05258
Cable	None	$05 / 13 / 2008$	$05 / 13 / 2010$	00880
10 dB Pad		$04 / 05 / 2007$	$04 / 05 / 2009$	00081
LISN, Emco 3816/2	$9408-1006$	$04 / 02 / 2007$	$04 / 02 / 2009$	00493

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Vantage VUE Weather	Davis Instruments	06351	Davis 1
Station Console*			

Support Devices:

Function	Manufacturer	Model \#	S/N
Data Logger	Davis Instruments	06510 SER	n/a
Printer/Scanner	HP	C5316A	MY8C4C207Y
$5 V ~ 300 \mathrm{~mA} \mathrm{AC} \mathrm{adapter}$	Davis Instruments	06625	none
Laptop PC	Impression	N30W-14	0038760 B 110236 A
AC adapter for laptop	Acbel Polytech	API-7629	061629

Test Conditions / Notes:

The EUT is placed on top of the wooden test table. The EUT antenna is placed in the vertical position.
Data logger is installed on the bottom of the EUT, and is connected to the serial port of the laptop. Hyperterminal program is running on the PC.
Printer/Scanner is connected to the parallel port of the PC.
AC adapter for the laptop is on the floor.
Low channel=902.355835 MHz (Ch 0)
Mid channel= 914.899597 MHz (Ch 25)
High channel=927.443359 MHz (Ch 50)
Transmitting continuously with modulation on worst case channel.
Conducted emissions $0.15-30 \mathrm{MHz}$.

Transducer Legend:
T1=LISN - AN00493 - White - ELC "OUT" T2=AN P00081 10dB Attenuator
T3=FIL-ANP05258-121808 CE HP Filter T4=Cable Calibration ANP00880

Measurement Data: \quad Reading listed by margin. Test Lead: White

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	685.946k	30.6	+0.0	+10.1	+0.0	+0.1	+0.0	40.8	46.0	-5.2	White
2	213.994k	34.6	+0.0	+10.0	+0.1	+0.1	+0.0	44.8	53.0	-8.2	White
3	870.655k	27.4	+0.0	+10.0	+0.1	+0.2	+0.0	37.7	46.0	-8.3	White
4	3.305M	26.6	+0.1	+10.0	+0.1	+0.1	+0.0	36.9	46.0	-9.1	White
5	2.991M	26.5	+0.1	+10.0	+0.1	+0.1	+0.0	36.8	46.0	-9.2	White
6	819.751k	26.3	+0.0	+10.0	+0.1	+0.1	+0.0	36.5	46.0	-9.5	White
7	235.810k	32.5	+0.0	+10.0	+0.1	+0.0	+0.0	42.6	52.2	-9.6	White
8	224.902k	32.5	+0.0	+10.0	+0.1	+0.0	+0.0	42.6	52.6	-10.0	White
9	452.515k	26.7	+0.0	+10.1	+0.0	+0.0	+0.0	36.8	46.8	-10.0	White
10	3.977 M	25.6	+0.1	+10.1	+0.1	+0.1	+0.0	36.0	46.0	-10.0	White
11	4.279M	25.5	+0.1	+10.1	+0.1	+0.2	+0.0	36.0	46.0	-10.0	White
12	4.305M	25.5	+0.1	+10.1	+0.1	+0.2	+0.0	36.0	46.0	-10.0	White
13	2.855 M	25.6	+0.1	+10.0	+0.1	+0.1	+0.0	35.9	46.0	-10.1	White
14	3.897M	25.5	+0.1	+10.1	+0.1	+0.1	+0.0	35.9	46.0	-10.1	White
15	241.627k	31.6	+0.0	+10.0	+0.1	+0.0	+0.0	41.7	52.0	-10.3	White
16	1.855M	25.3	+0.0	+10.0	+0.1	+0.1	+0.0	35.5	46.0	-10.5	White
17	229.992k	31.8	+0.0	+10.0	+0.1	+0.0	+0.0	41.9	52.5	-10.6	White
18	237.264k	31.5	+0.0	+10.0	+0.1	+0.0	+0.0	41.6	52.2	-10.6	White
19	2.038 M	25.1	+0.0	+10.0	+0.1	+0.2	+0.0	35.4	46.0	-10.6	White
20	2.480M	25.0	+0.1	+10.0	+0.1	+0.2	+0.0	35.4	46.0	-10.6	White
21	2.523 M	25.0	+0.1	+10.0	+0.1	+0.2	+0.0	35.4	46.0	-10.6	White
22	1.545 M	25.1	+0.0	+10.0	+0.1	+0.1	+0.0	35.3	46.0	-10.7	White
23	2.051 M	25.0	+0.0	+10.0	+0.1	+0.2	+0.0	35.3	46.0	-10.7	White

