

ADDENDUM TO DAVIS INSTRUMENTS TEST REPORT FC04-069

FOR THE

INTEGRATED SENSOR SUITE, 6328

FCC PART 15 SUBPART C SECTIONS 15.209 & 15.247

COMPLIANCE

DATE OF ISSUE: AUGUST 27, 2004

PREPARED FOR:

PREPARED BY:

Davis Instruments 3465 Diablo Avenue Hayward, CA 94545 Mary Ellen Clayton CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338

P.O. No.: 57173 W.O. No.: 82620 Date of test: August 24-25, 2004

Report No.: FC04-069A

This report contains a total of 32 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information	3
Summary of Results	4
Conditions for Compliance	4
Approvals	4
Equipment Under Test (EUT) Description	5
FCC 15.31(m) Number Of Channels	5
FCC 15.33(a) Frequency Ranges Tested	5
FCC 15.35 Analyzer Bandwidth Settings	5
FCC 15.203 Antenna Requirements	5
FCC 15.205 Restricted Bands	5
Eut Operating Frequency	5
Equipment Under Test	6
Peripheral Devices	6
Report of Measurements	7
Table 1: FCC 15.209 Six Highest Radiated Emission Levels: 14-1000 MHz	7
Table 2: FCC 15.209 Six Highest Radiated Emission Levels: 1-10 GHz	8
FCC 15.247(a)(1)(i) Average Time of Occupancy	9
Table 3: FCC 15.247(b)(3) Fundamental Emission Levels	9
20 dB Bandwidth	10
Emissions Mask	13
Frequency Separation	14
Dwell Time	15
Hopping Channels	18
Temperature And Humidity During Testing	19
EUT Setup	19
Correction Factors	19
Table A: Sample Calculations	19
Test Instrumentation and Analyzer Settings	20
Spectrum Analyzer Detector Functions	20
Peak	20
Quasi-Peak	20
Average	20
EUT Testing	21
Radiated Emissions	21
Appendix A: Test Setup Photographs	22
Photograph Showing Radiated Emissions	23
Photograph Showing Radiated Emissions	24
Appendix B: Test Equipment List	25
Appendix C: Measurement Data Sheets	26

ADMINISTRATIVE INFORMATION

DATE OF TEST:	August 24-25, 2004
DATE OF RECEIPT:	August 24, 2004
PURPOSE OF TEST:	To demonstrate the compliance of the Integrated Sensor Suite, 6328, with the requirements for FCC Part 15 Subpart C Sections 15.209 & 15.247 devices. Addendum A is to revise the 15.209 14- 1000 MHz data sheet
TEST METHOD:	ANSI C63.4 (2001)
MANUFACTURER:	Davis Instruments 3465 Diablo Avenue Hayward, CA 94545
REPRESENTATIVE:	Perry Dillon
TEST LOCATION:	CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338

SUMMARY OF RESULTS

As received, the Davis Instruments Integrated Sensor Suite, 6328 was found to be fully compliant with the following standards and specifications:

Canadian	Canadian	FCC		
Standard	Section	Standard	FCC Section	Test Description
RSS 210	5.5	47CFR	15.203	Antenna Connector Requirements
				General Radiated Emissions
RSS 210	6.2.1	47CFR	15.209	Requirement
RSS 210	6.3	47CFR	15.205	Restricted Bands of Operation
				Frequency Stability
RSS 210	6.4	47CFR	15.215(c)	Recommendation
RSS 210	6.5	47CFR	15.35(c)	Pulsed Operation
				AC Mains Conducted Emissions
RSS 210	6.6	47CFR	15.207	Requirement
RSS 210	6.2.2(o)(a1)	47CFR	15.247(a)(1)	Minimum Channel Bandwidth
RSS 210	6.2.2(o)(a1)	47CFR	15.247(g)	Hopping Sequence
RSS 210	6.2.2(o)(a1)	47CFR	15.247(h)	Incorporation of Intelligence
RSS 210	6.2.2(o)(a2)	47CFR	15.247(a)(1)(i)	Average Time of Occupancy
RSS 210	6.2.2(o)(a2)	47CFR	15.247(b)(2)	RF Power Output
			15.247(c)	
RSS 210	6.2.2(o)(e1)	47CFR	/15.209	Spurious Emissions
	IC 3082-D		784962	Site No.

