

CERTIFICATION TEST REPORT

FOR THE

VANTAGE PRO CONSOLE, 6310W

FCC PART 15 SUBPART C

COMPLIANCE

DATE OF ISSUE: DECEMBER 2, 1999

PREPARED FOR:

PREPARED BY:

Joyce Walker

Davis Intruments 3465 Diablo Ave Hayward, CA 94545

P.O. No: W.O. No: 73018

Report No: FC99-033

DOCUMENTATION CONTROL:

Mariposa, CA 95338 Date of test: November 15-17, 1999

CKC Laboratories, Inc.

5473A Clouds Rest

APPROVED BY:

Dennis Ward

Tracy Phillips Documentation Control Supervisor CKC Laboratories, Inc. Dennis Ward Director of Laboratories CKC Laboratories, Inc.

This report contains a total of 29 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Summary Of Results	4
Equipment Under Test (EUT) Description	4
Measurement Uncertainty	4
EUT Operating Frequency	4
Peripheral Devices	4
Report Of Measurements	
Table 1: Fundamental Emission Levels - FCC Part 15.249	5
Table 2: Six Highest Radiated Emission Levels	6
Table 3: Six Highest Conducted Emission Levels - FCC Part 15.207	7
Table A: List of Test Equipment	8
EUT Setup	9
Test Instrumentation And Analyzer Settings	10
Table B : Analyzer Bandwidth Settings Per Frequency Range	10
Spectrum Analyzer Detector Functions	11
Peak	11
Quasi-Peak	11
Average	11
Test Methods	12
Radiated Emissions Testing	12
Conducted Emissions Testing	13
Transmitter Characteristics	13
Occupied Bandwidth	13
Sample Calculations	14
Appendix A : Information About The Equipment Under Test	15
I/O Ports	16
Crystal Oscillators	16
Printed Circuit Boards	16
Cable Information	16
Required EUT Changes To Comply	16
Photograph Showing Radiated Emissions	17
Photograph Showing Radiated Emissions	18
Photograph Showing Conducted Emissions	19
Appendix B : Measurement Data Sheets	20
Occupied Bandwidth Plot	21
FCC Part 15.35 Averaging Plot	22

CKC Laboratories, Inc. has Certificates of Accreditation from the following agencies: DATech (Germany); A2LA (USA); FCC (USA); VCCI (Japan); BSMI (Taiwan); HOKLAS (Hong Kong). **CKC Laboratories, Inc. has Letters of Acceptance through an MRA for the following agencies**: ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); TUV Rheinland-Germany; TUV Rheinland-Korea; TUV Rheinland-Russia; Radio Communication Agency (RA); NEMKO (Norway).

ADMINISTRATIVE INFORMATION

DATE OF TEST:	November 15-17, 1999			
PURPOSE OF TEST:	To demonstrate the compliance of the Vantage Pro Console, 6310W, with the requirements for FCC Part 15 Subpart C devices.			
MANUFACTURER:	Davis Intruments 3465 Diablo Ave Hayward, CA 94545			
REPRESENTATIVE:	Brett Preston			
TEST LOCATION:	CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338			
TEST PERSONNEL:	D.Oaks			
TEST METHOD:	ANSI C63.4 1992			
FREQUENCY RANGE TESTED:	450 kHz – 10 GHz			
EQUIPMENT UNDER TEST:	Weather StationManuf:Davis InstrumentsModel:6310WSerial:N/AFCC ID:IR2DWW6310 (pending)			

SUMMARY OF RESULTS

The Davis Intruments Vantage Pro Console, 6310W, was tested in accordance with ANSI C63.4 1992 for compliance with FCC Part 15 Subpart C devices.

As received, the above equipment was found to be fully compliant with the limits of FCC Part 15 Subpart C devices. The results in this report apply only to the items tested, as identified herein.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

Wireless weather station for home or commercial use. Telemetry is OOK at 916.5 MHz.

MEASUREMENT UNCERTAINTY

Associated with data in this report is a ± 4 dB measurement uncertainty.

EUT OPERATING FREQUENCY

The EUT was operating at 916.5 MHz.

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Portable Laptop

Manuf:	Toshiba
Model:	T3200SXC
Serial:	04113358
FCC ID:	CJ6UN560

REPORT OF MEASUREMENTS

The following tables report the highest worst case levels recorded during the tests performed on the Vantage Pro Console, 6310W. All readings taken are peak readings unless otherwise noted by a "Q" or "A". The data sheets from which these tables were compiled are contained in Appendix B.