24	2.438M	25.0	+0.0	+10.0	+0.1	+0.2	+0.0	35.3	46.0	-10.7	White
25	2.591M	24.9	+0.1	+10.0	+0.1	+0.2	+0.0	35.3	46.0	-10.7	White
26	1.353M	24.8	+0.0	+10.1	+0.1	+0.1	+0.0	35.1	46.0	-10.9	White
27	877.000k	24.8	+0.0	+10.0	+0.1	+0.1	+0.0	35.0	46.0	-11.0	White
28	1.247M	24.7	+0.0	+10.1	+0.1	+0.1	+0.0	35.0	46.0	-11.0	White
29	940.795k	24.6	+0.0	+10.0	+0.1	+0.1	+0.0	34.8	46.0	-11.2	White
30	228.538k	30.5	+0.0	+10.0	+0.1	+0.0	+0.0	40.6	52.5	-11.9	White
31	192.178k	31.3	+0.0	+10.0	+0.2	+0.0	+0.0	41.5	53.9	-12.4	White
32	12.580M	27.0	+0.0	+10.0	+0.1	+0.3	+0.0	37.4	50.0	-12.6	White
33	150.000k	29.7	+0.0	+10.0	+3.4	+0.0	+0.0	43.1	56.0	-12.9	White
34	6.094M	26.5	+0.1	+10.1	+0.1	+0.2	+0.0	37.0	50.0	-13.0	White
35	10.842M	26.3	+0.0	+10.1	+0.1	+0.2	+0.0	36.7	50.0	-13.3	White
36	11.815M	26.3	+0.0	+10.0	+0.1	+0.3	+0.0	36.7	50.0	-13.3	White
37	10.680M	26.1	+0.0	+10.1	+0.1	+0.2	+0.0	36.5	50.0	-13.5	White
38	13.013M	25.9	+0.0	+10.1	+0.2	+0.3	+0.0	36.5	50.0	-13.5	White
39	11.184M	26.1	+0.0	+10.0	+0.1	+0.2	+0.0	36.4	50.0	-13.6	White
40	5.220 M	26.0	+0.0	+10.0	+0.1	+0.2	+0.0	36.3	50.0	-13.7	White
41	9.662M	25.7	+0.1	+10.1	+0.1	+0.3	+0.0	36.3	50.0	-13.7	White
42	12.319M	25.9	+0.0	+10.0	+0.1	+0.3	+0.0	36.3	50.0	-13.7	White
43	25.156M	25.2	+0.4	+10.0	+0.2	+0.5	+0.0	36.3	50.0	-13.7	White
44	5.544M	25.6	+0.1	+10.1	+0.1	+0.2	+0.0	36.1	50.0	-13.9	White
45	5.716M	25.6	+0.1	+10.1	+0.1	+0.2	+0.0	36.1	50.0	-13.9	White
46	9.878M	25.5	+0.1	+10.1	+0.1	+0.3	+0.0	36.1	50.0	-13.9	White
47	18.941M	25.4	+0.2	+10.0	+0.2	$+0.3$	+0.0	36.1	50.0	-13.9	White

48	22.941 M	25.0	+0.4	+10.1	+0.2	+0.4	+0.0	36.1	50.0	-13.9	White
49	21.517 M	25.0	+0.3	+10.1	+0.2	+0.4	+0.0	36.0	50.0	-14.0	White
50	24.176 M	24.7	+0.4	+10.0	+0.2	+0.5	+0.0	35.8	50.0	-14.2	White

CKC Laboratories, Inc. Date: 3/11/2009 Time: 8:44:06 AM Davis Instruments WO\#: 88538 FCC 15.207 COND [AVE] Test Lead: White 120 V 60 Hz Sequence\#: 37 White-120V

\qquad Sweep Data
—1 - FCC 15.207 COND [AVE]
\times
2 - FCC 15.207 COND [QP] Peak Readings

FCC PART 15.247(a)/RSS-210 20dB BANDWIDTH

Test Conditions

Test Location:	CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 510-249-1170		
Customer:	Davis Instruments		
Specification:	FCC 15.247(a)		
Work Order \#:	88538	Date:	3/2/2009
Test Type:	20dB BW	Time:	10:50:00
Equipment:	Vantage VUE Weather Station Console	Sequence\#:	
Manufacturer:	Davis Instruments	Tested By:	Art Rice
Model:	06351		
S/N:	Davis 1		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
E4446A Spectrum Analyzer	US44300408	$03 / 05 / 2007$	$03 / 05 / 2009$	02668
Cable	None	$04 / 02 / 2007$	$04 / 02 / 2009$	P05299
Cable	None	$04 / 05 / 2007$	$04 / 05 / 2009$	P05300
Cable	None	$04 / 21 / 2008$	$04 / 21 / 2010$	P05440
Antenna	2630	$12 / 22 / 2008$	$12 / 22 / 2010$	00852
Preamp, HP8447D	$2443 A 03707$	$02 / 09 / 2009$	$02 / 09 / 2011$	00730

Equipment Under Test (* $=$ EUT):

Function	Manufacturer	Model \#	S/N
Vantage VUE Weather Station Console*	Davis Instruments	06351	Davis 1

Support Devices:

Function	Manufacturer	Model \#	S/N
5 V 300mA AC adapter	Davis Instruments	06625	none

Test Conditions / Notes:
The EUT is placed on a 1 inch thick styrofoam block on top of the wooden test table. The EUT antenna is placed in the vertical position. AC adapter is plugged into the outlet located on the turntable floor. Transmitting continuously on selected channel, with hopping disabled. Using FSK modulation at maximum data rate. RBW=1kHz, VBW=300kHz. Radiated emissions 902-928 MHz.