CONDITIONS FOR COMPLIANCE

No modifications to the EUT were necessary to comply. No AC conducted emissions are required. Unit is AC powered for emissions testing only.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

Joyce Shaker

TEST PERSONNEL:

- Auch

Randy Clark, EMC Engineer

Joyce Walker, Quality Assurance Administrative Manager

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The EUT tested by CKC Laboratories was a production unit.

FCC 15.31(m) Number Of Channels

This device was tested on three channels.

FCC 15.33(a) Frequency Ranges Tested

15.209 Radiated Emissions: 14 MHz – 10 GHz

FCC SECTION 15.35:							
ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE							
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING				
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz				
RADIATED EMISSIONS	1000 MHz	10 GHz	1 MHz				

FCC 15.203 Antenna Requirements

The antenna is an integral part of the EUT and is non-removable; therefore the EUT complies with Section 15.203 of the FCC rules.

FCC 15.205 Restricted Bands

The fundamental operating frequency lies outside the restricted bands and therefore complies with the requirements of Section 15.205 of the FCC rules. Any spurious emission coming from the EUT was investigated to determine if any portion lies inside the restricted band. If any portion of a spurious emissions signal was found to be within a restricted band, investigation was performed to ensure compliance with Section 15.209.

Eut Operating Frequency

The EUT was operating at 902-928 MHz.

EQUIPMENT UNDER TEST

Integrated Sensor Suite

Manuf:	Davis Instruments
Model:	6328
Serial:	Davis 201
FCC ID:	Pending

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s): **Power Supply** Manuf: Davis Instruments

Model:	6625
Serial:	NA
FCC ID:	DoC

REPORT OF MEASUREMENTS

The following tables report the six highest worst case levels recorded during the tests performed on the EUT. All readings taken are peak readings unless otherwise noted. The data sheets from which these tables were compiled are contained in Appendix C.

Table 1:FCC 15.209 Six Highest Radiated Emission Levels: 14-1000 MHz										
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIO Amp dB	ON FACT Cable dB	dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN DB	NOTES	
797.212	35.4	21.4	-27.7	6.8		35.9	46.0	-10.1	V	
804.618	39.9	21.5	-27.7	6.8		40.5	46.0	-5.5	V	
811.984	37.1	21.6	-27.7	6.9		37.9	46.0	-8.1	V	
863.120	40.5	22.3	-27.6	7.3		42.5	46.0	-3.5	V	
966.807	39.7	23.8	-27.1	7.4		43.8	54.0	-10.2	V	
974.167	39.6	23.9	-27.1	7.4		43.8	54.0	-10.2	V	

Test Method: Spec Limit:

ANSI C63.4 (2001)

NOTES: V = Vertical Polarization

Test Distance:

FCC Part 15 Subpart C Section 15.209 3 Meters

COMMENTS: EUT is an Integrated Sensor Suite with SPARS consisting of the following sensors: Temperature and Humidity (Asperated), Anemometer, Rain Gauge, Solar and UV. Due to the power consumption required to operate the EUT in a test configuration, for the purpose of emissions testing only, the equipment is powered via AC adapter. Equipment is normally powered via solar panel, battery in combination with super cap. Solar panel, battery and supercap are all operational during testing. EUT is continuously transmitting data on Low, Mid and High channels. Data is representative of all channels. Frequency Range Investigated: 14-1000MHz. Temperature: 20°C, Relative Humidity: 41%.

Table 2: FCC 15.209 Six Highest Radiated Emission Levels: 1-10 GHz									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIO Amp dB	ON FACT Cable dB	TORS dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN DB	NOTES
2744.680	51.1	29.3	-35.0	-2.8		42.6	54.0	-11.4	V
2782.370	51.7	29.4	-35.0	-2.8		43.3	54.0	-10.7	V
4574.525	44.8	32.4	-34.5	0.2		42.9	54.0	-11.1	Н
4574.580	44.1	32.4	-34.5	0.2		42.2	54.0	-11.8	V
4636.980	44.9	32.5	-34.6	0.3		43.1	54.0	-10.9	V
5413.980	44.5	34.2	-34.7	1.2		45.2	54.0	-8.8	Н

