

Page 1 of 62

APPLICATION CERTIFICATION FCC Part 15C On Behalf of DEI Sales Inc. dba Definitive Technology

5.1 Home Theater Sound Bar and Wireless Subwoofer System Model No.: Studio Advance

FCC ID: IPUSTUADVBAR

Prepared for : DEI Sales Inc. dba Definitive Technology

Address : One Viper Way, Vista, California, United States 92081

Prepared by : Shenzhen Accurate Technology Co., Ltd.

Address : 1/F., Building A, Changyuan New Material Port, Science & Industry

Park, Nanshan District, Shenzhen, Guangdong, P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report No. : ATE20182051

Date of Test : March 12-April 10, 2019

Date of Report : April 11, 2019

TABLE OF CONTENTS

D	escri	iption P	age
T	est R	Leport Certification	
		E OF CONTENTS	2.
1.		ENERAL INFORMATION	
1.	1.1.	Description of Device (EUT)	
	1.1.	Frequency Table	
	1.3.	Accessory and Auxiliary Equipment	
	1.4.	Description of Test Facility	
	1.5.	Measurement Uncertainty	7
2.	M	EASURING DEVICE AND TEST EQUIPMENT	8
3.	O	PERATION OF EUT DURING TESTING	9
	3.1.	Operating Mode	9
	3.2.	Configuration and peripherals	9
4.	TI	EST PROCEDURES AND RESULTS	10
5.	20	DB BANDWIDTH TEST	11
	5.1.	Block Diagram of Test Setup	11
	5.2.	The Requirement For Section 15.247(a)(1)	
	5.3.	EUT Configuration on Test	
	5.4.	Operating Condition of EUT	
	5.5.	Test Procedure	
_	5.6.	Test Result	
6.		ARRIER FREQUENCY SEPARATION TEST	
	6.1. 6.2.	Block Diagram of Test Setup	
	6.3.	EUT Configuration on Test	
	6.4.	Operating Condition of EUT	
	6.5.	Test Procedure	
	6.6.	Test Result	
7.	N	UMBER OF HOPPING FREQUENCY TEST	17
	7.1.	Block Diagram of Test Setup	17
	7.2.	The Requirement For Section 15.247(a)(1)(iii)	
	7.3.	EUT Configuration on Test	
	7.4. 7.5.	Operating Condition of EUT	
	7.5. 7.6.	Test Procedure Test Result	
8.		WELL TIME TEST	
0.	8.1.	Block Diagram of Test Setup	
	8.1.	The Requirement For Section 15.247(a)(1)(iii)	
	8.3.	EUT Configuration on Test	
	8.4.	Operating Condition of EUT	
	8.5.	Test Procedure	19
	8.6.	Test Result	
9.	\mathbf{M}	AXIMUM PEAK OUTPUT POWER TEST	24

Page 3 of 62

9.1.	Block Diagram of Test Setup	24
9.2.	The Requirement For Section 15.247(b)(1)	
9.3.	EUT Configuration on Test	
9.4.	Operating Condition of EUT	
9.5.	Test Procedure	
9.6.	Test Result	25
10. RA	ADIATED EMISSION TEST	27
10.1.	Block Diagram of Test Setup	27
10.2.	The Requirement For Section 15.247(d)	
10.3.	The limits for Section 15.209(a)	
10.4.	EUT Configuration on Test	29
10.5.	Operating Condition of EUT	29
10.6.	Test Procedure	30
10.7.	Data Sample	
10.8.	Test Results	31
11. BA	AND EDGE COMPLIANCE TEST	44
11.1.	Block Diagram of Test Setup	44
11.2.	The Requirement For Section 15.247(d)	44
11.3.	EUT Configuration on Test	
11.4.	Operating Condition of EUT	
11.5.	FCC Part 15.205 Restricted bands of operation	
11.6.	Test Procedure	
11.7.	Test Result	46
12. AC	C POWER LINE CONDUCTED EMISSION TEST	55
12.1.	Block Diagram of Test Setup	55
12.2.	The Limits for Section 15.207(a)	56
12.3.	EUT Configuration on Test	56
12.4.	Operating Condition of EUT	
12.5.	Test Procedure	
12.6.	Data Sample	
12.7.	Test Results	
13. AN	VTENNA REQUIREMENT	62
13.1.	The Requirement	62
13.2.	Antenna Construction	62

Page 4 of 62

Test Report Certification

Applicant : DEI Sales Inc. dba Definitive Technology

Address : One Viper Way, Vista, California, United States 92081

Manufacturer : DEI Sales Inc. dba Definitive Technology

Address : One Viper Way, Vista, California, United States 92081

Factory : Zhao Yang Electronic (Shenzhen) Co., Ltd

Address : Building 2, De Yong Jia Industrial Park, Guang Qiao Road, Yu Lv

Community, Gong Ming Street, Guang Ming New District, Shenzhen,

518132, China

Product : 5.1 Home Theater Sound Bar and Wireless Subwoofer System

Model No. : Studio Advance

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

The device described above is tested by Shenzhen Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and Shenzhen Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Shenzhen Accurate Technology Co., Ltd.

Date of Test :	March 12-April 10, 2019
Date of Report :	April 11, 2019
Prepared by :	(St Wang Frankler)
Approved & Authorized Signer :	APPROVED
	(Sean Liu, Manager)

Page 5 of 62

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : 5.1 Home Theater Sound Bar and Wireless Subwoofer

System

Model Number : Studio Advance

Frequency Range : 2403.5-2477.3MHz

Number of Channels : 49

Modulation mode : FSK

Antenna Gain : 4.04dBi

Antenna type : FPCB antenna with ipex connector

Power Supply : 24Vdc 4A

Switching Power Supply : Model: DYS902-240400W

Input: 100-240V~ 50/60Hz 1.5A MAX

Output: 24V == 4A

Trade Mark : D.(DEFINITIVE TECHNOLOGY)

1.2. Frequency Table

Channel #	Center Frequency (GHz)	Channel #	Center Frequency (GHz)			
Center Frequencies (Channel Table)						
1	2.4035	26	2.4420			
2	2.4051	27	2.4435			
3	2.4066	28	2.4450			
4	2.4081	29	2.4466			
5	2.4097	30	2.4481			
6	2.4112	31	2.4496			
7	2.4128	32	2.4512			
8	2.4143	33	2.4527			
9	2.4158	34	2.4543			
10	2.4174	35	2.4558			
11	2.4189	36	2.4573			
12	2.4204	37	2.4589			
13	2.4220	38	2.4604			
14	2.4235	39	2.4619			
15	2.4251	40	2.4635			
16	2.4266	41	2.4650			
17	2.4281	42	2.4666			
18	2.4297	43	2.4681			
19	2.4312	44	2.4696			
20	2.4327	45	2.4712			
21	2.4343	46	2.4727			
22	2.4358	47	2.4742			
23	2.4374	48	2.4758			
24	2.4389	49	2.4773			
25	2.4404					

1.3. Accessory and Auxiliary Equipment

N/A

Page 7 of 62

1.4.Description of Test Facility

EMC Lab Recognition of accreditation by Federal Communications

Commission (FCC)

The Designation Number is CN1189 The Registration Number is 708358

Listed by Innovation, Science and Economic Development

Canada (ISEDC)

The Registration Number is 5077A-2

Accredited by China National Accreditation Service for

Conformity Assessment (CNAS)

The Registration Number is CNAS L3193

Accredited by American Association for Laboratory

Accreditation (A2LA)

The Certificate Number is 4297.01

Name of Firm Shenzhen Accurate Technology Co., Ltd.

Site Location 1/F., Building A, Changyuan New Material Port, Science

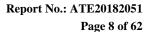
& Industry Park, Nanshan District, Shenzhen, Guangdong,

P.R. China

1.5. Measurement Uncertainty

Conducted Emission Expanded Uncertainty 2.23dB, k=2

Radiated emission expanded uncertainty 3.08dB, k=2

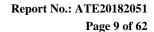

(9kHz-30MHz)

Radiated emission expanded uncertainty 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty 4.06dB, k=2

(Above 1GHz)



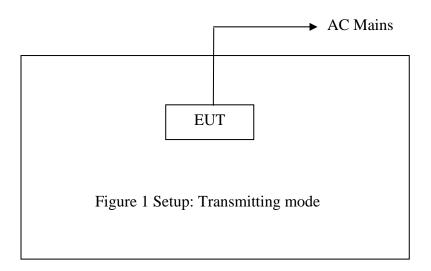
2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Type	S/N	Calibrated dates	Cal. Interval
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 05, 2019	One Year
EMI Test Receiver	Rohde&Schwarz	ESR	101817	Jan. 05, 2019	One Year
Spectrum Analyzer	Rohde&Schwarz	FSV-40	101495	Jan. 05, 2019	One Year
Pre-Amplifier (Radiated Emission)	Compliance Direction	RSU-M2	38322	Jan. 05, 2019	One Year
Pre-Amplifier (Radiated Emission)	Agilent	8447D	294A10619	Jan. 05, 2019	One Year
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 05, 2019	One Year
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 05, 2019	One Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 05, 2019	One Year
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 05, 2019	One Year
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 05, 2019	One Year
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 05, 2019	One Year
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 05, 2019	One Year
RF Coaxial Cable (Conducted Emission)	SUHNER	N-2m	No.2	Jan. 05, 2019	One Year
RF Coaxial Cable (Radiated Emission)	SUHNER	N-5m	NO.3	Jan. 05, 2019	One Year
RF Coaxial Cable (Radiated Emission)	SUHNER	N-5m	NO.4	Jan. 05, 2019	One Year
RF Coaxial Cable (Radiated Emission)	SUHNER	N-1m	NO.5	Jan. 05, 2019	One Year
RF Coaxial Cable (Radiated Emission)	SUHNER	N-1m	NO.6	Jan. 05, 2019	One Year
Conducted Emission M	leasurement Softwar	e: ES-K1 V1.71		<u>I</u>	
D 11 - 1 D 1 - 1 A	~ .	EZ ENGLULA			