Test Setup Photos

Test Plots

FCC 15.247(a) 20dB BANDWIDTH - LOW CHANNEL

FCC 15.247(a) 20dB BANDWIDTH - MID CHANNEL

FCC 15.247(a) 20dB BANDWIDTH - HIGH CHANNEL

FCC PART 15.247(a)(1) CARRIER FREQUENCY SEPARATION

Test Conditions

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
E4446A Spectrum Analyzer	US44300408	$03 / 05 / 2007$	$03 / 05 / 2009$	02668
Preamp, HP8447D	$2443 A 03707$	$02 / 09 / 2009$	$02 / 09 / 2011$	00730
Antenna, Bilog	2630	$12 / 22 / 2008$	$12 / 22 / 2010$	00852
Cable	None	$04 / 21 / 2008$	$04 / 21 / 2010$	P05440
Cable	None	$04 / 05 / 2007$	$04 / 05 / 2009$	P05300
Cable	None	$04 / 02 / 2007$	$04 / 02 / 2009$	P05299

Equipment Under Test (* $=$ EUT):

Function	Manufacturer	Model \#	S/N
Vantage VUE Weather	Davis Instruments	06351	Davis 1
Station Console*			

Support Devices:

Function	Manufacturer	Model \#	S/N
5 V 300mA AC adapter	Davis Instruments	06625	none

Test Conditions / Notes:

The EUT is placed on a 1 inch thick styrofoam block on top of the wooden test table. The EUT antenna is placed in the vertical position.
AC adapter is plugged into the outlet located on the turntable floor.
Transmitting normally with "fast hopping" enabled.
Using FSK modulation at maximum data rate.
Low channel $=902.355835 \mathrm{MHz}(\mathrm{Ch} 0)$
Mid channel $=914.899597 \mathrm{MHz}(\mathrm{Ch} 25)$
High channel $=927.443359 \mathrm{MHz}(\mathrm{Ch} 50)$

Note: For Time of occupancy testing (dwell time) the EUT was set for 0.5 seconds between channels in the pseudorandom hop table. Normal operation would be 2.625 seconds.

Radiated emissions 902-928 MHz.

Test Setup Photos

Test Plots

FCC 15.247(a)(1) CARRIER FREQUENCY SEPARATION

FCC PART 15.247(a)(1) NUMBER OF HOPPING CHANNELS

Test Conditions

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
E4446A Spectrum Analyzer	US44300408	$03 / 05 / 2007$	$03 / 05 / 2009$	02668
Preamp, HP8447D	$2443 A 03707$	$02 / 09 / 2009$	$02 / 09 / 2011$	00730
Antenna, Bilog	2630	$12 / 22 / 2008$	$12 / 22 / 2010$	00852
Cable	None	$04 / 21 / 2008$	$04 / 21 / 2010$	P05440
Cable	None	$04 / 05 / 2007$	$04 / 05 / 2009$	P05300
Cable	None	$04 / 02 / 2007$	$04 / 02 / 2009$	P05299

Equipment Under Test (* $=$ EUT):

Function	Manufacturer	Model \#	S/N
Vantage VUE Weather	Davis Instruments	06351	Davis 1
Station Console*			

Support Devices:

Function	Manufacturer	Model \#	S/N
5 V 300mA AC adapter	Davis Instruments	06625	none

Test Conditions / Notes:

The EUT is placed on a 1 inch thick styrofoam block on top of the wooden test table. The EUT antenna is placed in the vertical position.
AC adapter is plugged into the outlet located on the turntable floor.
Transmitting normally with "fast hopping" enabled.
Using FSK modulation at maximum data rate.
Low channel $=902.355835 \mathrm{MHz}(\mathrm{Ch} 0)$
Mid channel $=914.899597 \mathrm{MHz}(\mathrm{Ch} 25)$
High channel $=927.443359 \mathrm{MHz}(\mathrm{Ch} 50)$

Note: For Time of occupancy testing (dwell time) the EUT was set for 0.5 seconds between channels in the pseudorandom hop table. Normal operation would be 2.625 seconds.

Radiated emissions 902-928 MHz.