Test Method: Spec Limit: Test Distance: ANSI C63.4 (2001) FCC Part 15 Subpart C Section 15.247 3 Meters

NOTES: H = Horizontal Polarization V = Vertical Polarization

COMMENTS: EUT is an Integrated Sensor Suite with SPARS consisting of the following sensors: Temperature and Humidity (Asperated), Anemometer, Rain Gauge, Solar and UV. Due to the power consumption required to operate the EUT in a test configuration, for the purpose of emissions testing only, the equipment is powered via AC adapter. Equipment is normally powered via solar panel, battery in combination with super cap. Solar panel, battery and supercap are all operational during testing. EUT is continuously transmitting data on the indicated channel. Dwell time correction factor used in accordance with DA 00-705. Maximum packet length is 6.7ms, which transmits once every 2.5625 seconds. Therefore, longest duration within a 100ms window is 7.4ms. Correction factor calculated as follows: 10*LOG(7.4/100) = -11.3dB. Dwell time correction factor applied only to those frequencies, which are harmonics of the carrier. Frequency Range Investigated: 1-10GHz. Temperature: 20°C, Relative Humidity: 41%.

FCC 15.247(A)(1)(i) Average Time Of Occupancy: The equipment has a dwell time per hop of 7.4ms with an average hop time of 120.2 seconds. In any 10 second interval, only one hop could be observed. The maximum time of occupancy is 7.4ms within any 10 second interval. This demonstrates compliance with the provisions of 15.247.

Table 3: FCC 15.247(b)(3) Fundamental Emission Levels										
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIO Amp dB	ON FACT Cable dB	TORS dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN DB	NOTES	
902.353	96.5	22.8	-27.3	7.5		99.5	127.0	-27.5	Н	
902.365	98.5	22.8	-27.3	7.5		101.5	127.0	-25.5	V	
914.897	97.6	23.0	-27.3	7.4		100.7	127.0	-26.3	Н	
914.914	99.5	23.0	-27.3	7.4		102.6	127.0	-24.4	V	
927.445	92.5	23.2	-27.2	7.3		95.8	127.0	-31.2	Н	
927.446	99.4	23.2	-27.2	7.3		102.7	127.0	-24.3	V	

Test Method:ANSI C63.4 (2001)Spec Limit:FCC Part 15 Subpart C Section 15.247(b)(3)Test Distance:3 Meters

NOTES:

H = Horizontal Polarization V = Vertical Polarization

COMMENTS: EUT is an Integrated Sensor Suite with SPARS consisting of the following sensors: Temperature and Humidity (Asperated), Anemometer, Rain Gauge, Solar and UV. Due to the power consumption required to operate the EUT in a test configuration, for the purpose of emissions testing only, the equipment is powered via AC adapter. Equipment is normally powered via solar panel, battery in combination with super cap. Solar panel, battery and supercap are all operational during testing. EUT is continuously transmitting data on the indicated channel. Frequency Range Investigated: Carrier. Temperature: 20°C, Relative Humidity: 41%.

20 dB BANDWIDTH LOW CHANNEL

20 dB BANDWIDTH MID CHANNEL

20 dB BANDWIDTH HIGH CHANNEL

EMISSIONS MASK

FREQUENCY SEPARATION

DWELL TIME 20 ms

DWELL TIME 100 ms

DWELL TIME 10 minutes

HOPPING CHANNELS

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

EUT SETUP

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the photographs in Appendix A. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables. The corrected data was then compared to the applicable emission limits to determine compliance.

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available I/O ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. I/O cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The radiated emissions data of the EUT was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in Table A.

Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula in Table A. This reading was then compared to the applicable specification limit to determine compliance.

TABLE A: SAMPLE CALCULATIONS						
	Meter reading	(dBµV)				
+	Antenna Factor	(dB)				
+	Cable Loss	(dB)				
-	Distance Correction	(dB)				
-	Preamplifier Gain	(dB)				
=	Corrected Reading	(dBµV/m)				

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Table A were used to collect both the radiated and conducted emissions data for the EUT. For radiated measurements from 9 kHz to 30 MHz, the magnetic loop antenna was used. For radiated measurements from 30 to 1000 MHz, the biconilog antenna was used. The horn antenna was used for frequencies above 1000 MHz.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. A 10 dB external attenuator was also used during conducted tests, with internal offset correction in the analyzer. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of 97 dBµV, and a vertical scale of 10 dB per division.