	Table 1: Fundamental Emission Levels - FCC Part 15.249									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIC Amp dB	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES	
916.496	89.0	23.5	-27.3	6.8		92.0	93.9	-1.9	Н	
916.498	89.3	23.5	-27.3	6.8		92.3	93.9	-1.6	V	
Test Method: Spec Limit : Test Distance:	: FCC Part 15.249					V = V N = I	Horizontal F Vertical Pola No Polarizat Dipole Read	arization ion		

COMMENTS: EUT operating in a normal configuration, receiving and processing data. EUT operating on 120VAC. Vantage Link installed on EUT and connected to the Portable computer.

Q = Quasi Peak Reading A = Average Reading

	Table 2. Six Highest Raulated Emission Levels - FCC 15.205/15.207/15.247									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIC Amp dB	<u>ON FACT</u> Cable dB	ORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES	
38.796	46.1	11.0	-27.1	0.7		30.7	40.0	-9.3	V	
42.464	50.3	10.8	-27.0	0.8		34.9	40.0	-5.1	VQ	
44.266	48.6	10.7	-27.0	0.8		33.1	40.0	-6.9	V	
46.138	45.8	10.6	-27.0	0.8		30.2	40.0	-9.8	V	
49.807	47.5	10.4	-26.9	0.9		31.9	40.0	-8.1	V	
4582.479	32.6	32.9	-32.6	14.6		47.5	54.0	-6.5	Н	

Table 2: Six Highest Radiated Emission Levels - FCC 15.205/15.209/15.249

Test Method: Spec Limit : Test Distance: ANSI C63.4 1992 FCC Part 15.205/15.209/15.249 3 Meters NOTES: H =

H = Horizontal Polarization V = Vertical Polarization

N = No Polarization

D = Dipole Reading

Q = Quasi Peak Reading

A = Average Reading

COMMENTS: EUT operating in a normal configuration, receiving and processing data. EUT operating on 120VAC. Vantage Link installed on EUT and connected to the Portable computer. FCC 15.35 = 20Log(on time/100ms), where "on time" ≈ 12.5 ms

= 20 Log(12.5 ms/100 ms)

= 20 Log(0.125)

= 20(-0.903)

= -18.0617

Therefore, -18dB was the factor used.

	Table 3: Six Highest Conducted Emission Levels - FCC Part 15.207										
FREQUENCY MHz	METER READING dBµV	COR Lisn dB	dB	ON FACT dB	TORS dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES		
3.849333	34.1	0.1				34.2	48.0	-13.8	В		
11.475810	33.6	0.2				33.8	48.0	-14.2	В		
15.455810	33.5	0.3				33.8	48.0	-14.2	W		
19.114060	33.9	0.3				34.2	48.0	-13.8	W		
22.736790	33.5	0.3				33.8	48.0	-14.2	W		
23.944360	33.5	0.4				33.9	48.0	-14.1	W		

Test Method: Spec Limit : ANSI C63.4 1992 FCC Part 15.207 NOTES: Q = Quasi Peak Reading A = Average Reading B = Black Lead W = White Lead

COMMENTS: EUT operating in a normal configuration, receiving and processing data. EUT operating on 120VAC. Vantage Link installed on EUT and connected to the Portable computer.

TABLE A

LIST OF TEST EQUIPMENT

Barn Lab

- Spectrum Analyzer, Hewlett Packard, Model No. 8566B, CKC 1, S/N 2403A08241 (Display Unit), S/N 2209A01404 (rf Unit). Calibration date: July 7, 1999. Calibration due date: July 7, 2000.
- 2. Preamp (1-26.5GHz), Hewlett Packard, Model No. 8449B, S/N 3008A00301. Calibration date: October 27, 1999. Calibration due date: October 27, 2000.
- 3. Preamp, Hewlett Packard, Model No. 8447D, S/N 1937A02604. Calibration Date: April 28, 1999. Calibration Due: April 28, 2000.
- 4. Quasi-Peak Adapter, Hewlett Packard, Model No. 85650A, S/N 2811A01267. Calibration Date: July 7, 1999. Calibration Due; July 7, 2000.
- 5. Biconical Antenna, A & H Systems, Model No. SAS-200/542, S/N 156. Calibration Date: May 20, 1999. Calibration Due: May 20, 2000.
- 6. Log Periodic Antenna, A & H Systems, Model No. SAS-200/512, S/N 154. Calibration Date: May 20, 1999. Calibration Due: May 20, 2000.
- 7. Horn Antenna, EMCO, Model No. 3115, S/N 4085. Calibration date: February 17, 1999. Calibration due date: February 17, 2000.
- 8. LISN (FCC), Solar Electronics, S/N 855996, 992. Calibration date: June 4, 1999. Calibration due date: June 4, 2000.
- 9. Mariposa Site B (Barn). Calibration date: July 6, 1999. Calibration due date: July 6, 2000.
- 10. Test software, EMI Test 3.08.

