

Test Report Serial Number: Test Report Date: Project Number: 45461905 R1.0 15 May 2024 1647

SAR Test Report - New Application

Applicant:

Garmin International Inc. 1200 East 151 St. Olathe, KS, 66062 USA

FCC ID:

IPH-B4450

Product Model Number / HVIN

B04450

Maximum <u>reported</u> SAR								
	DTS	0.31						
Body	DSS	<0.1						
(1g)	UNII	0.61						
	Simultaneous	0.62						
General F	op. Limit:	1.60	W/kg					
	DTS	0.17	vv/kg					
Extremity	DSS	<0.1						
(10g)	UNII	0.25						
	Simultaneous	0.26						
General F	op. Limit:	4.00						

IC Registration Number

Product Name / PMN

B04450

In Accordance With:

FCC 47 CFR §2.1093

Radiofrequency Radiation Exposure Evaluation: Portable Devices

Approved By:

Ben Hewson, President

Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8 Canada

Industry Canada

HC.

FCC Registration: CA3874

IC Registration 3874A

This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc.

Test Lab Certificate: 2470.01

Table of Contents

1.0 REVISION HISTORY	4
2.0 CLIENT AND DEVICE INFORMATION	5
3.0 SCOPE OF EVALUATION	6
4.0 NORMATIVE REFERENCES	7
5.0 STATEMENT OF COMPLIANCE	8
6.0 SAR MEASUREMENT SYSTEM	g
7.0 RF CONDUCTED POWER MEASUREMENT	10
TABLE 7.1 CONDUCTED POWER MEASUREMENTS, WLAN, BT, U-NII	10
8.0 NUMBER OF TEST CHANNELS (Nc)	11
Table 8.1 Number of Test Channels Table 8.2 Antenna Distances Table 8.3 Body SAR test Exclusion Workchart Table 8.4 Extremity SAR test Exclusion Workchart	12 13
9.0 ACCESSORIES EVALUATED	14
Table 9.1 Manufacturer's Accessory List	14
10.0 SAR MEASUREMENT SUMMARY	
Table 10.1: Measured Results – Body 1g	
11.0 SCALING OF MAXIMUM MEASURE SAR	17
TABLE 11.1 SAR SCALING 1G TABLE 11.2 SAR SCALING 10G	18
12.0 SAR EXPOSURE LIMITS	21
TABLE 12.1 EXPOSURE LIMITS	21
13.0 DETAILS OF SAR EVALUATION	22
13.1 DAY LOG	23
13.3 DUT POSITIONING	
13.5 FLUID DIELECTRIC AND SYSTEMS PERFORMANCE CHECK	
13.6 SCAN RESOLUTION 100MHz TO 2GHz	
13.8 Scan Resolution 5GHz to 6GHz	
14.0 MEASUREMENT UNCERTAINTY	27
Table 14.1 Measurement Variablity	
15.0 FLUID DIELECTRIC PARAMETERS	28
TABLE 15.1 FLUID DIELECTRIC PARAMETERS 5250MHz HEAD TSL	
TABLE 15.2 FLUID DIELECTRIC PARAMETERS 5750MHz HEAD TSL	

Test Report Issue Date: 15 May 2024

45461905 R1.0 15 May 2024

16.0 SYSTEM VERIFICATION TEST RESULTS	30
TABLE 16.1 - 5250MHz TABLE 16.2 - 5750MHz	31
TABLE 16.3 - 2450MHz	
Table 17.1 System Validation Summary	
18.0 MEASUREMENT SYSTEM SPECIFICATIONS	34
TABLE 18.1 MEASUREMENT SYSTEM SPECIFICATIONS	34
19.0 TEST EQUIPMENT LIST	36
TABLE 19.1 EQUIPMENT LIST AND CALIBRATION	36
20.0 FLUID COMPOSITION	37
TABLE 20.1 FLUID COMPOSITION 2450MHz HEAD TSL	
END OF REPORT	37
APPENDIX A – SYSTEM VERIFICATION PLOTS	38
APPENDIX B – MEASUREMENT PLOTS OF MAXIMUM MEASURED SAR	44
APPENDIX C - SETUP PHOTOS	46
FIGURE C.1 – SETUP PHOTO, BACK TOUCH – FAR	
FIGURE C.2 – SETUP PHOTO, BACK TOUCH –CLOSE	
Figure C.3 — Setup Photo, Front - Far	
FIGURE C.5 – SETUP PHOTO, TOP EDGE - FAR.	
FIGURE C.6 – SETUP PHOTO, TOP EDGE - CLOSE	
Figure C.7 – Setup Photo, Left Edge - Far	
FIGURE C.8 – SETUP PHOTO, LEFT EDGE - CLOSE	53
APPENDIX E – PROBE CALIBRATION	54
APPENDIX F – DIPOLE CALIBRATION	55
APPENDIX G - PHANTOM	56