Test Setup Photos

Test Plots

FCC 15.247(a)(1) NUMBER OF HOPPING FREQUENCIES

FCC PART 15.247(a)(1) AVERAGE TIME OF OCCUPANCY

Test Conditions

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
E4446A Spectrum Analyzer	US44300408	$03 / 05 / 2007$	$03 / 05 / 2009$	02668
Preamp, HP8447D	$2443 A 03707$	$02 / 09 / 2009$	$02 / 09 / 2011$	00730
Antenna, Bilog	2630	$12 / 22 / 2008$	$12 / 22 / 2010$	00852
Cable	None	$04 / 21 / 2008$	$04 / 21 / 2010$	P05440
Cable	None	$04 / 05 / 2007$	$04 / 05 / 2009$	P05300
Cable	None	$04 / 02 / 2007$	$04 / 02 / 2009$	P05299

Equipment Under Test (* $=$ EUT):

Function	Manufacturer	Model \#	S/N
Vantage VUE Weather	Davis Instruments	06351	Davis 1
Station Console*			

Support Devices:

Function	Manufacturer	Model \#	S/N
5 V 300mA AC adapter	Davis Instruments	06625	none

Test Conditions / Notes:

The EUT is placed on a 1 inch thick styrofoam block on top of the wooden test table. The EUT antenna is placed in the vertical position.
AC adapter is plugged into the outlet located on the turntable floor.
Transmitting normally with "fast hopping" enabled.
Using FSK modulation at maximum data rate.
Low channel $=902.355835 \mathrm{MHz}(\mathrm{Ch} 0)$
Mid channel $=914.899597 \mathrm{MHz}(\mathrm{Ch} 25)$
High channel $=927.443359 \mathrm{MHz}(\mathrm{Ch} 50)$

Note: For Time of occupancy testing (dwell time) the EUT was set for 0.5 seconds between channels in the pseudorandom hop table. Normal operation would be 2.625 seconds.

Radiated emissions 902-928 MHz.

Note this was tested in "fast hopping mode" which has 0.5 sec delay between the channels in the pseudo-random hop table. In normal operation that value would be 2.625 seconds. It appears that the maximum number of full amplitude transmissions was 3 in a 20 second period. The other pulses were at lower amplitude, so were probably adjacent channel noise, due to the RBW=1 MHz . 3 x $6.74 \mathrm{mS}=20.22 \mathrm{mS}$. The limit is 0.4 seconds, so the 06351 passes this test. Plot $\# 10$ is a representative sample.

Test Setup Photos

Test Plots

FCC 15.247(a)(1) AVERAGE TIME OF OCCUPANCY

FCC 15.247(a)(1) AVERAGE TIME OF OCCUPANCY

FCC 15.247(a)(1) TRANSMISSION DURATION

FCC 15.247(b)(2) RF POWER OUTPUT

Test Setup Photos

Test Data

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer:	Davis Instruments		
Specification:	FCC 15.247(b)(2)/15.209 / 15.205		Date: 3/2/2009
Work Order \#:	88538	Time: 10:50:00	
Test Type:	Transmitter ERP	Sequence\#:	1
Equipment:	Vantage VUE Weather Station		
	Console	Tested By: Art Rice	
Manufacturer:	Davis Instruments		
Model:	06351		
S/N:	Davis 1		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
E4446A Spectrum	US44300408	$03 / 05 / 2007$	$03 / 05 / 2009$	02668
Analyzer				
Cable	None	$04 / 02 / 2007$	$04 / 02 / 2009$	P05299
Cable	None	$04 / 05 / 2007$	$04 / 05 / 2009$	P05300
Cable	None	$04 / 21 / 2008$	$04 / 21 / 2010$	P05440
Antenna	2630	$12 / 22 / 2008$	$12 / 22 / 2010$	00852
Preamp, HP8447D	$2443 A 03707$	$02 / 09 / 2009$	$02 / 09 / 2011$	00730

Equipment Under Test (* $=$ EUT):

Function	Manufacturer	Model \#	S/N
Vantage VUE Weather Davis Instruments 06351	Davis 1		
Station Console*			

Support Devices:

Function	Manufacturer	Model \#	S/N
$5 \mathrm{~V} \mathrm{300mA} \mathrm{AC} \mathrm{adapter}$	Davis Instruments	06625	none

Test Conditions / Notes:

The EUT is placed on a 1 inch thick styrofoam block on top of the wooden test table. The EUT antenna is placed in the vertical position.
AC adapter is plugged into the outlet located on the turntable floor.
Transmitting continuously on selected channel, with hopping disabled.
Using FSK modulation at maximum data rate.
The transmitter ERP limit is based on stated 2dBi gain antenna with maximum conducted power of 1 watt or 30 dBm.

RBW=100kHz, VBW=300kHz.
Radiated emissions 902-928 MHz.

Test Calculations

The following calculation was used in accordance with DA 00-705 procedures in order to obtain the transmitter conducted output power:
P = (E*d) $)^{\wedge} /(30 * G)$
E: Is the field strength in V/m
G: Is the numeric gain of the transmitting antenna with reference to an isotropic radiator.
d : Is the distance at which the measurement is being executed.
The antenna gain used for this calculation was 2.0 dBi .