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the Tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

<u>Average</u>

For certain frequencies, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

EUT TESTING

Radiated Emissions

The EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters.

During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode. For radiated measurements from 9 kHz to 30 MHz, the magnetic loop antenna was used. The frequency range of 30 MHz to 1000 MHz was scanned with the biconilog antenna located about 1.5 meter above the ground plane in the vertical polarity. During this scan, the turntable was rotated and all peaks at or near the limit were recorded. A scan of the FM band from 88 to 110 MHz was then made using a reduced resolution bandwidth and frequency span. The biconilog antenna was changed to the horizontal polarity and the above steps were repeated. For frequencies exceeding 1000 MHz, the horn antenna was used. Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission.

A thorough scan of all frequencies was made manually using a small frequency span, rotating the turntable and raising and lowering the antenna from one to four meters as needed. The test engineer maximized the readings with respect to the table rotation, antenna height and configuration of EUT. Maximizing of the EUT was achieved by monitoring the spectrum analyzer on a closed circuit television monitor.

APPENDIX A

TEST SETUP PHOTOGRAPHS

Page 22 of 32 Report No: FC04-069A

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Front View

Page 23 of 32 Report No: FC04-069A

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Back View

APPENDIX B

TEST EQUIPMENT LIST

15.209: 14-1000 MHz				
Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8566B SA	2209A01404	02/26/2003	02/26/2005	00490
HP 8566B SA Display	2403A08241	02/26/2003	02/26/2005	00489
HP 85650A QPA	2811A01267	02/26/2003	02/26/2005	00478
EMCO Loop Antenna	1074	05/21/2003	05/21/2005	00226
Chase CBL6111C Bilog	2456	12/13/2002	12/13/2004	01991
HP 8447D Preamp	1937A02604	03/07/2003	03/07/2005	00099

15.209: 1-10 GHz

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8566B SA	2209A01404	02/26/2003	02/26/2005	00490
HP 8566B SA Display	2403A08241	02/26/2003	02/26/2005	00489
HP 85650A QPA	2811A01267	02/26/2003	02/26/2005	00478
Antenna, Horn EMCO 3115	3413	4/25/2003	4/25/2005	00327
HP 8449B Preamp	3008A00301	10/21/2002	10/18/2004	2010
Cable, Andrews Hardline HF-	NA	06/03/2003	06/03/2005	P04275
005-20				
Cable, WL Gore 2'	149047	04/10/2003	04/10/2005	P01527

15.247(b)(3)

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8566B SA	2209A01404	02/26/2003	02/26/2005	00490
HP 8566B SA Display	2403A08241	02/26/2003	02/26/2005	00489
HP 85650A QPA	2811A01267	02/26/2003	02/26/2005	00478
Chase CBL6111C Bilog	2456	12/13/2002	12/13/2004	01991
HP 8447D Preamp	1937A02604	03/07/2003	03/07/2005	00099

APPENDIX C MEASUREMENT DATA SHEETS

Test Location: CKC Laboratories •5473A Clouds Rest • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer:	Davis Instruments		
Specification:	FCC 15.247C		
Work Order #:	82620	Date:	08/30/2004
Test Type:	Maximized Emissions	Time:	14:37:22
Equipment:	Integrated Sensor Suite	Sequence#:	3
Manufacturer:	Davis Instruments	Tested By:	Randal Clark
Model:	6328	-	
S/N:	Davis 201		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Integrated Sensor Suite*	Davis Instruments	6328	Davis 201	
Support Devices:				
Function	Manufacturer	Model #	S/N	
Power Supply	Davis Instruements	6625	NA	

Test Conditions / Notes:

EUT is an Integrated Sensor Suite with SPARS consisting of the following sensors: Temperature and Humidity (Asperated), Annemometer, Rain Gauge, Solar and UV. Due to the power consumption required to operate the EUT in a test configuration, for the purpose of emissions testing only, the equipment is powed via AC adapter. Equipment is normally powered via solar panel, battery in combination with super cap. Solar panel, battery and supercap are all operational during testing. EUT is continuously transmiting data on Low Mid and High channels. Data is representative of all channels. Frequency Range Investigated: 14-1000MHz. Temperature: 20°C, Relative Humidity: 41%.