EUT SETUP

The equipment under test (EUT) and the peripheral(s) listed were set up in a manner that represented their normal use. Any special conditions required for the EUT to operate normally are identified in the comments that accompany Tables 1 for fundamental emissions, Table 2 for radiated emissions and Table 3 for conducted emissions. Additionally, a complete description of all the ports and I/O cables is included on the information sheets contained in Appendix A.

During radiated emissions testing, the EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters. This configuration is typical for radiated emissions testing of table top devices.

I/O cables were connected to the EUT and peripheral in the manner required for normal operation of the system. Excess cabling was bundled in the center in a serpentine fashion using 30-40 centimeter lengths.

During conducted emissions testing, the EUT was located on a wooden table measuring approximately 80 cm high, 1 meter deep, and 1.5 meters in length. One wall of the room where the EUT is located, has a minimum 2 meter by 2 meter conductive plane. The EUT was mounted on the wooden table 40 cm away from the conductive plane, and 80 cm from any other conductive surface.

The vertical metal plane used for conducted emissions was grounded to the earth. Power to the EUT was provided through a LISN. The LISN was grounded to the ground plane. All other objects were kept a minimum of 80 cm away from the EUT during the conducted test. Conducted emissions tests required the use of the LISN's listed in Table A.

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Table A were used to collect both the radiated and conducted emissions data for the Vantage Pro Console, 6310W. For radiated measurements below 300 MHz, the biconical antenna was used. For frequencies from 300 to 1000 MHz, the log periodic antenna was used. Frequencies over 1000 MHz were scanned using a horn antenna. All antennas were located at a distance of 3 meters from the edge of the EUT. Conducted emissions tests required the use of the FCC type LISN's.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. A 10 dB external attenuator was also used during conducted tests, with internal offset correction in the analyzer. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of 97 dB μ V, and a vertical scale of 10 dB per division.

TABLE B : ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE								
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING					
CONDUCTED EMISSIONS	450 kHz	30 MHz	9 kHz					
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz					
RADIATED EMISSIONS	1000 MHz	10 GHz	1 MHz					

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in Tables 1-3 indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data for the Vantage Pro Console, 6310W.

<u>Peak</u>

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

<u>Quasi-Peak</u>

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

<u>Average</u>

When the frequencies exceed 1 GHz, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

TEST METHODS

The radiated and conducted emissions data of the Vantage Pro Console, 6310W, was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the "Sample Calculations". The corrected data was then compared to the FCC Part 15, Subpart C, Section B emissions limits to determine compliance.

Preliminary and final measurements were taken in order to better ensure that all emissions from the EUT were found and maximized.

Radiated Emissions Testing

During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode with the I/O cables and line cords facing the antenna. The frequency range of 30 MHz - 88 MHz was then scanned with the biconical antenna located about 1.5 meter above the ground plane in the vertical configuration. During this scan, the turntable was rotated and all peaks which were at or near the limit were recorded. The frequency range of 100 - 300 MHz was scanned with the biconical antenna in the same manner, and the peaks recorded. Lastly, a scan of the FM band from 88 - 110 MHz was made, using a reduced resolution bandwidth and a reduced frequency span. The biconical antenna was changed to the horizontal polarity and the above steps were repeated. After changing to the log periodic antenna in the horizontal configuration, the frequency range of 300 - 1000 MHz was scanned. The log periodic antenna was changed to the vertical polarity and the frequency range of 300 - 1000 MHz was again scanned. Frequencies over 1000 MHz were scanned using a horn antenna. Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission.

For the final radiated scan, the equipment was again positioned with its I/O and power cables facing the antenna. A thorough scan of all frequencies was manually made using a small frequency span, rotating the turntable as needed. Comparison with the previously recorded measurements was then made.

Using the peak readings from both scans as a guide, the test engineer then maximized the readings with respect to the table rotation, antenna height and configuration of the peripheral(s) and cables. Maximizing of the cables was achieved by monitoring the spectrum analyzer on a closed circuit television monitor while the EUT cables were being moved and rearranged on the EUT table for maximum emissions. Photographs showing the final worst case configuration of the EUT are contained in Appendix A.

Conducted Emissions Testing

For conducted emissions testing, a 30 to 50 second sweep time was used for automated measurements in the frequency bands of 450 kHz to 1.705 MHz, 1.705 MHz to 3 MHz, and 3 MHz to 30 MHz. All readings within 20 dB of the limit were recorded. At frequencies where the recorded emissions were close to the limit, further investigation was performed manually at a slower sweep rate.

TRANSMITTER CHARACTERISTICS

Occupied Bandwidth Measurements

The fundamental frequency was kept within the permitted band 902 - 928 MHz. Refer to Appendix B for the occupied bandwidth plots.