Frequency	dBm	Limit	Results
902.347	2.923	30	Pass
914.900	3.923	30	Pass
927.428	5.623	30	Pass

Antenna polarity: Vertical
FCC 15.247(b) TX POWER - LOW CHANNEL

FCC 15.247(b) TX POWER - MID CHANNEL

FCC 15.247(b) TX POWER - HIGH CHANNEL

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer:	Davis Instruments		
Specification:	FCC 15.247(b)(2)/15.209 / 15.205		Date: 3/3/2009
Work Order \#:	$\mathbf{8 8 5 3 8}$	Time: 11:19:40	
Test Type:	Maximized Emissions	Sequence\#:	14
Equipment:	Vantage VUE Weather Station		
	Console	Tested By: Art Rice	
Manufacturer:	Davis Instruments		
Model:	06351		
S/N:	Davis 1		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
E4446A Spectrum Analyzer	US44300408	$03 / 05 / 2007$	$03 / 05 / 2009$	02668
Horn - DRG-118A	1064	$01 / 09 / 2009$	$01 / 09 / 2011$	02061
Cable - HF - 32022-2-29094K- 24TC	n/a	$02 / 04 / 2008$	$02 / 04 / 2010$	03015
Cable HF FSJ1P-50A-4	HOL-HF-025-06	$05 / 06 / 2008$	$05 / 06 / 2010$	P05138
Cable, HF	n/a	$05 / 06 / 2008$	$05 / 06 / 2010$	P04241
HF Pre-Amp - 83051A	00323	$02 / 05 / 2008$	$02 / 05 / 2010$	02810
1.5GHz HP Filter	PN 84300-80037	$04 / 01 / 2008$	$04 / 01 / 2010$	P01415
Preamp, HP8447D	$2443 A 03707$	$02 / 09 / 2009$	$02 / 09 / 2011$	00730
Antenna, Bilog	2630	$12 / 22 / 2008$	$12 / 22 / 2010$	00852
Cable	None	$04 / 21 / 2008$	$04 / 21 / 2010$	P05440
Cable	None	$04 / 05 / 2007$	$04 / 05 / 2009$	P05300
Cable	None	$04 / 02 / 2007$	$04 / 02 / 2009$	P05299
Mag Loop -6502	2078	$06 / 11 / 2007$	$06 / 11 / 2009$	00432

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Vantage VUE Weather Station Console*	Davis Instruments	06351	Davis 1
Support Devices:			
Function	Manufacturer	Model \#	S/N
5V 300mA AC adapter	Davis Instruments	06625	none

Test Conditions / Notes:

The EUT is placed on a 1 inch thick styrofoam block on top of the wooden test table. The EUT antenna is placed in the vertical position.
AC adapter is plugged into the outlet located on the turntable floor.
Transmitting continuously on selected channel, with hopping disabled.
Using FSK modulation at maximum data rate.
Low channel=902.355835 MHz (Ch 0)
Mid channel $=914.899597 \mathrm{MHz}$ (Ch 25)
High channel=927.443359 MHz (Ch 50)
RBW $=100 \mathrm{kHz}$, VBW $=300 \mathrm{kHz}$ except in restricted bands, where CISPR BW are used for final measurements.
$10-150 \mathrm{kHz}$ RBW $=200 \mathrm{~Hz}, 0.15-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}$
FCC 15.209 spec limit used below 30 MHz . Transmitting on worst case TX output high channel for readings below 30 MHz .
Transmitting on Low, Mid or High channel
Radiated emissions $30 \mathrm{kHz}-9500 \mathrm{MHz}$.

Transducer Legend:

T1=ANT AN00852 25-1000MHz	T2=Cable Calibration ANP05440
T3=Cable Calibration ANP05299	T4=Cable Calibration ANP05300
T5=AMP-AN00730-020909 .01-1000	T6=AMP-AN02810-020508
T7=ANT AN02061 900MHz-18.5GHz	T8=CAB-AN03015-020408
T9=CAB-ANP04241-050608	T10=CAB-ANP05138-050608
T11=HPF AN01415 1.5GHz	T12=Mag Loop - AN 00432-9kHz-30M

Measurement Data:	Reading listed by margin.					Test Distance: 3 Meters				
\# Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		T5	T6	T7	T8					
		T9	T10	T11	T12					
MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	dB	Ant
15414.115Ave	38.4	+0.0	+0.0	+0.0	+0.0	+0.0	52.7	54.0	-1.3	Vert
		+0.0	-26.2	+34.2	+0.8	350		Low ch,		109
		+1.3	+4.0	+0.2				RBW $=1 \mathrm{MH}$		
$\wedge 5414.104 \mathrm{M}$	41.2	+0.0	+0.0	+0.0	+0.0	+0.0	55.5	54.0	+1.5	Vert
		+0.0	-26.2	+34.2	+0.8	350		Low ch,		109
		+1.3	+4.0	+0.2				RBW $=1 \mathrm{MH}$		
$\begin{aligned} & 3 \text { 8121.159M } \\ & \text { Ave } \end{aligned}$	29.3	+0.0	+0.0	+0.0	+0.0	+0.0	50.8	54.0	-3.2	Vert
		+0.0	-24.8	+38.6	+0.9	21		Low ch,		143
		+1.5	+4.9	+0.4				RBW $=1 \mathrm{MH}$		
$\wedge 8121.156 \mathrm{M}$	34.8	+0.0	+0.0	+0.0	+0.0	+0.0	56.3	54.0	+2.3	Vert
		+0.0	-24.8	+38.6	+0.9	21		Low ch,		143
		+1.5	+4.9	+0.4				RBW $=1 \mathrm{MH}$		