Radiated Emission Measurement Software: EZ_EMC V1.1.4.2

3. OPERATION OF EUT DURING TESTING

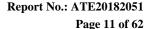

3.1. Operating Mode


The mode is used: Transmitting mode

Low Channel: 2403.5MHz Middle Channel: 2440.4MHz High Channel: 2477.3MHz

Hopping

3.2. Configuration and peripherals



4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)	Carrier Frequency Separation Test	Compliant
Section 15.247(a)(1)(iii)	Number Of Hopping Frequency Test	Compliant
Section 15.247(a)(1)(iii)	Dwell Time Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d) Section 15.209	Radiated Emission Test	Compliant
Section 15.247(d) Section 15.205	Band Edge Compliance Test	Compliant
Section 15.207	AC Power Line Conducted Emissions Limits Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. 20DB BANDWIDTH TEST

5.1.Block Diagram of Test Setup

5.2. The Requirement For Section 15.247(a)(1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

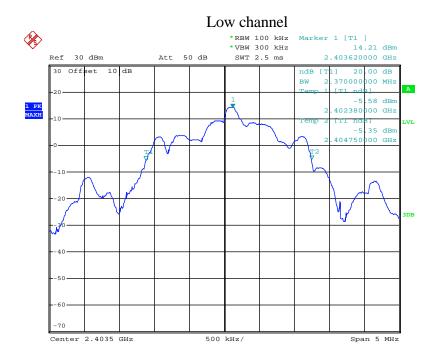
5.3.EUT Configuration on Test

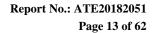
The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

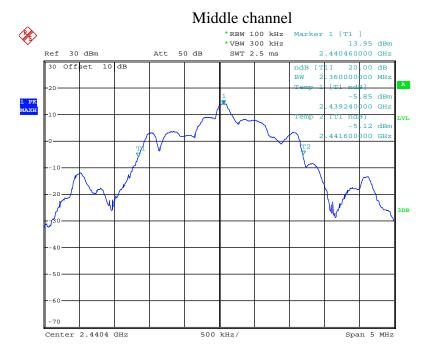
- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2403.5, 2440.4, 2477.3MHz.

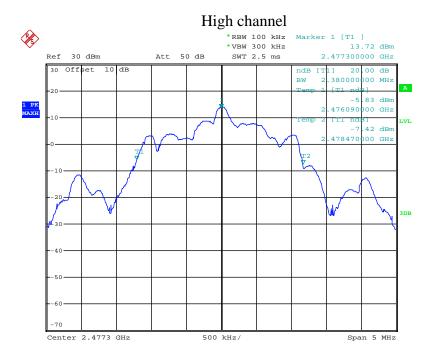
5.5.Test Procedure

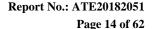

- 5.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.
- 5.5.3. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.


5.6.Test Result

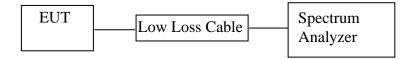
Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Result
Low	2403.5	2.370	Pass
Middle	2440.4	2.360	Pass
High	2477.3	2.380	Pass


The spectrum analyzer plots are attached as below.


Date: 9.APR.2019 10:31:04



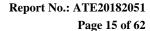
Date: 9.APR.2019 10:32:32


Date: 9.APR.2019 10:29:56

6. CARRIER FREQUENCY SEPARATION TEST

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(a)(1)


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.3.EUT Configuration on Test

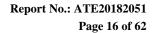
The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

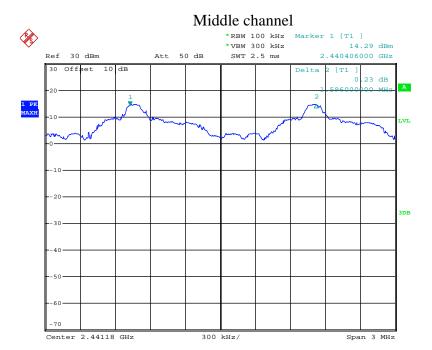
- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2403.5, 2440.4, 2477.3MHz.

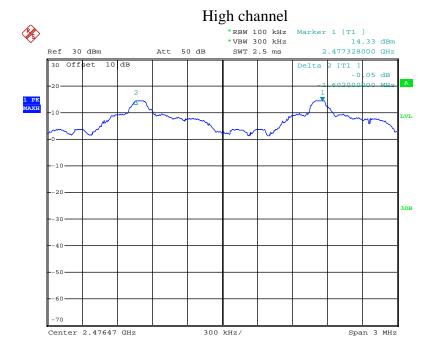
6.5. Test Procedure

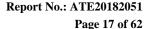
- 6.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- $6.5.2. Set\ RBW$ of spectrum analyzer to $100\ kHz$ and VBW to $300\ kHz$. Adjust Span to 3MHz.
- 6.5.3. Set the adjacent channel of the EUT Maxhold another trace.
- 6.5.4. Measurement the channel separation


6.6.Test Result

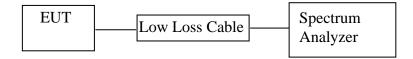
Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2403.5	1.596	>1.580	Pass
LOW	2405.1	1.390	> 1.300	
Middle	2440.4	1.596	>1.573	Pass
Middle	2442.0			rass
High	2475.8	1.602	>1.587	Dana
High	2477.3		/1.36/	Pass


The spectrum analyzer plots are attached as below.


Date: 10.APR.2019 10:54:56



Date: 10.APR.2019 10:50:18


Date: 10.APR.2019 10:46:22

7. NUMBER OF HOPPING FREQUENCY TEST

7.1.Block Diagram of Test Setup

7.2. The Requirement For Section 15.247(a)(1)(iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

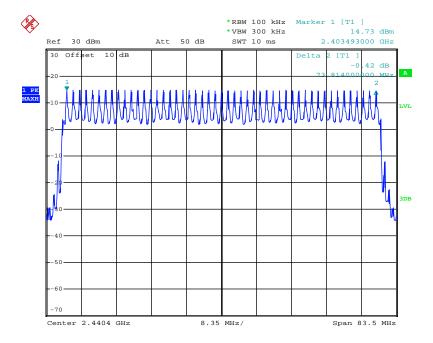
7.3.EUT Configuration on Test

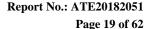
The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it.

7.5.Test Procedure


- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set the spectrum analyzer as RBW=100 kHz, VBW=300 kHz.
- 7.5.3.Max hold, view and count how many channel in the band.


7.6.Test Result

Total number of	Measurement result(CH)	Limit(CH)	Result
hopping channel	49	≥15	Pass

The spectrum analyzer plots are attached as below.


Date: 9.APR.2019 10:16:00

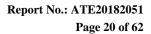
8. DWELL TIME TEST

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247(a)(1)(iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.3.EUT Configuration on Test

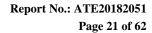

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

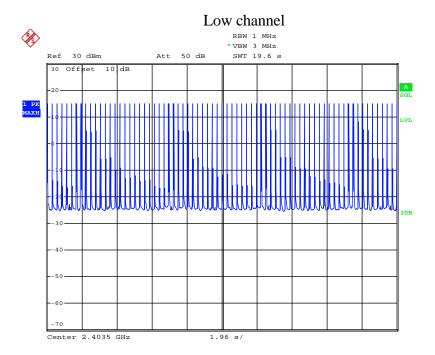
- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2403.5, 2440.4, 2477.3MHz.

8.5. Test Procedure

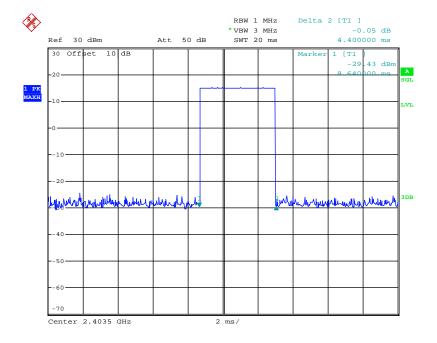
- 8.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 8.5.3.Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz, Adjust Sweep=50ms. Get the pulse time.
- 8.5.4.Repeat above procedures until all frequency measured were complete.