SAMPLE CALCULATIONS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in Tables 1-3. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula:

Meter reading (dBµV) + Antenna Factor (dB) + Cable Loss (dB) - Distance Correction (dB) - Pre-amplifier Gain (dB)

= Corrected Reading ($dB\mu V/m$)

This reading was then compared to the applicable specification limit to determine compliance.

A typical data sheet will display the following in column format:

#	Freq MHz	Rdng dBuV	Cable	Amp.	Bicon	Horn	Log	Dist	Corr dBuV/m	Spec	Margin	Polar
	LISN	FCC 15.35										

means reading number

Freq MHz is the frequency in MHz of the obtained reading.

Rdng dBuV is the reading obtained on the spectrum analyzer in $dB\mu V$.

Amp. is short for the preamplifier factor or gain in dB.

Bicon is the biconical antenna factor in dB.

Log is the log periodic antenna factor in dB.

Horn is the horn antenna factor in dB.

Cable is the cable loss in dB of the coaxial cable on the OATS.

Dist is the distance factor (in dB). It is used when testing at a different test distance than the one stated in the spec.

Corr dB\muV/m is the corrected reading which is now in dB μ V/m (field strength).

Spec is the specification limit (dB) stated in the agency's regulations.

Margin is the closeness to the specified limit in dB; + is over and - is under the limit.

Polar is the Polarity of the antenna with respect to earth.

LISN is the listen factor in dB.

FCC 15.35 is the average correction called in FCC Part 15.35.

APPENDIX A

INFORMATION ABOUT THE EQUIPMENT UNDER TEST

Page 15 of 29 Report No: FC99-033

INFORMATION ABOUT THE EQUIPMENT UNDER TEST							
Test Software/Firmware:							
CRT was displaying:							
Power Supply Manufacturer:	Ablex in Hong Kong						
Power Supply Part Number:	118F-3-200D						
AC Line Filter Manufacturer:							
AC Line Filter Part Number:							
Line voltage used during testing:	120 VAC						

I/O PORTS						
Туре	#					
RS232 to PC	1					

CRYSTAL OSCILLATORS						
Туре	Freq In					
	MHz					
Console uP	1.8					
Console Realtime Clock	.032					

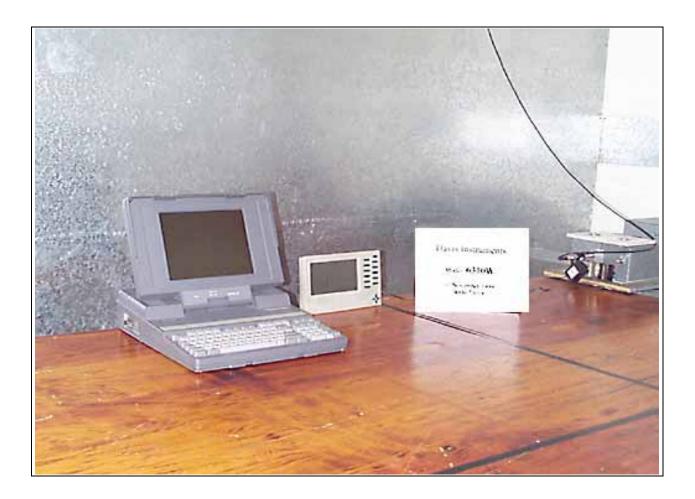
PRINTED CIRCUIT BOARDS								
Function	Model & Rev	Clocks, MHz	Layers	Location				
Console Board	Rev P	1.8, .032	2					
LCD Driver Board	Rev P	.002	2					
VantageLink Board	Rev P		2					

CABLE INFORMATION

Not provided by customer.