$\begin{aligned} & 5 \text { 8234.063M } \\ & \text { Ave } \end{aligned}$	26.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -24.8 \\ +5.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.5 \\ +0.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +1.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 333 \end{aligned}$	48.3	$\quad 54.0$ -5.7 Mid ch, RBW $=1 \mathrm{MHz}$	$\begin{gathered} \hline \text { Vert } \\ 130 \end{gathered}$
\wedge 8233.991M	33.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -24.8 \\ +5.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.5 \\ +0.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +1.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 333 \end{aligned}$	54.9	54.0 +0.9 Mid ch, RBW $=1 \mathrm{MHz}$	$\begin{array}{r} \hline \text { Vert } \\ 131 \end{array}$
$\begin{aligned} & 7 \text { 8346.951M } \\ & \text { Ave } \end{aligned}$	24.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -24.8 \\ +4.9 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.4 \\ +0.5 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +1.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 329 \end{aligned}$	45.5	54.0 -8.5 High ch, RBW=1MHz	$\begin{gathered} \hline \text { Vert } \\ 132 \end{gathered}$
\wedge 8346.869M	32.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -24.8 \\ +4.9 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.4 \\ +0.5 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +1.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 329 \end{aligned}$	53.5	54.0 -0.5 High ch, RBW=1MHz	$\begin{array}{r} \hline \text { Vert } \\ 132 \end{array}$
$9 \quad 37.670 \mathrm{M}$	40.6	$\begin{array}{r} \hline+15.1 \\ -27.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 24 \end{aligned}$	28.9	$\begin{gathered} 40.0 \quad-11.1 \\ \text { RBW=120kHz } \end{gathered}$	$\begin{array}{r} \hline \text { Vert } \\ 102 \end{array}$
$\begin{aligned} & 10 \text { 8423.500M } \\ & \text { Ave } \end{aligned}$	19.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -24.8 \\ +5.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.4 \\ +0.5 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +1.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 28 \end{aligned}$	41.6	$54.0 \quad-12.4$ Mid ch, noise floor, RBW=1MHz	$\begin{array}{r} \hline \text { Vert } \\ 130 \end{array}$
$\wedge 8423.502 \mathrm{M}$	30.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -24.8 \\ +5.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.4 \\ +0.5 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +1.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 28 \end{aligned}$	52.0	$\quad 54.0 \quad-2.0$ Mid ch, noise floor, RBW=1MHz	$\begin{array}{r} \hline \text { Vert } \\ 130 \end{array}$
$\begin{aligned} & 12 \text { 8405.800M } \\ & \text { Ave } \end{aligned}$	19.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -24.8 \\ +5.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.4 \\ +0.5 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +1.0 \end{aligned}$	+0.0	41.5	$54.0 \quad-12.5$ High ch, noise floor, RBW=1MHz	$\begin{array}{r} \hline \text { Vert } \\ 132 \end{array}$
$\wedge 8405.813 \mathrm{M}$	31.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -24.8 \\ +5.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.4 \\ +0.5 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +1.0 \end{aligned}$	+0.0	53.2	$\quad 54.0 \quad-0.8$ High ch, noise floor, RBW $=1 \mathrm{MHz}$	$\begin{array}{r} \hline \text { Vert } \\ 132 \end{array}$
$\begin{gathered} 14 \begin{array}{l} 610.306 \mathrm{k} \\ \text { QP } \end{array} \end{gathered}$	33.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +9.9 \end{aligned}$	$\begin{aligned} & \hline-40.0 \\ & 180 \end{aligned}$	3.7	$31.9 \quad-28.2$	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
$\wedge \quad 610.333 \mathrm{k}$	38.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ +0.0 \\ +9.9 \\ \hline \end{array}$	$\begin{aligned} & \hline-40.0 \\ & 180 \end{aligned}$	8.7	$31.9 \quad-23.2$	$\begin{array}{r} \hline \text { Vert } \\ 100 \end{array}$
$\begin{gathered} 16 \begin{array}{c} 533.500 \mathrm{k} \\ \text { QP } \end{array} \end{gathered}$	35.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +9.7 \end{aligned}$	$\begin{gathered} -40.0 \\ 73 \end{gathered}$	4.8	$33.1-28.3$	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
$\wedge 533.336 \mathrm{k}$	40.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +9.7 \end{aligned}$	$\begin{gathered} -40.0 \\ 73 \end{gathered}$	9.8	$33.1-23.3$	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
$\begin{gathered} 18 \quad 491.605 \mathrm{k} \\ \text { QP } \end{gathered}$	35.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +9.6 \end{aligned}$	$\begin{aligned} & \hline-40.0 \\ & 104 \end{aligned}$	5.5	33.8 -28.3	$\begin{gathered} \text { Horiz } \\ 100 \end{gathered}$
$\wedge \quad 491.457 \mathrm{k}$	41.6	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +9.6 \end{aligned}$	$\begin{aligned} & \hline-40.0 \\ & 104 \end{aligned}$	11.3	33.8 -22.5	$\begin{gathered} \text { Horiz } \\ 100 \end{gathered}$