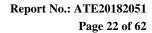


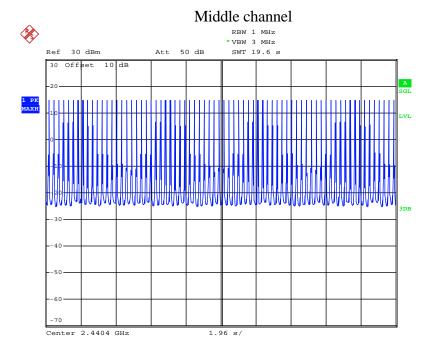
8.6.Test Result

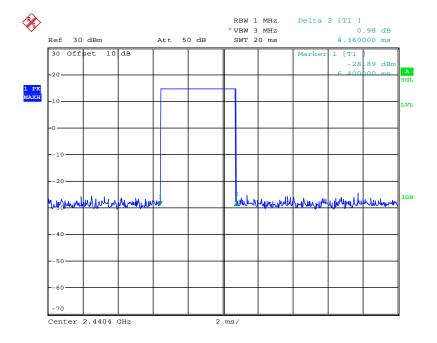

Pass.

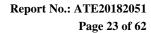
Frequency (MHz)	The number of channels under the sweep time of 0.4* 49	Occupied time for each channel (ms)	Dwell time (ms)	Limit (ms)
2403.5	73	4.400	321.20	≤400
2440.4	72	4.360	313.92	≤400
2477.3	72	4.400	316.80	≤400

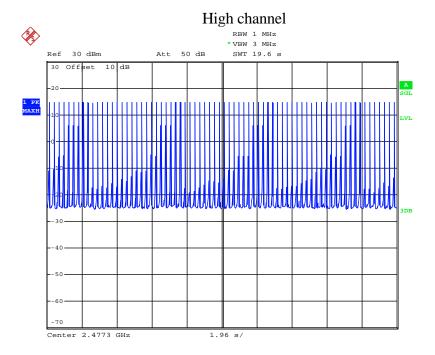

The spectrum analyzer plots are attached as below.

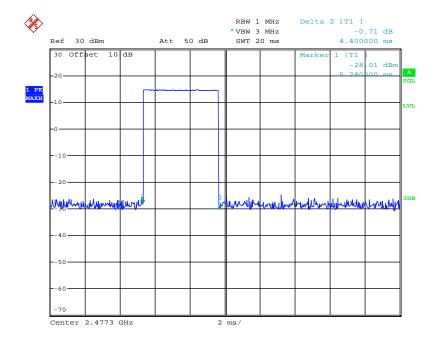


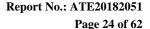

Date: 10.APR.2019 15:32:58


Date: 10.APR.2019 15:27:01




Date: 10.APR.2019 15:32:15


Date: 10.APR.2019 15:30:01



Date: 10.APR.2019 15:31:34

Date: 10.APR.2019 15:30:39

9. MAXIMUM PEAK OUTPUT POWER TEST

9.1.Block Diagram of Test Setup

9.2. The Requirement For Section 15.247(b)(1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

9.3.EUT Configuration on Test

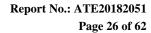
The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

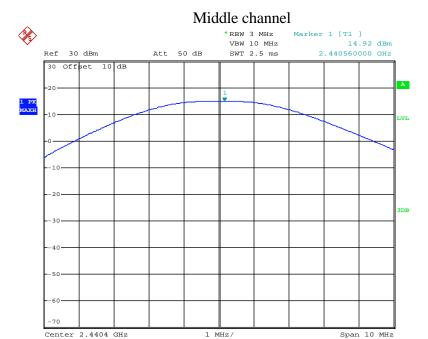
- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2403.5, 2440.4, 2477.3MHz.

9.5.Test Procedure

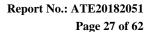
- 9.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 3MHz and VBW to 10MHz.
- 9.5.3.Measurement the maximum peak output power.


9.6.Test Result

Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits (dBm/W)	Result
Low	2403.5	15.13/0.033	21 / 0.125	Pass
Middle	2440.4	14.92/0.031	21 / 0.125	Pass
High	2477.3	14.80/0.030	21 / 0.125	Pass

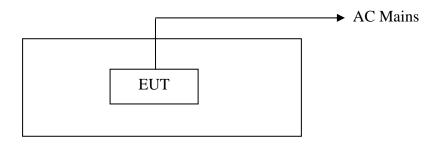

The spectrum analyzer plots are attached as below.

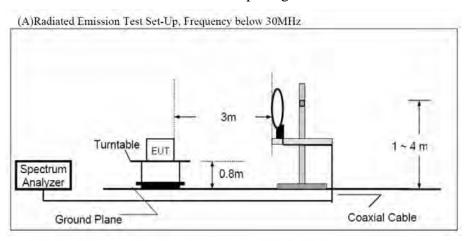

Date: 9.APR.2019 10:13:22



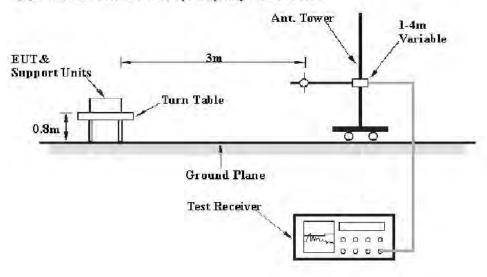
Date: 9.APR.2019 10:13:58

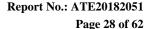
Date: 9.APR.2019 10:14:16



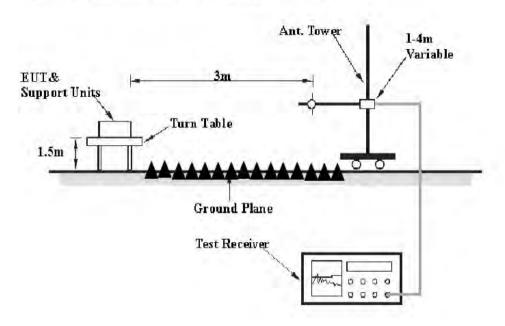

10. RADIATED EMISSION TEST

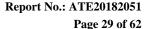
10.1.Block Diagram of Test Setup


10.1.1.Block diagram of connection between the EUT and peripherals



10.1.2.Semi-Anechoic Chamber Test Setup Diagram


(B)Radiated Emission Test Set-Up, Frequency 30MHz-1GHz



(C) Radiated Emission Test Set-Up. Frequency above 1GHz

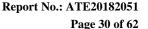
10.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3. The limits for Section 15.209(a)

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measure- ment dis- tance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88–216	150 **	3
216–960	200 **	3
Above 960	500	3


^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

10.4.EUT Configuration on Test

The equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

10.5. Operating Condition of EUT

- 10.5.1. Setup the EUT and simulator as shown as Section 10.1.
- 10.5.2. Turn on the power of all equipment.
- 10.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2403.5, 2440.4, 2477.3MHz.

10.6. Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter(Below 1GHz) and 1.5m(above 1GHz) high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated emission measurement. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 4. All modes of operation were investigated and the worse case emissions are reported.

Page 31 of 62

10.7.Data Sample

Frequency	Reading	Factor	Result	Limit	Margin	Remark
(MHz)	(dBµv)	(dB/m)	(dBµv/m)	(dBµv/m)	(dB)	
X.XX	48.69	-13.35	35.34	46	-10.66	QP

Frequency(MHz) = Emission frequency in MHz

Reading($dB\mu\nu$) = Uncorrected Analyzer/Receiver reading

Factor (dB/m) = Antenna factor + Cable Loss – Amplifier gain

 $Result(dB\mu v/m) = Reading(dB\mu v) + Factor(dB/m)$

Limit $(dB\mu v/m) = Limit$ stated in standard

Margin (dB) = Result(dB μ v/m) - Limit (dB μ v/m)

QP = Quasi-peak Reading

Calculation Formula:

 $Margin(dB) = Result (dB\mu V/m) - Limit(dB\mu V/m)$

Result($dB\mu V/m$)= Reading($dB\mu V$)+ Factor(dB/m)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit.

10.8.Test Results

Pass.

Testing is carried out with frequency rang 9kHz to the tenth harmonics, which above 3th Harmonics are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

The measurements greater than 20dB below the limit from 9kHz to 30MHz and 18 to 26.5GHz.

The spectrum analyzer plots are attached as below.