REQUIRED EUT CHANGES TO COMPLY: None

PHOTOGRAPH SHOWING RADIATED EMISSIONS

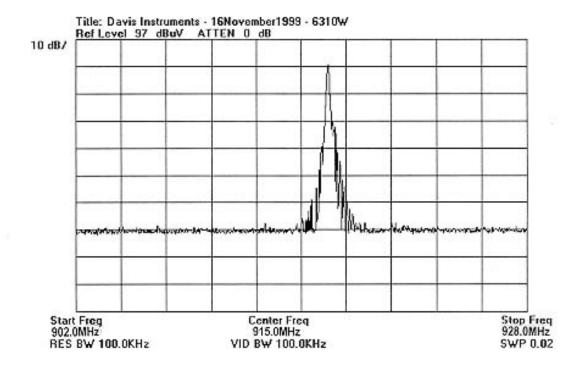

Radiated Emissions - Front View

PHOTOGRAPH SHOWING RADIATED EMISSIONS

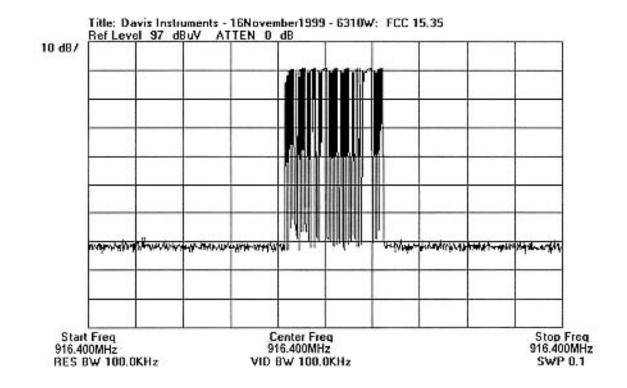
Radiated Emissions - Back View

PHOTOGRAPH SHOWING CONDUCTED EMISSIONS

Conducted Emissions - Front View


Page 19 of 29 Report No: FC99-033

APPENDIX B


MEASUREMENT DATA SHEETS

Page 20 of 29 Report No: FC99-033

Occupied Bandwidth Plot

FCC Part 15.35 Averaging Plot

FCC 15.35 = 20Log(on time/100ms), where "on time" ≈ 12.5 ms

= 20 Log(12.5 ms/100 ms)= 20 Log(0.125)

-20L0g(0.123)-20(-0.903)

$$-20(-0.903)$$

Therefore, -18dB was the factor used.

Test Location:	CKC Laboratories, Inc.	•	5473A Clouds Rest •	Mariposa, CA 95338
----------------	------------------------	---	---------------------	--------------------

Customer:	Davis Instruments		
Specification:	FCC 15.249 (a)		
Work Order #:	73018	Date:	Tue Nov-16-1999
Test Type:	Maximized Emissions	Time:	16:32:56
Equipment:	Weather Station	Sequence#:	16
Manufacturer:	Davis Instruments	Tested By:	D.Oaks
Model:	6310W		
S/N:	N/A		

Function	Manufacturer	Model #	S/N	
Weather Station*	Davis Instruments	6310W	N/A	
Summant Daviage				

Support Devices:				
Function	Manufacturer	Model #	S/N	
Portable Laptop	Toshiba	T3200SXC	04113358	

Test Conditions / Notes:

EUT operating in a normal configuration, receiving and processing data. EUT operating on 120VAC. Vantage Link installed on EUT and connected to the Portable computer.

Measu	rement Data:	R	eading lis	ted by m	nargin.	Test Distance: 3 Meters					
			Amp	Log	Cable						
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	916.498M	89.3	-27.3	+23.5	+6.8		+0.0	92.3	93.9	-1.6	Vert
2	916.496M	89.0	-27.3	+23.5	+6.8		+0.0	92.0	93.9	-1.9	Horiz

Test Location:	CKC Laboratories, Inc.	•	5473A Clouds Rest •	Mariposa, CA 95338
----------------	------------------------	---	---------------------	--------------------

Customer: Specification:	Davis Instruments FCC 15.205/15.209/15.249		
Work Order #:	73018	Date:	Tue Nov-16-1999
Test Type:	Maximized Emissions	Time:	17:14:48
Equipment:	Weather Station	Sequence#:	5
Manufacturer:	Davis Instruments	Tested By:	D.Oaks
Model:	6310W		
S/N:	N/A		

Function	Manufacturer	Model #	S/N
Weather Station*	Davis Instruments	6310W	N/A

Support Devices:

Support 2 critecor				
Function	Manufacturer	Model #	S/N	
Portable Laptop	Toshiba	T3200SXC	04113358	

Test Conditions / Notes:

EUT operating in a normal configuration, receiving and processing data. EUT operating on 120VAC. Vantage Link installed on EUT and connected to the Portable computer.

FCC 15.35 = 20Log(on time/100ms), where "on time" $\cong 12.5$ ms

= 20Log(12.5ms/100ms) = 20Log(0.125) = 20(-0.903) = -18.0617

Therefore, -18dB was the factor used.

 Measurement Data:
 Reading listed by margin.