$\begin{aligned} & 20 \quad 529.450 \mathrm{k} \\ & \text { QP } \end{aligned}$	35.0	+0.0	+0.0	+0.0	+0.0	-40.0	4.7	33.1	-28.4	$\begin{gathered} \hline \text { Horiz } \\ 100 \end{gathered}$
		+0.0	+0.0	+0.0	+0.0	358				
		+0.0	+0.0	+0.0	+9.7					
$\wedge 529.432 \mathrm{k}$	40.3	+0.0	+0.0	+0.0	+0.0	-40.0	10.0	33.1	-23.1	$\begin{gathered} \text { Horiz } \\ 100 \end{gathered}$
		+0.0	+0.0	+0.0	+0.0	358				
		+0.0	+0.0	+0.0	+9.7					
$\begin{gathered} 22 \quad 980.344 \mathrm{k} \\ \mathrm{QP} \end{gathered}$	27.6	+0.0	+0.1	+0.1	+0.0	-40.0	-1.8	27.7	-29.5	$\begin{gathered} \text { Horiz } \\ 100 \end{gathered}$
		+0.0	+0.0	+0.0	+0.0	249				
		+0.0	+0.0	+0.0	+10.4					
$\wedge \quad 980.232 \mathrm{k}$	32.4	+0.0	+0.1	+0.1	+0.0	-40.0	3.0	27.7	-24.7	$\begin{gathered} \text { Horiz } \\ 100 \end{gathered}$
		+0.0	+0.0	+0.0	+0.0	250				
		+0.0	+0.0	+0.0	+10.4					
$\begin{gathered} 24 \begin{array}{l} 402.453 \mathrm{k} \\ \mathrm{QP} \end{array} \end{gathered}$	37.1	+0.0	+0.1	+0.1	+0.0	-80.0	-33.0	15.5	-48.5	$\begin{gathered} \text { Horiz } \\ 100 \end{gathered}$
		+0.0	+0.0	+0.0	+0.0	108				
		+0.0	+0.0	+0.0	+9.7					
$\wedge 402.398 \mathrm{k}$	42.3	+0.0	+0.1	+0.1	+0.0	-80.0	-27.8	15.5	-43.3	$\begin{gathered} \text { Horiz } \\ 100 \end{gathered}$
		+0.0	+0.0	+0.0	+0.0	107				
		+0.0	+0.0	+0.0	+9.7					
$\begin{aligned} & 26 \quad 233.715 \mathrm{k} \\ & \mathrm{QP} \end{aligned}$	41.7	+0.0	+0.1	+0.0	+0.1	-80.0	-28.3	20.2	-48.5	$\begin{array}{r} \hline \text { Vert } \\ 100 \end{array}$
		+0.0	+0.0	+0.0	+0.0	295				
		+0.0	+0.0	+0.0	+9.8					
$\wedge 233.734 \mathrm{k}$	46.8	+0.0	+0.1	+0.0	+0.1	-80.0	-23.2	20.2	-43.4	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
		+0.0	+0.0	+0.0	+0.0	295				
		+0.0	+0.0	+0.0	+9.8					
$\begin{aligned} & 28 \quad 209.403 \mathrm{k} \\ & \mathrm{QP} \end{aligned}$	42.4	+0.0	+0.1	+0.0	+0.1	-80.0	-27.5	21.2	-48.7	$\begin{array}{r} \hline \text { Vert } \\ 100 \end{array}$
		+0.0	+0.0	+0.0	+0.0	228				
		+0.0	+0.0	+0.0	+9.9					
$\wedge 209.328 \mathrm{k}$	47.6	+0.0	+0.1	+0.0	+0.1	-80.0	-22.3	21.2	-43.5	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
		+0.0	+0.0	+0.0	+0.0	228				
		+0.0	+0.0	+0.0	+9.9					
$\begin{gathered} 30372.850 \mathrm{k} \\ \text { QP } \end{gathered}$	37.6	+0.0	+0.1	+0.1	+0.0	-80.0	-32.5	16.2	-48.7	$\begin{array}{r} \hline \text { Vert } \\ 100 \end{array}$
		+0.0	+0.0	+0.0	+0.0	73				
		+0.0	+0.0	+0.0	+9.7					
$\wedge 372.721 \mathrm{k}$	42.6	+0.0	+0.1	+0.1	+0.0	-80.0	-27.5	16.2	-43.7	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
		+0.0	+0.0	+0.0	+0.0	73				
		+0.0	+0.0	+0.0	+9.7					
$\begin{gathered} 32 \quad 255.345 \mathrm{k} \\ \mathrm{QP} \end{gathered}$	40.8	+0.0	+0.1	+0.1	+0.0	-80.0	-29.3	19.5	-48.8	$\begin{gathered} \text { Horiz } \\ 100 \end{gathered}$
		+0.0	+0.0	+0.0	+0.0	4				
		+0.0	+0.0	+0.0	+9.7					
$\wedge 255.320 \mathrm{k}$	45.7	+0.0	+0.1	+0.1	+0.0	-80.0	-24.4	19.5	-43.9	$\begin{gathered} \text { Horiz } \\ 100 \end{gathered}$
		+0.0	+0.0	+0.0	+0.0	4				
		+0.0	+0.0	+0.0	+9.7					