Transducer Legend:

T1=Bilog Site B

T2=Amp - S/N 604

T3=Cable -	- 3 Meter	
		-

Measu	rement Data:	Re	eading lis	ted by ma	argin.	Test Distance: 3 Meters					
#	Freq MHz	Rdng dBu V	T1 dB	T2 dB	T3 dB	dB	Dist Table	Corr dBu V	Spec dBu V	Margin dB	Polar Ant
1	863.120M	40.5	+22.3	-27.6	+7.3	uD	+0.0	42.5	46.0	-3.5	Vert
2	804.618M	39.9	+21.5	-27.7	+6.8		+0.0	40.5	46.0	-5.5	Vert
3	811.984M	37.1	+21.6	-27.7	+6.9		+0.0	37.9	46.0	-8.1	Vert
4	797.212M	35.4	+21.4	-27.7	+6.8		+0.0	35.9	46.0	-10.1	Vert
5	974.167M	39.6	+23.9	-27.1	+7.4		+0.0	43.8	54.0	-10.2	Vert
6	966.807M	39.7	+23.8	-27.1	+7.4		+0.0	43.8	54.0	-10.2	Vert
7	967.255M	38.7	+23.8	-27.1	+7.4		+0.0	42.8	54.0	-11.2	Vert
8	974.627M	38.2	+23.9	-27.1	+7.4		+0.0	42.4	54.0	-11.6	Vert
9	221.257M	40.8	+10.0	-26.5	+3.1		+0.0	27.4	46.0	-18.6	Horiz

10	420.098M	33.5	+15.8	-27.3	+4.6	+0.0	26.6	46.0	-19.4	Horiz
11	444.095M	32.2	+16.3	-27.5	+4.8	+0.0	25.8	46.0	-20.2	Horiz
12	228.627M	38.6	+10.5	-26.5	+3.1	+0.0	25.7	46.0	-20.3	Vert
13	213.910M	37.1	+9.4	-26.6	+3.1	+0.0	23.0	43.5	-20.5	Vert
14	217.805M	39.1	+9.7	-26.6	+3.1	+0.0	25.3	46.0	-20.7	Vert
15	265.461M	35.6	+12.3	-26.5	+3.4	+0.0	24.8	46.0	-21.2	Vert
16	199.136M	37.2	+8.3	-26.7	+3.0	+0.0	21.8	43.5	-21.7	Vert
17	243.380M	35.7	+11.6	-26.5	+3.2	+0.0	24.0	46.0	-22.0	Vert
18	396.091M	31.0	+15.3	-27.2	+4.4	+0.0	23.5	46.0	-22.5	Horiz
19	118.068M	34.7	+10.8	-27.2	+2.2	+0.0	20.5	43.5	-23.0	Vert 100
20	372.096M	30.6	+14.7	-27.0	+4.2	+0.0	22.5	46.0	-23.5	Horiz
21	324.446M	31.9	+13.5	-26.7	+3.8	+0.0	22.5	46.0	-23.5	Vert
22	331.861M	31.6	+13.7	-26.7	+3.9	+0.0	22.5	46.0	-23.5	Vert
23	280.081M	32.9	+12.5	-26.5	+3.5	+0.0	22.4	46.0	-23.6	Vert
24	243.383M	34.1	+11.6	-26.5	+3.2	+0.0	22.4	46.0	-23.6	Horiz
25	243.811M	33.8	+11.6	-26.5	+3.3	+0.0	22.2	46.0	-23.8	Horiz
26	247.373M	33.4	+11.8	-26.5	+3.3	+0.0	22.0	46.0	-24.0	Vert
27	265.459M	32.2	+12.3	-26.5	+3.4	+0.0	21.4	46.0	-24.6	Horiz
28	287.647M	31.7	+12.6	-26.5	+3.6	+0.0	21.4	46.0	-24.6	Vert
29	221.280M	34.7	+10.0	-26.5	+3.1	+0.0	21.3	46.0	-24.7	Vert
30	280.079M	31.7	+12.5	-26.5	+3.5	+0.0	21.2	46.0	-24.8	Horiz
31	309.694M	30.9	+13.1	-26.6	+3.7	+0.0	21.1	46.0	-24.9	Vert
32	263.314M	31.8	+12.2	-26.5	+3.4	+0.0	20.9	46.0	-25.1	Vert
33	267.628M	31.6	+12.3	-26.5	+3.4	+0.0	20.8	46.0	-25.2	Vert
34	224.577M	33.6	+10.2	-26.5	+3.1	+0.0	20.4	46.0	-25.6	Vert
35	110.672M	31.4	+10.3	-27.2	+2.1	+0.0	16.6	43.5	-26.9	Vert