1.0 REVISION HISTORY

Revision History										
Samples Tested By:		Ben Hewson/Trevor Whillock	Date	e(s) of Evaluation:	20-22, 27-28 February 2024					
Report Prepared By:		Ben Hewson	Re	port Reviewed By:	Art Voss					
Report	Desc	ription of Revision	Revised	Revised	Revision Date					
Revision	Desc	inpuon or the vision	Section	Ву	Ne vision bute					
0.1		Draft	n/a	Ben Hewson	6 May 2024					
1.0	1	Initial Release	n/a	Ben Hewson	15 May 2024					

2.0 CLIENT AND DEVICE INFORMATION

Client Information						
Applicant Name	Garmin International Inc.					
	1200 East 151 St					
Applicant Address	Olathe, KS, 66062					
	USA					
	DUT Information					
Device Identifier(s):	FCC ID: IPH-B4450					
Device Model(s) / HVIN:	B04450					
Device Marketing Name / PMN:	B04450					
Test Sample Serial No.:	OTA: 3462543831 COND: 3462543833					
Device Type:	Personal Navigation Device					
	PCS Licensed Transmitter (PCB)					
	Digital Transmission System (DTS)					
FCC Equipment Class:	Part 15 Spread Spectrum Transmitter (DSS)					
	Unlicensed National Information Infrastructure (NII)					
	Short Range Devices (SRD)					
	BT (DTS, DSS): 2402-2480MHz					
Transmit Frequency Range:	WiFi (DTS): 2412-2462MHz					
	U-NII-1: 5180 - 5240, U-NII-3: 5745-5825					
	BT BR (DSS): 7.5 dBm					
	BT 2EDR (DTS): 5 dBm					
	BT 3EDR (DTS): 5 dBm					
	BT LE (DTS): 6 dBm					
	802.11b (DTS): 18 dBm					
	802.11g (DTS): 18 dBm					
	802.11n (DTS): 18 dBm					
Manuf. Max. Rated Output Power:	U-NII-1/802.11a20: 12 dBm					
	U-NII-1/802.11n20: 12 dBm					
	U-NII-1/802.11n40: 10 dBm					
	U-NII-1/802.11ac80: 10 dBm					
	U-NII-3/802.11a20: 16 dBm					
	U-NII-3/802.11n20: 16 dBm					
	U-NII-3/802.11n40: 15 dBm					
	U-NII-3/802.11ac80: 15 dBm					
Antenna Type and Gain:	PIFA 2.4GHz: 3dBi, 5GHz UNII-1: 6dBi, UNII-3: 4dBi					
	BT BR: GFSK					
	BT 2EDR: π/4-DQPSK					
Modulation:	Bt 3EDR: 8DPSK					
	BLE: GMSK					
	WiFi: CCK, DSSS, OFDM, CCK, MCS					
DUT Power Source:	5V USB, Internal Li-lon Battery					
DUT Dimensions [LxWxH]	L x W x H: 177mm x 106mm x 35mm					
Deviation(s) from standard/procedure:	None					
Modification of DUT:	None					

^{*} Information on antenna gain provided by applicant.

45461905 R1.0 15 May 2024

3.0 SCOPE OF EVALUATION

This Certification Report was prepared on behalf of:

Garmin International Inc.

The B04450 FCC ID: IPH-B4450, is a Low Power Digital Transmitter that offers use as a hand-held, transportation mounted or portable configuration, with a Wi-Fi transceiver that is capable of operating in the 2.4GHz WiFi, 5GHz U-NII-1 & 3 frequency bands as well as 2.4Ghz BT/BLE frequency bands. The device has two antennas, for the 2.4GHZ and a 5Ghz frequencies and is capable of simultaneous transmisson between the BT and UNII bands. The device is intended for General Population Use. The product operates from an internal proprietary Li-ion rechargeable battery which can be connected to a compliant USB interface port, AC or DC adapter for charging. Test samples provided by the manufacturer were capable of transmitting at select frequencies and modulations preset by the manufacturer. An additional antenna modification was prepared for one sample allowing the ability to connect test equipment for antenna port conducted power analysis.

Application:

This is an application for a new device certification.

Scope:

The scope of this evaluation limited to the evaluation of SAR for intended and non-intended applications. It will include evaluation of the 2.4 GHz WiFi, U-NII transmitters for all required RF exposure configurations including Extremity and certain Body Configuration as the device may be operational while in hand or on person.