FCC PART 15.247(d) BANDEDGE

Test Setup Photos

Test Data

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
E4446A Spectrum Analyzer	US44300408	$03 / 05 / 2007$	$03 / 05 / 2009$	02668
Preamp, HP8447D	$2443 A 03707$	$02 / 09 / 2009$	$02 / 09 / 2011$	00730
Antenna, Bilog	2630	$12 / 22 / 2008$	$12 / 22 / 2010$	00852
Cable	None	$04 / 21 / 2008$	$04 / 21 / 2010$	P05440
Cable	None	$04 / 05 / 2007$	$04 / 05 / 2009$	P05300
Cable	None	$04 / 02 / 2007$	$04 / 02 / 2009$	P05299

Equipment Under Test (* = EUT):

Function Manufacturer Model \# Vantage VUE Weather Station Console*	Davis Instruments 06351	S/N Davis 1	
Support Devices:		Model \#	
Function	Manufacturer	06625	S/N
5V 300mA AC adapter	Davis Instruments		none

Test Conditions / Notes:

The EUT is placed on a 1 inch thick styrofoam block on top of the wooden test table. The EUT antenna is placed in the vertical position.
AC adapter is plugged into the outlet located on the turntable floor.
Using FSK modulation at maximum data rate.
Low channel=902.355835 MHz (Ch 0)
Mid channel= 914.899597 MHz (Ch 25)
High channel=927.443359 MHz (Ch 50)

Band edges checked in two modes per FCC DA 00-705:

1) Transmitting continuously on selected channel, with hopping disabled.
2) Transmitting while hopping: "Fast FCC hop mode" with 0.5 sec between hops.
$R B W=30 \mathrm{kHz}, \mathrm{VBW}=91 \mathrm{kHz}$.
Radiated emissions 898-932 MHz.

Transducer Legend:

T1=ANT AN00852 25-1000MHz	T2=Cable Calibration ANP05440
T3=Cable Calibration ANP05299	T4=Cable Calibration ANP05300
T5=AMP-AN00730-020909 .01-1000	

Measurement Data: Reading listed by margin. Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \text { T1 } \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	T2 dB	T3 dB	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Spec Margin $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ dB	Polar Ant
1	927.435M	105.8	+23.0	+1.9	+0.2	+0.7	+0.0	104.1	$104.2-0.1$	Vert
			-27.5				113		High ch, hopping	112
2	902.360M	104.0	+22.5	+1.9	+0.3	+0.8	+0.0	102.1	103.0 -0.9	Vert
			-27.4				113		Low ch, hopping	112
3	927.445M	101.9	+23.0	+1.9	+0.2	+0.7	+0.0	100.2	103.0 -2.8	Vert
			-27.5				113		High ch, not hopping	112
4	902.355M	101.6	+22.5	+1.9	+0.3	+0.8	+0.0	99.7	103.0 -3.3	Vert
			-27.4				114		Low ch, not hopping	112
5	901.965M	70.9	+22.5	+1.9	+0.3	+0.8	+0.0	69.0	83.0 -14.0	Vert
			-27.4				113		Low ch, band edge, hopping.	112
6	901.995M	65.4	+22.5	+1.9	+0.3	+0.8	+0.0	63.5	83.0 -19.5	Vert
			-27.4				114		Low ch, band edge, not hopping	112
7	928.005M	62.5	+23.0	+1.9	+0.2	+0.7	+0.0	60.8	83.0 -22.2	Vert
			-27.5				113		High ch, band edge, not hopping	112
8	928.400M	61.9	+23.0	+1.9	+0.2	+0.7	+0.0	60.2	83.0 -22.8	Vert
			-27.5				113		High ch, band edge, hopping	112

FCC 15.247(d) BANDEDGE - LOW CHANNEL, HOPPING

FCC 15.247(d) BANDEDGE - LOW CHANNEL, NOT HOPPING

FCC 15.247(d) BANDEDGE - HIGH CHANNEL, HOPPING

FCC 15.247(d) BANDEDGE - HIGH CHANNEL, NOT HOPPING