Page 32 of 62

Below 1GHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

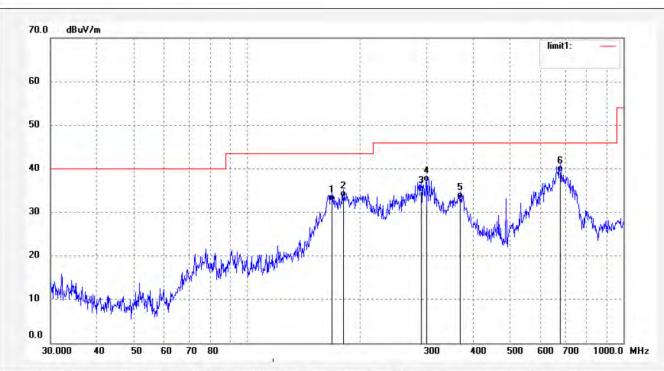
Job No.: FRANK2019 #582

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: 5.1 Home Theater Sound Bar

Mode: TX 2403.5MHz Model: Studio Advance


Manufacturer: Zhao Yang Electronic (Shenzhen)Co.,Ltd

Note: Report NO.:ATE20182051

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2019/04/10 Time: 9/21/22 Engineer Signature:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	167.8136	58.92	-26.23	32.69	43.50	-10.81	QP	200	89	
2	180.0302	59.48	-26.03	33.45	43.50	-10.05	QP	200	221	
3	290.3170	56.34	-21.65	34.69	46.00	-11.31	QP	200	110	
4	299.6440	58.20	-21.23	36.97	46.00	-9.03	QP	200	66	
5	368.6681	51.97	-18.80	33.17	46.00	-12.83	QP	200	219	
6	679.4346	51.31	-11.95	39.36	46.00	-6.64	QP	200	103	

Page 33 of 62

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #581

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: 5.1 Home Theater Sound Bar

Mode: TX 2403.5MHz
Model: Studio Advance

Manufacturer: Zhao Yang Electronic (Shenzhen)Co.,Ltd

Note: Report NO.:ATE20182051

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2019/04/10 Time: 9/20/59 Engineer Signature:

	į							Ì			limit	1:	
60								ļ					
50													
40				I									
30			N	12	Vice Market	M			an and		May	and he	Aghinta
20		M N	ul/lu/		MW.	, , , , , , , , , , , , , , , , , , ,	ANTHA MALLAN	Walnus					
10	Maryant	w W											
0.0	i i			3 3					1	}		1 1	

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	81.6603	58.30	-27.42	30.88	40.00	-9.12	QP	100	76	
2	85.7776	59.45	-27.45	32.00	40.00	-8.00	QP	100	201	
3	149.9676	59.45	-28.05	31.40	43.50	-12.10	QP	100	33	
4	290.3170	52.04	-21.65	30.39	46.00	-15.61	QP	100	210	
5	488.3263	52.31	-16.48	35.83	46.00	-10.17	QP	100	332	
6	594.5143	46.45	-13.81	32.64	46.00	-13.36	QP	100	196	

Page 34 of 62

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #583

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: 5.1 Home Theater Sound Bar

Mode: TX 2440.4MHz Model: Studio Advance

Manufacturer: Zhao Yang Electronic (Shenzhen)Co.,Ltd

Note: Report NO.:ATE20182051

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2019/04/10 Time: 9/21/38 Engineer Signature:

		limit1:
60		
50		
40	_ 2	
30	A Property of the Property of	Market Control of the
20	Juntary Control Contro	
10	pagrapaminant and paring a plant of the transfer of the transf	
0.0		

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	164.3129	58.64	-26.61	32.03	43.50	-11.47	QP	200	106	
2	180.0302	59.68	-26.03	33.65	43.50	-9.85	QP	200	320	
3	295.4623	59.42	-21.39	38.03	46.00	-7.97	QP	200	116	
4	319.2071	56.22	-20.65	35.57	46.00	-10.43	QP	200	91	
5	651.3831	48.61	-12.63	35.98	46.00	-10.02	QP	200	229	
6	679.4346	51.05	-11.95	39.10	46.00	-6.90	QP	200	103	

Page 35 of 62

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #584

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: 5.1 Home Theater Sound Bar

Mode: TX 2440.4MHz Model: Studio Advance

Manufacturer: Zhao Yang Electronic (Shenzhen)Co.,Ltd

Note: Report NO.:ATE20182051

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2019/04/10 Time: 9/22/25 Engineer Signature:

									-	limit1:	
60					********						1-1-1
50											
40					********				1		
30			2	other all the	\	41. (N.)	Year Ju	Molande	11	Marriellyhou	Hickory Representation
20	W4 }	/ _{MM} /		MAIN LINKS	LA MANTHA	MAN A	, LAY4V, WA	<i>y</i> ""	V.		
10	J. J. MANYMAN										

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	81.3739	58.92	-27.41	31.51	40.00	-8.49	QP	100	332		
2	85.1770	58.68	-27.46	31.22	40.00	-8.78	QP	100	210		
3	147.8746	57.62	-28.05	29.57	43.50	-13.93	QP	100	94		
4	294.4259	52.95	-21.45	31.50	46.00	-14.50	QP	100	119		
5	488.3263	52.37	-16.48	35.89	46.00	-10.11	QP	100	62		
6	596.6068	44.60	-13.76	30.84	46.00	-15.16	QP	100	103		

Page 36 of 62

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #586

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: 5.1 Home Theater Sound Bar

Mode: TX 2477.3MHz Model: Studio Advance

Manufacturer: Zhao Yang Electronic (Shenzhen)Co.,Ltd

70 80

60

Note: Report NO.:ATE20182051

Polarization: Horizontal

Power Source: AC 120V/60Hz

500

600 700

Date: 2019/04/10 Time: 9/23/20 Engineer Signature: Distance: 3m

70.0 dBuV/m

60

50

40

30

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	163.1623	58.12	-26.73	31.39	43.50	-12.11	QP	200	110	
2	200.7473	53.99	-24.33	29.66	43.50	-13.84	QP	200	291	
3	285.2611	55.69	-21.87	33.82	46.00	-12.18	QP	200	41	
4	300.6988	55.39	-21.20	34.19	46.00	-11.81	QP	200	99	
5	620.1167	49.65	-13.25	36.40	46.00	-9.60	QP	200	229	
6	674.6768	49.64	-12.05	37.59	46.00	-8.41	QP	200	103	

30.000

40

1000.0 MHz

Site: 1# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

Page 37 of 62

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job No.: FRANK2019 #585

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: 5.1 Home Theater Sound Bar

Mode: TX 2477.3MHz Model: Studio Advance

Manufacturer: Zhao Yang Electronic (Shenzhen)Co.,Ltd

Note: Report NO.:ATE20182051

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2019/04/10 Time: 9/22/37 Engineer Signature:

Distance: 3m

			1 1					1			limit1:	-
60		ļļ			ļ 							
50		ļļ	-				***********					
40				J					5			
30				2 N	and the desired	MIJMY.	41. 10.1	Maria L.	dent de		HAPPING HOLD	Northe lease he
20		M AM	Nyw .		W.	, hy	W. an Mr. de.	"N _{AM} A"	W .	N _P (
10	han ranger wheelighed	d Ind										
0.0		1 1	1 1									

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	81.3739	58.99	-27.41	31.58	40.00	-8.42	QP	100	203	
2	85.1770	58.32	-27.46	30.86	40.00	-9.14	QP	100	321	
3	149.4415	60.12	-28.05	32.07	43.50	-11.43	QP	100	99	
4	294.4259	52.78	-21.45	31.33	46.00	-14.67	QP	100	198	
5	488.3263	52.31	-16.48	35.83	46.00	-10.17	QP	100	66	
6	533.1611	47.45	-15.29	32.16	46.00	-13.84	QP	100	103	

Page 38 of 62

Above 1GHz ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #702

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

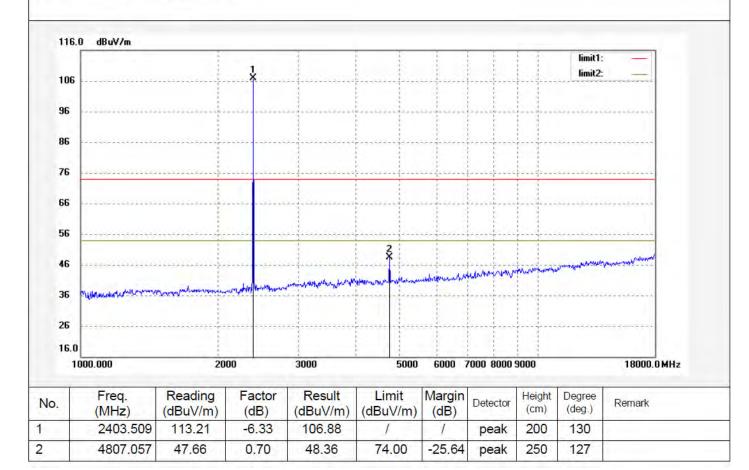
Temp.(C)/Hum.(%) 25 C / 55 %

EUT: 5.1 Home Theater Sound Bar

Mode: TX 2403.5MHz Model: Studio Advance

Manufacturer: Zhao Yang Electronic (Shenzhen)Co.,Ltd

Note: Report NO.:ATE20182051


Polarization: Horizontal

3m

Power Source: AC 120V/60Hz

Date: 2019/04/08 Time: 17:15:35 Engineer Signature:

Distance:

Page 39 of 62

ACCURATE TECHNOLOGY CO., LTD.