 Amp
 Bicon
 Log
 O

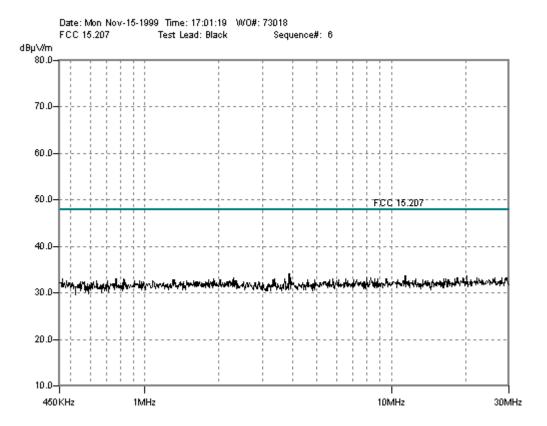
y margin. Test Distance: 3 Meters

			Amp	Bicon	Log	Cable					
#	Freq	Rdng		Horn	Cable	FCC	Dist	Corr	Spec	Margin	Polar
						15.35					
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
	1 42.464M	50.3	-27.0	+10.8	+0.0	+0.8	+0.0	34.9	40.0	-5.1	Vert
	QP		+0.0	+0.0	+0.0	+0.0					
	^ 42.486M	53.6	-27.0	+10.8	+0.0	+0.8	+0.0	38.2	40.0	-1.8	Vert
			+0.0	+0.0	+0.0	+0.0					
	3 4582.479M	32.6	+0.0	+0.0	+0.0	+0.0	+0.0	47.5	54.0	-6.5	Horiz
			-32.6	+32.9	+14.6	+0.0					
	4 44.266M	48.6	-27.0	+10.7	+0.0	+0.8	+0.0	33.1	40.0	-6.9	Vert
			+0.0	+0.0	+0.0	+0.0					
	5 49.807M	47.5	-26.9	+10.4	+0.0	+0.9	+0.0	31.9	40.0	-8.1	Vert
			+0.0	+0.0	+0.0	+0.0					
	6 38.796M	46.1	-27.1	+11.0	+0.0	+0.7	+0.0	30.7	40.0	-9.3	Vert
			+0.0	+0.0	+0.0	+0.0					
	7 46.138M	45.8	-27.0	+10.6	+0.0	+0.8	+0.0	30.2	40.0	-9.8	Vert
			+0.0	+0.0	+0.0	+0.0					
	8 2749.484M	53.0	+0.0	+0.0	+0.0	+0.0	+0.0	43.7	54.0	-10.3	Vert
	Ave		-32.5	+31.0	+10.2	-18.0					
	^ 2749.484M	53.0	+0.0	+0.0	+0.0	+0.0	+0.0	61.7	54.0	+7.7	Vert
			-32.5	+31.0	+10.2	+0.0					
	10 47.968M	45.1	-26.9	+10.5	+0.0	+0.9	+0.0	29.6	40.0	-10.4	Vert
	QP		+0.0	+0.0	+0.0	+0.0					
		-							-	-	

^	48.007M	50.0	-26.9	+10.5	+0.0	+0.9	+0.0	34.5	40.0	-5.5	Vert
			+0.0	+0.0	+0.0	+0.0					
12	40.594M	44.3	-27.1	+10.9	+0.0	+0.7	+0.0	28.8	40.0	-11.2	Vert
			+0.0	+0.0	+0.0	+0.0					
13	3665.994M	31.2	+0.0	+0.0	+0.0	+0.0	+0.0	42.1	54.0	-11.9	Horiz
			-33.1	+32.4	+11.6	+0.0					
14	204.408M	37.4	-26.5	+18.2	+0.0	+2.3	+0.0	31.4	43.5	-12.1	Vert
			+0.0	+0.0	+0.0	+0.0					
15	1832.988M	60.8	+0.0	+0.0	+0.0	+0.0	+0.0	41.0	54.0	-13.0	Vert
	Ave		-35.4	+27.3	+6.3	-18.0					
^	1832.984M	60.8	+0.0	+0.0	+0.0	+0.0	+0.0	59.0	54.0	+5.0	Vert
			-35.4	+27.3	+6.3	+0.0					
17	68.299M	44.2	-26.8	+8.1	+0.0	+1.0	+0.0	26.5	40.0	-13.5	Vert
			+0.0	+0.0	+0.0	+0.0					
18	1832.982M	60.2	+0.0	+0.0	+0.0	+0.0	+0.0	40.4	54.0	-13.6	Horiz
	Ave		-35.4	+27.3	+6.3	-18.0					
^	1832.982M	60.2	+0.0	+0.0	+0.0	+0.0	+0.0	58.4	54.0	+4.4	Horiz
			-35.4	+27.3	+6.3	+0.0					
20	53.544M	41.8	-26.9	+10.0	+0.0	+0.9	+0.0	25.8	40.0	-14.2	Vert
			+0.0	+0.0	+0.0	+0.0					
21	3665.974M	40.3	+0.0	+0.0	+0.0	+0.0	+0.0	33.2	54.0	-20.8	Vert
	Ave		-33.1	+32.4	+11.6	-18.0					
^	3665.980M	40.3	+0.0	+0.0	+0.0	+0.0	+0.0	51.2	54.0	-2.8	Vert
			-33.1	+32.4	+11.6	+0.0					
23	2749.481M	41.9	+0.0	+0.0	+0.0	+0.0	+0.0	32.6	54.0	-21.4	Horiz
	Ave		-32.5	+31.0	+10.2	-18.0					
~	2749.508M	41.9	+0.0	+0.0	+0.0	+0.0	+0.0	50.6	54.0	-3.4	Horiz
			-32.5	+31.0	+10.2	+0.0					
25	5498.976M	28.5	+0.0	+0.0	+0.0	+0.0	+0.0	31.2	54.0	-22.8	Vert
	Ave		-32.2	+34.5	+18.4	-18.0					
^	5498.976M	28.5	+0.0	+0.0	+0.0	+0.0	+0.0	49.2	54.0	-4.8	Vert
			-32.2	+34.5	+18.4	+0.0					
27	4582.486M	34.0	+0.0	+0.0	+0.0	+0.0	+0.0	30.9	54.0	-23.1	Vert
	Ave		-32.6	+32.9	+14.6	-18.0					
^	4582.486M	34.0	+0.0	+0.0	+0.0	+0.0	+0.0	48.9	54.0	-5.1	Vert
			-32.6	+32.9	+14.6	+0.0					