36	247.365M	29.9	+11.8	-26.5	+3.3	+0.0	18.5	46.0	-27.5	Horiz	
37	913.016M	44.0	+23.0	-27.3	+7.4	+0.0	47.1	82.7	-35.6	Horiz	
								15.247(c) l	Limit		
38	900.438M	44.0	+22.8	-27.3	+7.5	+0.0	47.0	82.7	-35.7	Horiz	
								15.247(c) Limit			
39	900.459M	43.5	+22.8	-27.3	+7.5	+0.0	46.5	82.7	-36.2	Horiz	
								15.247(c) l	Limit		
40	942.482M	40.4	+23.4	-27.2	+7.3	+0.0	43.9	82.7	-38.8	Horiz	
								15.247(c) l	Limit		
41	913.007M	40.5	+23.0	-27.3	+7.4	+0.0	43.6	82.7	-39.1	Vert	
								15.247(c) l	Limit		
42	863.565M	41.6	+22.3	-27.6	+7.3	+0.0	43.6	82.7	-39.1	Vert	
								15.247(c) l	Limit		
43	912.997M	39.5	+23.0	-27.3	+7.4	+0.0	42.6	82.7	-40.1	Horiz	

Test Location:	CKC Laboratories	•5473A Clouds Rest •	Mariposa, CA 95338	• 1-800-500-4EMC (4362)
----------------	------------------	----------------------	--------------------	-------------------------

Customer:	Davis Instruments		
Specification:	FCC 15.209		
Work Order #:	82620	Date:	08/24/2004
Test Type:	Maximized Emissions	Time:	16:14:43
Equipment:	Integrated Sensor Suite	Sequence#:	1
Manufacturer:	Davis Instruments	Tested By:	Randal Clark
Model:	6328		
S/N:	Davis 201		
Eauinment Und	er Test (* = EUT):		

Function	Manufacturer	Model #	S/N	
Integrated Sensor Suite*	Davis Instruments	6328	Davis 201	
Support Devices:				
Function	Manufacturer	Model #	S/N	
Power Supply	Davis Instruments	6625	NA	

Test Conditions / Notes:

EUT is an Integrated Sensor Suite with SPARS consisting of the following sensors: Temperature and Humidity (Asperated), Anemometer, Rain Gauge, Solar and UV. Due to the power consumption required to operate the EUT in a test configuration, for the purpose of emissions testing only, the equipment is powered via AC adapter. Equipment is normally powered via solar panel, battery in combination with super cap. Solar panel, battery and supercap are all operational during testing. EUT is continuously transmitting data on the indicated channel. Dwell time correction factor used in accordance with DA 00-705. Maximum packet length is 6.7ms, which transmits once every 2.5625 seconds. Therefore, longest duration within a 100ms window is 7.4ms. Correction factor calculated as follows: 10*LOG(7.4/100) = -11.3dB. Dwell time correction factor applied only to those frequencies, which are harmonics of the carrier. Frequency Range Investigated: 1-10GHz. Temperature: 20°C, Relative Humidity: 41%.

Transducer Legend:

T1=Amp - S/N 301 T3=Cable - 3 Meter to bulkhead T5=WL Gore SN 1065 AN P004301 T7=DTCF T2=Horn AN 00327 1-18GHz T4=Cable HF-005-20 T6=Cable HF P01527