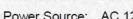
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #703

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

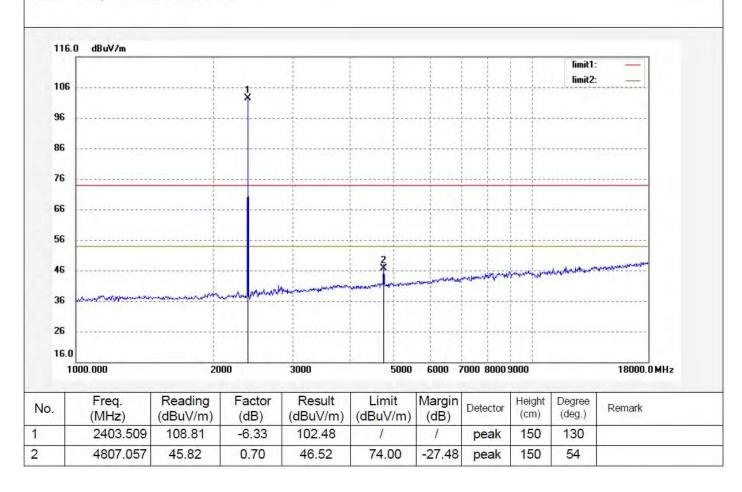

Temp.(C)/Hum.(%) 25 C / 55 % EUT: 5.1 Home Theater Sound Bar

TX 2403.5MHz Mode:

Model: Studio Advance

Manufacturer: Zhao Yang Electronic (Shenzhen)Co.,Ltd

Note: Report NO.:ATE20182051


Polarization:

Power Source: AC 120V/60Hz

Vertical

Date: 2019/04/08 Time: 17:16:40 Engineer Signature:

Distance: 3m

Page 40 of 62

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #705

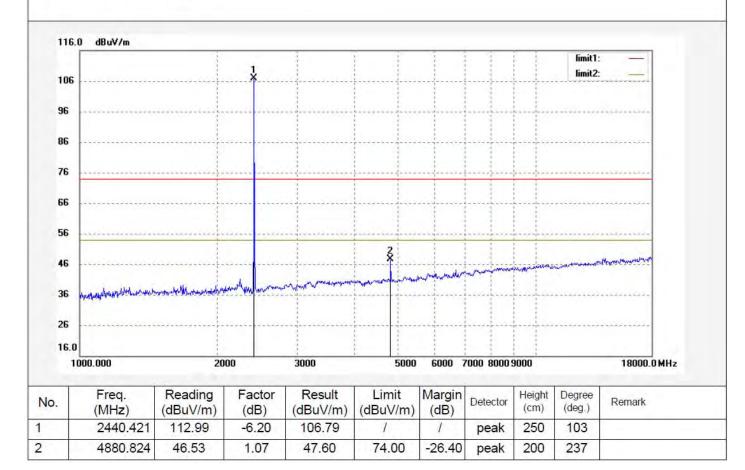
Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: 5.1 Home Theater Sound Bar

Mode: TX 2440.4MHz Model: Studio Advance


Manufacturer: Zhao Yang Electronic (Shenzhen)Co.,Ltd

Note: Report NO.:ATE20182051

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2019/04/08 Time: 17:19:37 Engineer Signature: Distance: 3m

Page 41 of 62

ACCURATE TECHNOLOGY CO., LTD.

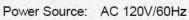
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #704

Standard: FCC Part 15C 3M Radiated

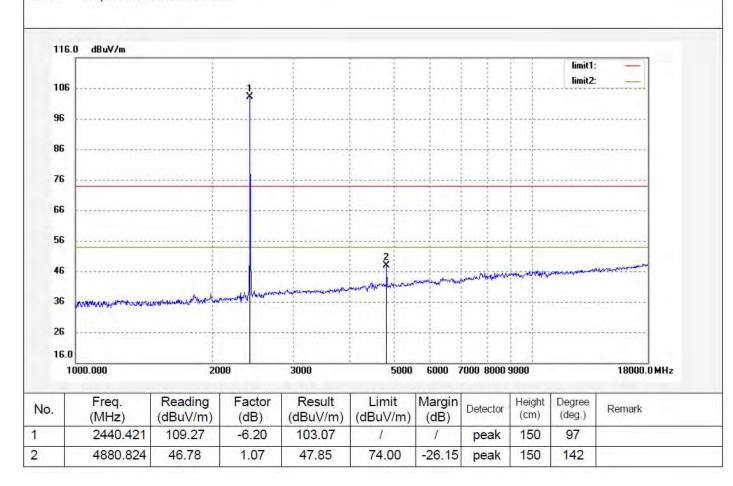
Test item: Radiation Test


Temp.(C)/Hum.(%) 25 C / 55 %

EUT: 5.1 Home Theater Sound Bar

Mode: TX 2440.4MHz Model: Studio Advance

Manufacturer: Zhao Yang Electronic (Shenzhen)Co.,Ltd


Note: Report NO.:ATE20182051

Polarization:

Vertical

Date: 2019/04/08 Time: 17:18:20 Engineer Signature: Distance: 3m

Page 42 of 62

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #706

Standard: FCC Part 15C 3M Radiated

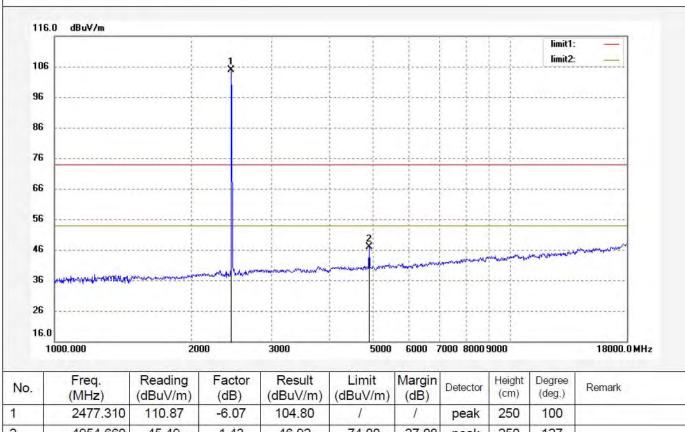
Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: 5.1 Home Theater Sound Bar

TX 2477.3MHz Mode: Model: Studio Advance

Manufacturer: Zhao Yang Electronic (Shenzhen)Co.,Ltd


Report NO.:ATE20182051 Note:

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2019/04/08 Time: 17:21:19 Engineer Signature:

Distance: 3m

Page 43 of 62

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #707

Standard: FCC Part 15C 3M Radiated

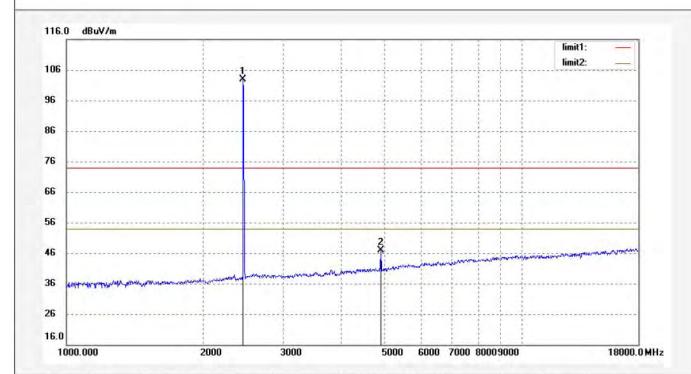
Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

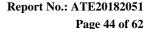
EUT: 5.1 Home Theater Sound Bar

Mode: TX 2477.3MHz Model: Studio Advance

Manufacturer: Zhao Yang Electronic (Shenzhen)Co.,Ltd


Note: Report NO.:ATE20182051

Polarization: Vertical


Power Source: AC 120V/60Hz

Date: 2019/04/08 Time: 17:22:30 Engineer Signature:

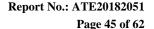
Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2477.310	108.88	-6.07	102.81	1	1	peak	150	102	
2	4954.620	45.45	1.43	46.88	74.00	-27.12	peak	150	304	

11.BAND EDGE COMPLIANCE TEST

11.1.Block Diagram of Test Setup

11.2.The Requirement For Section 15.247(d)


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

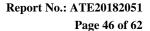
11.3.EUT Configuration on Test

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.4. Operating Condition of EUT

- 11.4.1. Setup the EUT and simulator as shown as Section 11.1.
- 11.4.2. Turn on the power of all equipment.
- 11.4.3.Let the EUT work in TX (Hopping off, Hopping on) modes measure it. The transmit frequency are 2403.5, 2477.3MHz.

11.5.FCC Part 15.205 Restricted bands of operation


(b) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{}$
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

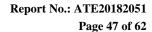
(c) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

²Above 38.6

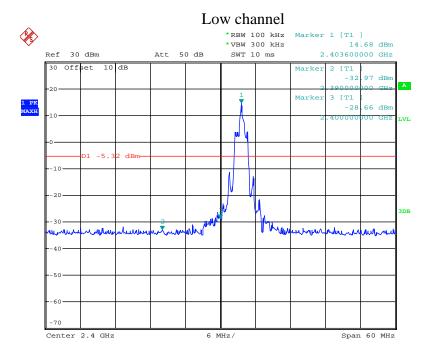
11.6.Test Procedure

- 11.6.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 11.6.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz with convenient frequency span including 100 kHz bandwidth from band edge.
- 11.6.3. The band edges was measured and recorded.