Test Location:	CKC Laboratories, Inc.	•	5473A Clouds Rest •	Mariposa, CA 95338
----------------	------------------------	---	---------------------	--------------------

Customer: Specification:	Davis Instruments 15.205/15.209/15.249		
Work Order #:	73018	Date:	Mon Nov-15-1999
Test Type:	Conducted Emissions	Time:	17:03:24
Equipment:	Weather Station	Sequence#:	6
Manufacturer:	Davis Instruments	Tested By:	D.Oaks
Model:	6310W		
S/N:	N/A		


Weather Station* Davis Instruments 6310W N/A	Function	Manufacturer	Model #	S/N
	Weather Station*	Davis Instruments		

Support Devices:				
Function	Manufacturer	Model #	S/N	
Portable Laptop	Toshiba	T3200SXC	04113358	

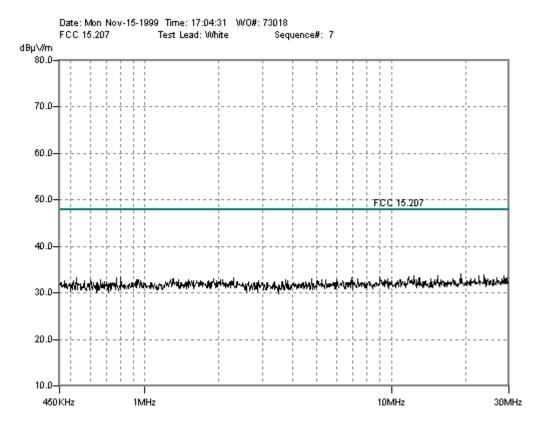
Test Conditions / Notes:

EUT operating in a normal configuration, receiving and processing data. EUT operating on 120VAC. Vantage Link installed on EUT and connected to the Portable computer.