Measu	rement Data:	Re	eading lis	ted by ma	argin.	in. Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	5413.980M	44.5	-34.7	+34.2	+7.7	+3.4	+0.0	45.2	54.0	-8.8	Horiz
			+0.9	+0.5	-11.3				Low Chan	nel	100
2	2782.370M	51.7	-35.0	+29.4	+5.3	+2.1	+0.0	43.3	54.0	-10.7	Vert
			+0.7	+0.4	-11.3				High Chan	inel	
3	4636.980M	44.9	-34.6	+32.5	+7.2	+2.9	+0.0	43.1	54.0	-10.9	Vert
			+0.9	+0.6	-11.3				High Chan	inel	
4	4574.525M	44.8	-34.5	+32.4	+7.1	+2.9	+0.0	42.9	54.0	-11.1	Horiz
			+0.9	+0.6	-11.3				Mid Chanr	nel	100
5	2744.680M	51.1	-35.0	+29.3	+5.3	+2.1	+0.0	42.6	54.0	-11.4	Vert
			+0.7	+0.4	-11.3				Mid Chanr	nel	100
6	4574.580M	44.1	-34.5	+32.4	+7.1	+2.9	+0.0	42.2	54.0	-11.8	Vert
			+0.9	+0.6	-11.3				Mid Chanr	nel	107
7	1352.200M	57.4	-35.7	+24.7	+3.6	+1.4	+0.0	40.9	54.0	-13.1	Vert
			+0.5	+0.3	-11.3				Low Chan	nel	

CKC AM Testing the Future

8	3609.580M	45.4	-35.0	+31.2	+6.2	+2.5	+0.0	40.3	54.0 -13.7	Vert
			+0.7	+0.6	-11.3				Low Channel	100
9	2782.420M	47.5	-35.0	+29.4	+5.3	+2.1	+0.0	39.1	54.0 -14.9	Horiz
			+0.7	+0.4	-11.3				High Channel	
10) 2744.620M	47.3	-35.0	+29.3	+5.3	+2.1	+0.0	38.8	54.0 -15.2	Horiz
			+0.7	+0.4	-11.3				Mid Channel	111
1	1 3659.530M	43.6	-35.0	+31.4	+6.2	+2.5	+0.0	38.7	54.0 -15.3	Vert
			+0.8	+0.5	-11.3				Mid Channel	107
12	2 2706.950M	47.4	-35.0	+29.2	+5.2	+2.1	+0.0	38.7	54.0 -15.3	Vert
			+0.7	+0.4	-11.3				Low Channel	100
1.	3 1372.500M	55.0	-35.7	+24.7	+3.6	+1.4	+0.0	38.5	54.0 -15.5	Vert
			+0.5	+0.3	-11.3				Mid Channel	100
14	4 2707.050M	45.9	-35.0	+29.2	+5.2	+2.1	+0.0	37.2	54.0 -16.8	Horiz
			+0.7	+0.4	-11.3				Low Channel	100
1:	5 1308.000M	52.9	-35.7	+24.7	+3.6	+1.4	+0.0	36.3	54.0 -17.7	Vert
			+0.4	+0.3	-11.3				Low Channel	
10	5 1320.300M	52.9	-35.7	+24.7	+3.6	+1.4	+0.0	36.3	54.0 -17.7	Vert
			+0.4	+0.3	-11.3				Mid Channel	100
1'	7 1619.190M	51.0	-35.4	+25.5	+4.0	+1.6	+0.0	36.2	54.0 -17.8	Vert
			+0.5	+0.3	-11.3				High Channel	
18	8 1626.540M	50.9	-35.4	+25.5	+4.0	+1.6	+0.0	36.2	54.0 -17.8	Vert
			+0.6	+0.3	-11.3				High Channel	
19	9 1328.100M	52.6	-35.7	+24.7	+3.6	+1.4	+0.0	36.1	54.0 -17.9	Vert
			+0.5	+0.3	-11.3				Mid Channel	100
20) 1301.000M	52.1	-35.7	+24.7	+3.6	+1.4	+0.0	35.5	54.0 -18.5	Vert
			+0.4	+0.3	-11.3				Low Channel	
2	1340.400M	51.6	-35.7	+24.7	+3.6	+1.4	+0.0	35.1	54.0 -18.9	Vert
			+0.5	+0.3	-11.3				High Channel	
22	2 1335.200M	51.5	-35.7	+24.7	+3.6	+1.4	+0.0	35.0	54.0 -19.0	Vert
			+0.5	+0.3	-11.3				Mid Channel	100
23	3 1600.910M	48.6	-35.4	+25.4	+3.9	+1.6	+0.0	33.6	54.0 -20.4	Vert
			+0.5	+0.3	-11.3				Mid Channel	100
24	4 1580.600M	48.2	-35.4	+25.3	+3.9	+1.6	+0.0	33.1	54.0 -20.9	Vert
			+0.5	+0.3	-11.3				Low Channel	
2	5 1390.600M	49.1	-35.6	+24.8	+3.7	+1.4	+0.0	32.9	54.0 -21.1	Vert
			+0.5	+0.3	-11.3				High Channel	
20	5 1616.600M	46.9	-35.4	+25.5	+4.0	+1.6	+0.0	32.1	54.0 -21.9	Horiz
			+0.5	+0.3	-11.3				Low Channel	138
2	7 1804.750M	73.3	-35.3	+26.4	+4.2	+1.7	+0.0	59.9	82.7 -22.8	Vert
			+0.6	+0.3	-11.3				Low Channel	100
28	8 1829.755M	71.1	-35.3	+26.5	+4.2	+1.7	+0.0	57.8	82.7 -24.9	Vert
			+0.6	+0.3	-11.3				Mid Channel	100
29	9 1854.820M	69.4	-35.3	+26.6	+4.2	+1.7	+0.0	56.2	82.7 -26.5	Vert
			+0.6	+0.3	-11.3				High Channel	
30) 1829.745M	68.2	-35.3	+26.5	+4.2	+1.7	+0.0	54.9	82.7 -27.8	Horiz
			+0.6	+0.3	-11.3				Mid Channel	111
3	1804.750M	67.2	-35.3	+26.4	+4.2	+1.7	+0.0	53.8	82.7 -28.9	Horiz
			+0.6	+0.3	-11.3				Low Channel	100
32	2 1854.880M	66.1	-35.3	+26.6	+4.2	+1.7	+0.0	52.9	82.7 -29.8	Horiz
			+0.6	+0.3	-11.3				High Channel	