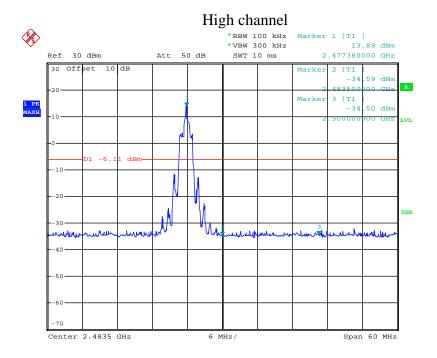
11.7.Test Result


Conducted Band Edge Result

Note: Both hopping-on mode and hopping-off mode had been pre-tested, and only the worst case was recorded in the test report.


Non-hopping mode

Frequency (MHz)	Result of Band Edge (dBc)	Limit of Band Edge (dBc)	Result
2403.5	43.34	> 20dBc	Pass
2477.3	48.48	> 20dBc	Pass


The spectrum analyzer plots are attached as below.

Date: 9.APR.2019 10:22:41

Date: 9.APR.2019 10:23:41

Page 48 of 62

Radiated Band Edge Result

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:
 - Result = Reading + Corrected Factor
- 3. Display the measurement of peak values.

Test Procedure:

The EUT and its simulators are placed on a turntable, which is 0.8 meter(Below 1GHz) and 1.5m(above 1GHz) high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. This EUT was tested in 3 orthogonal positions and the Worse case position data was reported.

Let the EUT work in TX (Hopping off, Hopping on) modes measure it. We select 2403.5-2477.3MHz TX frequency to transmit(Hopping off mode). We select 2403.5-2477.3MHz TX frequency to transmit(Hopping on mode).

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 2.The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 3.All modes of operation were investigated and the worse case emissions are reported.

The spectrum analyzer plots are attached as below.

Page 49 of 62

Non-hopping mode ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #710

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: 5.1 Home Theater Sound Bar

TX 2403.5MHz Mode: Model: Studio Advance

Manufacturer: Zhao Yang Electronic (Shenzhen)Co.,Ltd

Report NO.:ATE20182051

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2019-4-8 Time: 17:28:49 **Engineer Signature:**

Distance: 3m

	.0 dBuV/m								limit1:	
106										1717771111
96		,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	03460444		**********	0111011	
86		,,.,						******	019091	
76	******************		********		***********				*******	*********
66			ianiani.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.,		014040	
56			ygarany.	(*******	****	039763770	¥		aumey.	**********
46		,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		- A 1			
36	mouth of the level of the second second	manipelan destroctions	whetherholdshipped	and bearing below	madespopulation	when to the	·····		MANAGE	dimendan
			********		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5		outrous.		.,,,,,,,,,
26	10101110001111111111									
26 16.0	0									
16.0	2300.000									2440.0 MH
16.0		Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	2440.0 MH Remark

-25.14

-18.57

-8.23

AVG

peak

AVG

200

250

200

116

55

195

54.00

74.00

54.00

Note: Average measurement with peak detection at No.2&4

-6.32

-6.27

-6.27

28.86

55.43

45.77

35.18

61.70

52.04

2390.000

2400.000

2400.000

2

3

4

Page 50 of 62

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #711

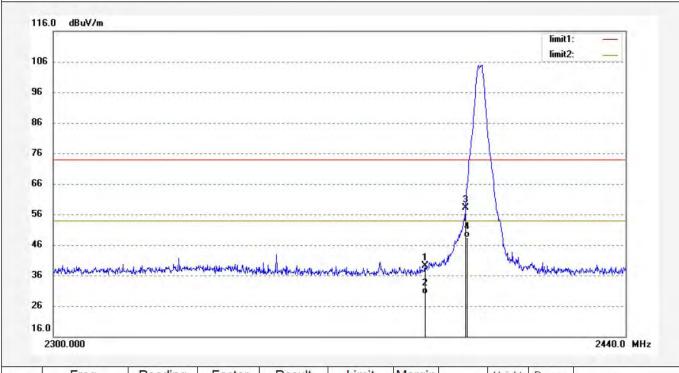
Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: 5.1 Home Theater Sound Bar Mode: TX 2403.5MHz

Model: Studio Advance


Manufacturer: Zhao Yang Electronic (Shenzhen)Co.,Ltd

Note: Report NO.:ATE20182051

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2019-4-8 Time: 17:30:21 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2390.000	45.34	-6.32	39.02	74.00	-34.98	peak	150	94		
2	2390.000	36.14	-6.32	29.82	54.00	-24.18	AVG	150	201		
3	2400.000	64.52	-6.27	58.25	74.00	-15.75	peak	150	331		
4	2400.000	54.56	-6.27	48.29	54.00	-5.71	AVG	150	106		

Note: Average measurement with peak detection at No.2&4

Page 51 of 62

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #709

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: 5.1 Home Theater Sound Bar

Mode: TX 2477.3MHz Model: Studio Advance

Manufacturer: Zhao Yang Electronic (Shenzhen)Co.,Ltd

Report NO.:ATE20182051 Note:

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2019/04/08 Time: 17:25:58 Engineer Signature: Distance: 3m

116.0 limit1-

										mit1:	
106										mit2:	
		/\									
96	***************************************	++			3317133177				********		*******
86						********		********			
76							,,,,,,,,	*******			minn
66				·····	~~~~~~			,,	******		
56				*******				,,,,,,,,	*******		*******
46	f.				31103117						
36	there is a second purpose a decouple of the second	2 1	MMMMM	**************************************	rd-deptes villen	evelongelevelskedeligherede	- Martina April	indightinesser.	walking water	furenesship	manhada
26			,,,,,,,,						en en		overs.
16.0											
	40.000			1							2600.0

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	49.31	-5.89	43.42	74.00	-30.58	peak	200	93	
2	2483.500	40.12	-5.89	34.23	54.00	-19.77	AVG	250	119	
3	2500.000	43.36	-5.81	37.55	74.00	-36.45	peak	200	52	
4	2500.000	34.05	-5.81	28.24	54.00	-25.76	AVG	250	108	

Note: Average measurement with peak detection at No.2&4

Page 52 of 62

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #708

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: 5.1 Home Theater Sound Bar

Mode: TX 2477.3MHz Model: Studio Advance

Manufacturer: Zhao Yang Electronic (Shenzhen)Co.,Ltd

Note: Report NO.:ATE20182051

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2019/04/08 Time: 17:24:47 Engineer Signature: Distance: 3m

116.0 dBuV/m

106

96

86

76

66

56

46

36

2440.0000

Freq. Reading (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dBy Vm) (dB

Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)		Detector	Height (cm)	Degree (deg.)	Remark	
2483.500	49.89	-5.89	44.00	74.00	-30.00	peak	150	210		
2483.500	40.12	-5.89	34.23	54.00	-19.77	AVG	150	99		
2500.000	43.80	-5.81	37.99	74.00	-36.01	peak	150	119		
2500.000	33.45	-5.81	27.64	54.00	-26.36	AVG	150	103		
	(MHz) 2483.500 2483.500 2500.000	(MHz) (dBuV/m) 2483.500 49.89 2483.500 40.12 2500.000 43.80	(MHz) (dBuV/m) (dB) 2483.500 49.89 -5.89 2483.500 40.12 -5.89 2500.000 43.80 -5.81	(MHz) (dBuV/m) (dB) (dBuV/m) 2483.500 49.89 -5.89 44.00 2483.500 40.12 -5.89 34.23 2500.000 43.80 -5.81 37.99	(MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dBuV/m) 2483.500 49.89 -5.89 44.00 74.00 2483.500 40.12 -5.89 34.23 54.00 2500.000 43.80 -5.81 37.99 74.00	(MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB) 2483.500 49.89 -5.89 44.00 74.00 -30.00 2483.500 40.12 -5.89 34.23 54.00 -19.77 2500.000 43.80 -5.81 37.99 74.00 -36.01	(MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB) Detector 2483.500 49.89 -5.89 44.00 74.00 -30.00 peak 2483.500 40.12 -5.89 34.23 54.00 -19.77 AVG 2500.000 43.80 -5.81 37.99 74.00 -36.01 peak	(MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB) (dB) (cm) 2483.500 49.89 -5.89 44.00 74.00 -30.00 peak 150 2483.500 40.12 -5.89 34.23 54.00 -19.77 AVG 150 2500.000 43.80 -5.81 37.99 74.00 -36.01 peak 150	(MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB) describe (cm) (deg.) 2483.500 49.89 -5.89 44.00 74.00 -30.00 peak 150 210 2483.500 40.12 -5.89 34.23 54.00 -19.77 AVG 150 99 2500.000 43.80 -5.81 37.99 74.00 -36.01 peak 150 119	(MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB) Defector (cm) (deg.) Refficit 2483.500 49.89 -5.89 44.00 74.00 -30.00 peak 150 210 2483.500 40.12 -5.89 34.23 54.00 -19.77 AVG 150 99 2500.000 43.80 -5.81 37.99 74.00 -36.01 peak 150 119

Note: Average measurement with peak detection at No.2&4

Site: 1# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

Page 53 of 62

EUT:

Mode:

Hopping mode ACCURATE TECHNOLOGY CO., LTD.