Errog		TTON								
Freq MHz	Rdng dBµV	LISN dB	dB	dB	dB	Dist Table	Corr dBµV/m	Spec dBµV/m	Margin dB	Polar Ant
3.849M	34.1	+0.1				+0.0	34.2	48.0	-13.8	Black
11.476M	33.6	+0.2				+0.0	33.8	48.0	-14.2	Black
20.393M	33.4	+0.3				+0.0	33.7	48.0	-14.3	Black
11.347M	33.5	+0.2				+0.0	33.7	48.0	-14.3	Black
29.307M	33.0	+0.3				+0.0	33.3	48.0	-14.7	Black
22.275M	33.0	+0.3				+0.0	33.3	48.0	-14.7	Black
8.005M	33.1	+0.2				+0.0	33.3	48.0	-14.7	Black
2.285M	33.2	+0.1				+0.0	33.3	48.0	-14.7	Black
8.272M	33.0	+0.2				+0.0	33.2	48.0	-14.8	Black
3.919M	33.1	+0.1				+0.0	33.2	48.0	-14.8	Black
	MHz 3.849M 11.476M 20.393M 11.347M 29.307M 22.275M 8.005M 2.285M 8.272M	MHz dBμV 3.849M 34.1 11.476M 33.6 20.393M 33.4 11.347M 33.5 29.307M 33.0 22.275M 33.0 8.005M 33.1 2.285M 33.2 8.272M 33.0	MHz dBµV dB 3.849M 34.1 +0.1 11.476M 33.6 +0.2 20.393M 33.4 +0.3 11.347M 33.5 +0.2 29.307M 33.0 +0.3 22.275M 33.0 +0.3 8.005M 33.1 +0.2 2.285M 33.2 +0.1 8.272M 33.0 +0.2	MHz dBµV dB dB 3.849M 34.1 +0.1 11.476M 33.6 +0.2 20.393M 33.4 +0.3 11.347M 33.5 +0.2 29.307M 33.0 +0.3 22.275M 33.0 +0.3 8.005M 33.1 +0.2 2.285M 33.2 +0.1 8.272M 33.0 +0.2	MHz dB μ V dB dS <	MHz dB μ V dB dS <	MHz $dB\muV$ dB dB dB dB dB dB dB $Table$ $3.849M$ 34.1 $+0.1$ $+0.0$ $+0.0$ $+0.0$ $20.393M$ 33.6 $+0.2$ $+0.0$ $20.393M$ 33.4 $+0.3$ $+0.0$ $11.347M$ 33.5 $+0.2$ $+0.0$ $29.307M$ 33.0 $+0.3$ $+0.0$ $22.275M$ 33.0 $+0.3$ $+0.0$ $8.005M$ 33.1 $+0.2$ $+0.0$ $2.285M$ 33.2 $+0.1$ $+0.0$ $8.272M$ 33.0 $+0.2$ $+0.0$	MHzdB μ VdBdBdBdBdBdBdBdBdBdBTabledB μ V/m3.849M34.1+0.1+0.034.2+0.034.211.476M33.6+0.2+0.033.820.393M33.4+0.3+0.033.711.347M33.5+0.2+0.033.729.307M33.0+0.3+0.033.322.275M33.0+0.3+0.033.38.005M33.1+0.2+0.033.32.285M33.2+0.1+0.033.38.272M33.0+0.2+0.033.2	MHz $dB\muV$ dB dB dB dB dB dB $Table$ $dB\muV/m$ $dB\muV/m$ $3.849M$ 34.1 $+0.1$ $+0.0$ 34.2 48.0 $11.476M$ 33.6 $+0.2$ $+0.0$ 33.8 48.0 $20.393M$ 33.4 $+0.3$ $+0.0$ 33.7 48.0 $11.347M$ 33.5 $+0.2$ $+0.0$ 33.7 48.0 $29.307M$ 33.0 $+0.3$ $+0.0$ 33.3 48.0 $22.275M$ 33.0 $+0.3$ $+0.0$ 33.3 48.0 $8.005M$ 33.1 $+0.2$ $+0.0$ 33.3 48.0 $2.285M$ 33.2 $+0.1$ $+0.0$ 33.3 48.0 $8.272M$ 33.0 $+0.2$ $+0.0$ 33.2 48.0	MHzdB \overrightarrow{V} dBdBdBdBdBdBTabledB \overrightarrow{V} /mdB \overrightarrow{V} /mdB3.849M34.1+0.1+0.1+0.034.248.0-13.811.476M33.6+0.2+0.033.848.0-14.220.393M33.4+0.3+0.033.748.0-14.311.347M33.5+0.2+0.033.748.0-14.329.307M33.0+0.3+0.033.348.0-14.722.275M33.0+0.3+0.033.348.0-14.78.005M33.1+0.2+0.033.348.0-14.78.272M33.0+0.2+0.1+0.033.248.0-14.8

Test Location:	CKC Laboratories, Inc.	•	5473A Clouds Rest •	Mariposa, CA 95338
----------------	------------------------	---	---------------------	--------------------

Customer: Specification:	Davis Instruments FCC 15.207		
Work Order #:	73018	Date:	Mon Nov-15-1999
Test Type:	Conducted Emissions	Time:	17:09:45
Equipment:	Weather Station	Sequence#:	7
Manufacturer:	Davis Instruments	Tested By:	D.Oaks
Model:	6310W		
S/N:	N/A		


Function	Manufacturer	Model #	S/N	
Weather Station*	Davis Instruments	6310W	N/A	
Summont Douison				

Support Devices:				
Function	Manufacturer	Model #	S/N	
Portable Laptop	Toshiba	T3200SXC	04113358	

Test Conditions / Notes:

EUT operating in a normal configuration, receiving and processing data. EUT operating on 120VAC. Vantage Link installed on EUT and connected to the Portable computer.

Measur	rement Data:	R	eading lis	ted by 1	nargin.			Test Lead	d: White		
			LISN								
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	19.114M	33.9	+0.3				+0.0	34.2	48.0	-13.8	White
2	23.944M	33.5	+0.4				+0.0	33.9	48.0	-14.1	White
3	22.737M	33.5	+0.3				+0.0	33.8	48.0	-14.2	White
4	15.456M	33.5	+0.3				+0.0	33.8	48.0	-14.2	White
5	28.739M	33.2	+0.4				+0.0	33.6	48.0	-14.4	White
6	12.437M	33.4	+0.2				+0.0	33.6	48.0	-14.4	White
7	800.283k	33.4	+0.1				+0.0	33.5	48.0	-14.5	White
8	11.783M	33.2	+0.2				+0.0	33.4	48.0	-14.6	White
9	9.016M	33.2	+0.2				+0.0	33.4	48.0	-14.6	White
10	528.052k	33.2	+0.1				+0.0	33.3	48.0	-14.7	White