The Test Plan developed for this evaluation is based on the required test channels and configurations which produced the highest worst case SAR and where applicable, SAR test reduction and/or SAR test exclusion may be utilized. The DUT was evaluated for SAR at the maximum tune up tolerance and conducted output power level, preset by the manufacturer and in accordance with the procedures described in IEC/IEEE 62209-1528, FCC KDB 447498 and FCC KDB 248227.

45461905 R1.0 15 May 2024

4.0 NORMATIVE REFERENCES

	Normative References*							
ANSI / ISO 17025	General Requirements for competence of testing and calibration laboratories							
FCC CFR Title 47 Part 2	Code of Federal Regulations							
Title 47:	Telecommunication							
Part 2.1093:	Radiofrequency Radiation Exposure Evaluation: Portable Devices							
IEC International Standard	/IEEE International Committee on Electromagnetic Safety							
IEC/IEEE 62209-1528	Measurement procudeure for the assessment of sepcific absorption rate of human expoure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1528; Human models, insturmentation, and procedures (Frequency range of 4 MHz to 10 GHz)							
FCC KDB								
KDB 865664 D01v01r04	SAR Measurement Requirements for 100MHz to 6GHz							
FCC KDB								
KDB 447498 D04v01	Interim General RF Exposure Guidance							
FCC KDB								
KDB 248227 D01v02r02	SAR Guidance for IEEE 802.11 (WiFi) Transmitters							
* When the issue number	or issue date is omitted, the latest version is assumed.							

45461905 R1.0 15 May 2024

5.0 STATEMENT OF COMPLIANCE

This measurement report demonstrates that samples of the product model(s) were evaluated for Specific Absorption Rate (SAR) on the date(s) shown, in accordance with the Measurement Procedures cited and were found to comply with the Standard(s) Applied based on the Exposure Limits of the Use Group indicated for which the product is intended to be used.

Applicant:	Model / HVIN:					
Garmin International Inc.	B04450					
Standard(s) Applied:	Measurement Procedure(s):					
Health Canada's Safety Code 6	Industry Canada RSS-102 Issue 5					
	FCC KDB 865664, FCC KDB 447498, FCC KDB 248227					
Reason For Issue:	Use Group:	Limits Applied:				
x New Certification	x General Population / Uncontrolled	x 1.6W/kg - 1g Volume				
Class I Permissive Change		8.0W/kg - 1g Volume				
Class II Permissive Change	Occupational / Controlled	x 4.0W/kg - 10g Volume				
Reason for Change:		Date(s) Evaluated:				
		20-22, 27-28 February 2024				

The results of this investigation are based solely on the test sample(s) provided by the applicant which was not adjusted, modified or altered in any manner whatsoever except as required to carry out specific tests or measurements. A description of the device, operating configuration, detailed summary of the test results, methodologies and procedures used during this evaluation, the equipment used and the various provisions of the rules are included in this test report.

I attest that the data reported herein is true and accurate w ithin the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.

Ben Hewson Celltech Labs Inc.

> 30 April 2024 Date

6.0 SAR MEASUREMENT SYSTEM

SAR Measurement System

Celltech Labs Inc. SAR measurement facility employs a Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY6 measurement system is comprised of the measurement server, a robot controller, a computer, a near-field probe, a probe alignment sensor, an Elliptical Planar Phantom (ELI) phantom and a specific anthropomorphic mannequin (SAM) phantom for Head and/or Body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller and a teach pendant (Joystick) to control the robot's servo motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical form the DAE to digital electronic signal and transfers data to the DASY6 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gainswitching multiplexer, a fast 16-bit AD-converter, a command decoder and a control logic unit. Transmission to the DASY6 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot utilizes a controller with built in VME-bus computer.