F1, Bldg, A, Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

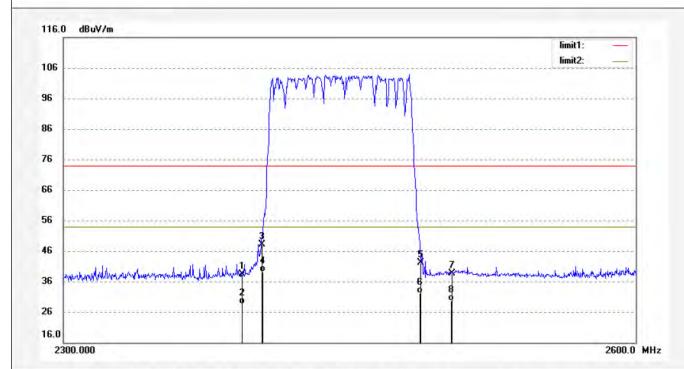
> Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2019-4-8 Time: 17:36:01 Engineer Signature:

Temp.(C)/Hum.(%) 25 C / 55 % 5.1 Home Theater Sound Bar **HOPPING** Distance: 3m

Model: Studio Advance


Job No.: FRANK2019 #713

Test item: Radiation Test

Standard: FCC Part 15C 3M Radiated

Manufacturer: Zhao Yang Electronic (Shenzhen)Co.,Ltd

Report NO.:ATE20182051 Note:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	44.59	-6.32	38.27	74.00	-35.73	peak	250	109	
2	2390.000	35.05	-6.32	28.73	54.00	-25.27	AVG	200	66	
3	2400.000	54.44	-6.27	48.17	74.00	-25.83	peak	250	132	
4	2400.000	45.32	-6.27	39.05	54.00	-14.95	AVG	200	30	
5	2483.500	47.97	-5.89	42.08	74.00	-31.92	peak	250	118	
6	2483.500	38.10	-5.89	32.21	54.00	-21.79	AVG	200	94	
7	2500.000	44.55	-5.81	38.74	74.00	-35.26	peak	250	221	
8	2500.000	35.45	-5.81	29.64	54.00	-24.36	AVG	200	210	

Note: Average measurement with peak detection at No.2&4&6&8

Page 54 of 62

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #712

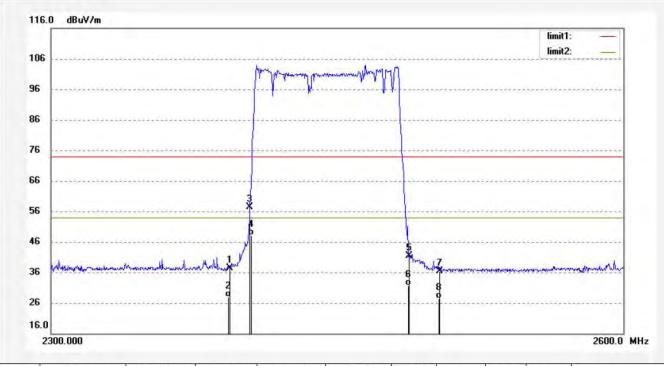
Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: 5.1 Home Theater Sound Bar

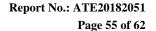
Mode: HOPPING

Model: Studio Advance


Manufacturer: Zhao Yang Electronic (Shenzhen)Co.,Ltd

Note: Report NO.:ATE20182051

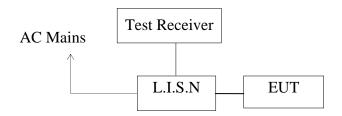
Polarization: Vertical

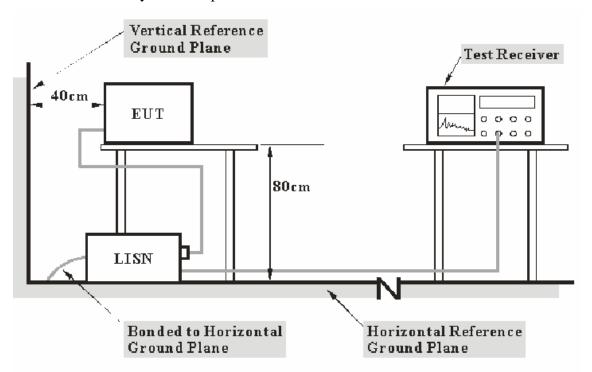

Power Source: AC 120V/60Hz

Date: 2019-4-8 Time: 17:32:35 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	43.60	-6.32	37.28	74.00	-36.72	peak	150	61	
2	2390.000	34.15	-6.32	27.83	54.00	-26.17	AVG	150	201	
3	2400.000	63.60	-6.27	57.33	74.00	-16.67	peak	150	113	
4	2400.000	54.32	-6.27	48.05	54.00	-5.95	AVG	150	36	
5	2483.500	47.23	-5.89	41.34	74.00	-32.66	peak	150	116	
6	2483.500	37.45	-5.89	31.56	54.00	-22.44	AVG	150	92	
7	2500.000	42.19	-5.81	36.38	74.00	-37.62	peak	150	123	1
8	2500.000	33.14	-5.81	27.33	54.00	-26.67	AVG	150	193	

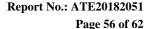
Note: Average measurement with peak detection at No.2&4&6&8




12.AC POWER LINE CONDUCTED EMISSION TEST

12.1.Block Diagram of Test Setup

12.1.1.Block diagram of connection between the EUT and simulators



12.1.2.Test System Setup

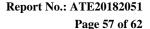
Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

12.2. The Limits for Section 15.207(a)

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of emission (MHz)	Conducted limit (dB μ V)					
sion (MHz)	Quasi-peak	Average				
0.15–0.5 0.5–5 5–30	56	56 to 46* 46 50				


^{*}Decreases with the logarithm of the frequency.

12.3.EUT Configuration on Test

The equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

12.4. Operating Condition of EUT

- 12.4.1. Setup the EUT and simulator as shown as Section 12.1.
- 12.4.2. Turn on the power of all equipment.
- 12.4.3.Let the EUT work in test mode and measure it.

12.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Measurement.

The bandwidth of test receiver is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

12.6.Data Sample

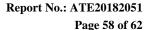
Frequency	Transducer	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
(MHz)	value	Level	Level	Limit	Limit	Margin	Margin	(Pass/Fail)
	(dB)	(dBµV)	(dBµV)	(dBµV)	$(dB\mu V)$	(dB)	(dB)	
X.XX	10.5	51.1	34.2	56.0	46.0	4.9	11.8	Pass

$$\begin{split} & Frequency(MHz) = Emission \ frequency \ in \ MHz \\ & Transducer \ value(dB) = Insertion \ loss \ of \ LISN + Cable \ Loss \\ & Level(dB\mu V) = Quasi-peak \ Reading/Average \ Reading + Transducer \ value \\ & Limit \ (dB\mu V) = Limit \ stated \ in \ standard \\ & Margin = Limit \ (dB\mu V) - Level \ (dB\mu V) \end{split}$$

Calculation Formula:

Margin = Limit ($dB\mu V$) - Level ($dB\mu V$)

12.7.Test Results


Pass.

The frequency range from 150kHz to 30MHz is checked.

Maximizing procedure was performed on the six (6) highest emissions of the EUT. Emissions attenuated more than 20 dB below the permissible value are not reported.

All data was recorded in the Quasi-peak and average detection mode.

The spectral diagrams are attached as below.

CONDUCTED EMISSION STANDARD FCC PART 15C

EUT: 5.1 Home Theater Sound Bar and Wireless Subwoofer System

Manufacturer: Zhao Yang Electronic (Shenzhen)Co.,Ltd

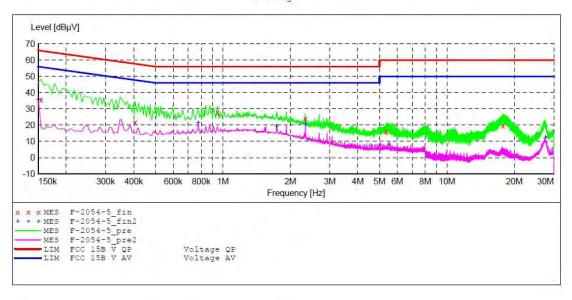
Operating Condition: Wireless communication

Test Site: 1#Shielding Room

Operator: Frank Test Specification: L 120V/60Hz

Comment: Report NO.:ATE20182051 M/N:Studio Advance

Start of Test: 2019-3-12 / 10:58:10

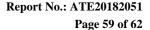

SCAN TABLE: "V 150K-30MHz fin"
Short Description: _SUB_STD_VTERM2 1.70

Detector Meas. Step Start IF Stop Transducer

Width Time Bandw.