Test Location:	CKC Laboratories	•5473A Clouds Rest •	Mariposa, CA 95338	• 1-800-500-4EMC (4362)
----------------	------------------	----------------------	--------------------	-------------------------

Customer:	Davis Instruments		
Specification:	15.247(b)(3)		
Work Order #:	82620	Date:	08/24/2004
Test Type:	Maximized Emissions	Time:	16:57:03
Equipment:	Integrated Sensor Suite	Sequence#:	2
Manufacturer:	Davis Instruments	Tested By:	Randal Clark
Model:	6328		
S/N:	Davis 201		
E II.			

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Integrated Sensor Suite*	Davis Instruments	6328	Davis 201
Support Devices:			
Function	Manufacturer	Model #	S/N
Power Supply	Davis Instruments	6625	NA

Test Conditions / Notes:

EUT is an Integrated Sensor Suite with SPARS consisting of the following sensors: Temperature and Humidity (Asperated), Anemometer, Rain Gauge, Solar and UV. Due to the power consumption required to operate the EUT in a test configuration, for the purpose of emissions testing only, the equipment is powered via AC adapter. Equipment is normally powered via solar panel, battery in combination with super cap. Solar panel, battery and supercap are all operational during testing. EUT is continuously transmitting data on the indicated channel. Frequency Range Investigated: Carrier. Temperature: 20°C, Relative Humidity: 41%.

Transducer Legend:

T1=Amp - S/N 604 T2=Bilog Site B T3=Cable - 3 Meter

Measurement Data: Reading listed by margin. Test Distance: 3 Meters Polar Rdng T1 T2 Т3 Dist Corr Spec # Freq Margin dB dB dB $dB\mu V/m dB\mu V/m$ dB MHz $dB\mu V$ dB Table Ant 927.446M 99.4 -27.2 +23.2102.7 127.0 -24.3 Verti 1 +7.3+0.0197 2 914.914M 99.5 -27.3 +23.0+7.4+0.0102.6 127.0 -24.4Verti 196 -27.3 902.365M 98.5 +22.8+7.5+0.0101.5 127.0 -25.5 Verti 3 194 914.897M 97.6 -27.3 +23.0+7.4+0.0100.7 127.0 -26.3 Horiz 4 164 5 902.353M 96.5 -27.3 +22.8+7.5+0.099.5 127.0 -27.5 Horiz 184 927.445M 92.5 -27.2 +23.2+7.3+0.095.8 127.0 -31.2 Horiz 6 197