Frequency Frequency 150.0 kHz 30.0 MHz 4.5 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average



MEASUREMENT RESULT: "F-2054-5 fin"

2019-3-12 11:	01						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.154500	35.80	10.8	66	30.0	QP	L1	GND
0.406500	21.80	11.0	58	35.9	QP	L1	GND
0.946500	27.90	11.1	56	28.1	QP	L1	GND
2.332500	24.00	11.3	56	32.0	QP	L1	GND
5.370000	16.10	11.5	60	43.9	QP	L1	GND
17.758500	19.70	11.7	60	40.3	QP	Ll	GND

MEASUREMENT RESULT: "F-2054-5 fin2"

20	019-3-12 11:	01						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.150000	35.70	10.8	56	20.3	AV	L1	GND
	0.775500	21.60	11.1	46	24.4	AV	L1	GND
	1.738500	19.40	11.2	46	26.6	AV	L1	GND
	2.332500	20.80	11.3	46	25.2	AV	L1	GND
	5.505000	8.10	11.5	50	41.9	AV	L1	GND
	27.550500	12.40	11.8	50	37.6	AV	L1	GND

CONDUCTED EMISSION STANDARD FCC PART 15C

EUT: 5.1 Home Theater Sound Bar and Wireless Subwoofer System

Manufacturer: Zhao Yang Electronic (Shenzhen)Co.,Ltd

Operating Condition: Wireless communication

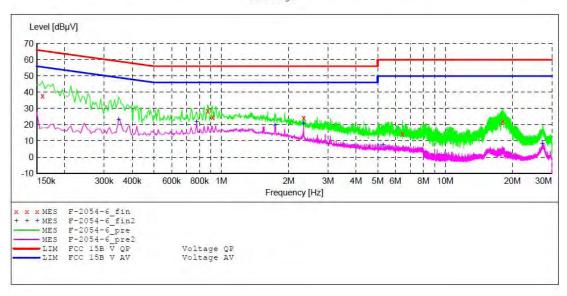
Test Site: 1#Shielding Room

Operator: Frank Test Specification: N 120V/60Hz

Report NO.:ATE20182051 M/N:Studio Advance Comment:

Start of Test: 2019-3-12 / 11:02:21

SCAN TABLE: "V 150K-30MHz fin"

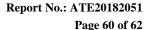

_SUB_STD_VTERM2 1.70 Short Description:

Start Stop Step Detector Meas. IF Transducer

Bandw. Time

Frequency Frequency Width 150.0 kHz 30.0 MHz 4.5 kH NSLK8126 2008 QuasiPeak 1.0 s 9 kHz 4.5 kHz

Average



MEASUREMENT RESULT: "F-2054-6 fin"

201	9-3-12 11:	04						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.159000	38.00	10.8	66	27.5	QP	N	GND
	0.870000	28.50	11.1	56	27.5	QP	N	GND
	0.915000	24.80	11.1	56	31.2	QP	N	GND
	2.332500	24.30	11.3	56	31.7	QP	N	GND
	6.454500	14.10	11.5	60	45.9	QP	N	GND
	18.114000	22.30	11.7	60	37.7	OP	N	GND

MEASUREMENT RESULT: "F-2054-6 fin2"

2	019-3-12 11:	04						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.348000	23.20	10.9	49	25.8	AV	N	GND
	0.775500	21.70	11.1	46	24.3	AV	N	GND
	1.738500	19.70	11.2	46	26.3	AV	N	GND
	2.332500	20.70	11.3	46	25.3	AV	N	GND
	5.280000	7.70	11.4	50	42.3	AV	N	GND
	27.163500	8.40	11.8	50	41.6	AV	N	GND

CONDUCTED EMISSION STANDARD FCC PART 15C

EUT: 5.1 Home Theater Sound Bar and Wireless Subwoofer System

Manufacturer: Zhao Yang Electronic (Shenzhen)Co.,Ltd Operating Condition: Wireless communication

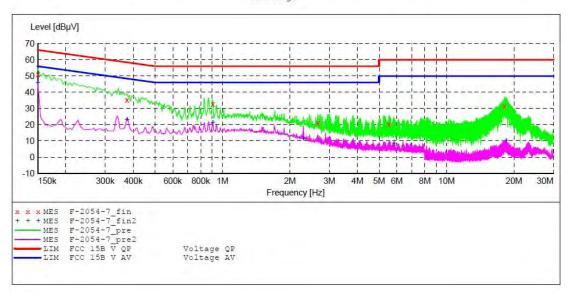
Test Site: 1#Shielding Room

Operator: Frank Test Specification: N 240V/60Hz

Report NO.:ATE20182051 M/N:Studio Advance Comment:

Start of Test: 2019-3-12 / 11:07:48

SCAN TABLE: "V 150K-30MHz fin" Short Description: _SUB_S

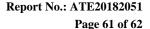

_SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Bandw. Time

Frequency Frequency Width 150.0 kHz 30.0 MHz 4.5 kH NSLK8126 2008 4.5 kHz QuasiPeak 1.0 s 9 kHz

Average



MEASUREMENT RESULT: "F-2054-7 fin"

2019-3-12 11:	11						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000	50.90	10.8	66	15.1	QP	N	GND
0.375000	35.50	10.9	58	22.9	QP	N	GND
0.906000	33.00	11.1	56	23.0	QP	N	GND
2.670000	21.20	11.3	56	34.8	QP	N	GND
5.527500	20.20	11.5	60	39.8	QP	N	GND
18,150000	31.60	11.7	60	28.4	OP	N	GND

MEASUREMENT RESULT: "F-2054-7 fin2"

2	2019-3-12 11:	11						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.150000	45.80	10.8	56	10.2	AV	N	GND
	0.375000	23.20	10.9	48	25.2	AV	N	GND
	0.906000	21.60	11.1	46	24.4	AV	N	GND
	2.296500	11.50	11.3	46	34.5	AV	N	GND
	5.829000	8.70	11.5	50	41.3	AV	N	GND
	18.492000	10.20	11.7	50	39.8	AV	N	GND

CONDUCTED EMISSION STANDARD FCC PART 15C

EUT: 5.1 Home Theater Sound Bar and Wireless Subwoofer System

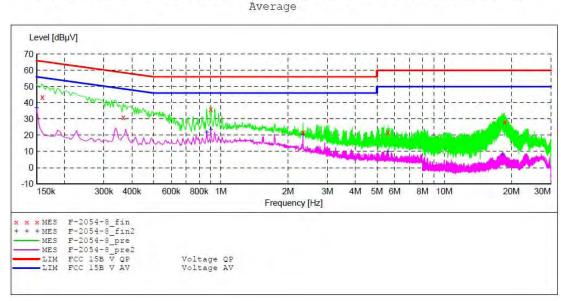
Manufacturer: Zhao Yang Electronic (Shenzhen)Co.,Ltd Operating Condition: Wireless communication

Test Site: 1#Shielding Room

Operator: Frank Test Specification: L 240V/60Hz

Report NO.:ATE20182051 M/N:Studio Advance Comment:

Start of Test: 2019-3-12 / 11:12:09


SCAN TABLE: "V 150K-30MHz fin"

_SUB_STD_VTERM2 1.70 Short Description:

Stop Detector Meas. Start Step IF Transducer

Time Bandw.

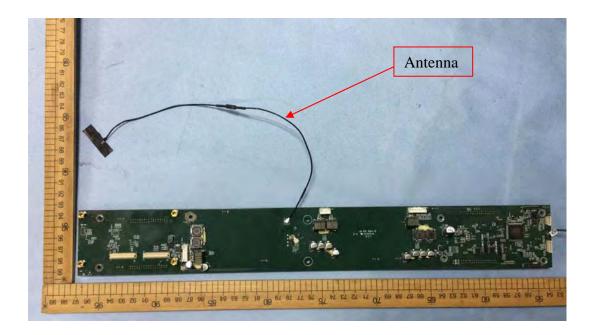
Frequency Frequency Width 150.0 kHz 30.0 MHz 4.5 kH NSLK8126 2008 4.5 kHz QuasiPeak 1.0 s 9 kHz

MEASUREMENT RESULT: "F-2054-8 fin"

2019-3-12 11:	14						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.159000	43.60	10.8	66	21.9	QP	L1	GND
0.366000	31.00	10.9	59	27.6	QP	L1	GND
0.901500	36.00	11.1	56	20.0	QP	L1	GND
2.337000	21.70	11.3	56	34.3	QP	L1	GND
5.599500	21.80	11.5	60	38.2	QP	L1	GND
18.676500	28.10	11.7	60	31.9	QP	L1	GND

MEASUREMENT RESULT: "F-2054-8 fin2"

2019-3-12 11:	14						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000	36.90	10.8	56	19.1	AV	L1	GND
0.865500	21.90	11.1	46	24.1	AV	L1	GND
0.901500	23.40	11.1	46	22.6	AV	L1	GND
2.332500	20.40	11.3	46	25.6	AV	L1	GND
5.599500	10.10	11.5	50	39.9	AV	L1	GND
18.226500	8.30	11.7	50	41.7	AV	L1	GND


13.ANTENNA REQUIREMENT

13.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

13.2. Antenna Construction

The antenna use a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. The antenna connector used in this product is the ipex connector. The Antenna gain of EUT is 4.04dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

***** End of Test Report *****