DASY 6 SAR System

DASY 6 Measurement Controller

7.0 RF CONDUCTED POWER MEASUREMENT

Table 7.1 Conducted Power Measurements, WLAN, BT, U-NII

Band Mode Bandwidth Channel Frequency (MHz) (MHz	Delta (dB) -0.98	D		T = -		Conducted Power Measurements												
Band Mode Bandwidth Channel Frequency Modulation Rate Power	(dB)	D		Duty	Crest	SAR Test												
MHz	1 /		Delta	Cycle		Channel												
BOZ.11b	1 /	1,	(dR)	(%)	(1/DC)	(Y/-)												
WLAN 2.4G B02.11b B02.11b B03.11b B0	0.00		1. /	98.8	1.01	-												
MILAN 2.4G 802.11b 20	-0.73			98.8	1.01	_												
WLAN 2.4G	-0.32	_		98.8	1.01	Υ												
WLAN 2.4G	-0.70	_		98.8	1.01	-												
MLAN 2.4G 11	-0.87	_		98.8	1.01	_												
WLAN 2.4G 13 2472	-0.49	_		98.8	1.01	-												
BO2.11g 20 6 2437 OFDM 9 17.08 18.00 0.063 -	-6.81	-6	-6.81	98.8	1.01	-												
BT BR 1	-0.65	-0	-0.65	98.8	1.01	-												
BT 20 6 2437 MCS0 - 17.59 18.00 0.063 -	-0.92	-0	-0.92	98.8	1.01	-												
BR 1 41 2441 Pi/4-DQPSK - 6.32 7.50 0.006 - 6.04	-1.07	-1	-1.07	98.8	1.01	-												
BR 1 2 2402	-0.41	-0	-0.41	98.8	1.01	-												
BR 1 2 2402	-0.38	-0	-0.38	98.8	1.01	-												
BR 1 41 2441	-3.40	-3	-3.40	98.8	1.01	-												
BT BT	-1.46	-1	-1.46	77.1	1.30	-												
BT 2	-0.31	-(-0.31	77.1	1.30	Υ												
BT 2EDR	-1.18	-1	-1.18	77.1	1.30	-												
BT 80 2480 3.87 5.00 0.003 -1	-0.81	-0	-0.81	77.1	1.30	-												
BI 3EDR 1 2 2402 8DPSK - 4.61 5.00 0.003 -1 80 2480 3.86 5.00 0.003 -1 3.86 5.00 0.003 -1 3.86 5.00 0.003 -1 3.86 5.00 0.003 -1 3.86 5.00 0.003 -1 3.86 5.00 0.003 -1 3.86 5.00 0.003 -1 3.86 5.00 0.003 -1 3.86 5.00 0.003 -1 3.86 5.00 0.004 -1 3.86 5.000 0.004 -1 3.86 5.000 0.004 -1 3.86 5.000 0.004 -1 3.86 5.000 0.004 -1 3.86 5.000 0.004 -1 3.86 5.000 0.	-0.34	-0	-0.34	77.1	1.30	-												
SEDR 1	-1.13			77.1	1.30	-												
LE	-1.83	-1	-1.83	77.1	1.30	-												
LE 1 17 2440 GFSK - 5.80 6.00 0.004 -	-0.39	-0	-0.39	77.1	1.30	-												
U-NII-1 B02.11a 20 40 5.80 6.00 0.004 -	-1.14	_		77.1	1.30	-												
Boz.11a 20 36 5180	-0.57	_		77.1	1.30	-												
U-NII-1 802.11a 20 36 5180 40 5200 444 5220 48 5240 36 5180 40 5200 48 5240 36 5180 40 5200 60 60 60 60 60 60 60 60 60	-0.20	_		77.1	1.30	-												
U-NII-1 802.11a 20 40 5200 444 5220 48 5240 36 5180 40 5200 40 5200 40 11.85 12.00 0.016 -0 11.82 12.00 0.016 -0 11.33 12.00 0.016 -0 11.71 12.00 0.016 -0 11.20 11.20 0.016 -0 11.20 11.20 0.016 -0 11.85 12.00 0.016 -0 11.85 12.00 0.016 -0 11.85 12.00 0.016 -0 11.85 12.00 0.016 -0 11.85 12.00 0.016 -0 11.85 12.00 0.016 -0 11.85 12.00 0.016 -0 11.85 12.00 0.016 -0 11.85 12.00 0.016 -0 11.85 12.00 0.016 -0 11.85 12.00 0.016 -0 11.85 12.00 0.016 -0 11.85 12.00 0.016 -0 11.85 12.00 0.016 -0 11.85 12.00 0.016 -0 11.85 12.00 0.016 -0 11.85 12.00 0.016 -0 11.85 12.00 0.016 -0 10.86 12.00 0.016 -0 10.86 12.00 0.010 -0 10.86 12.00 0.010 -0 10.86 12.00 0.010 -0 10.86 10.00 0.010 -0 10.00 0.010 -0 10.00 0.010 -0 10.00 0.010 -0 10.00 0.010 -0 10.00 0.010 -0 10.00 0.010 -0 10.00 0.010 -0 10.00 0.010 -0 10.00 0.010 -0 10.00 0.010 -0 10.00 0.010 -0 10.00 0.010 -0 10.00 0.010 -0 10.00 0.010 -0 10.00 0.010 -0 10.00 10.00 0.010 -0 10.00 1	-0.82	_		77.1	1.30	-												
U-NII-1 802.11a 20 44 5220 48 5240 11.82 12.00 0.016 -0.016	-0.04			97.3	1.03	Υ												
U-NII-1 802.11n 20 44 5220 48 5240 11.82 12.00 0.016 -0 11.33 12.00 0.016 -0 11.71 12.00 0.016 -0 11.20 12.00 0.016 -0 11.05 12.00 0.016 -0 11.05 12.00 0.016 -0 11.05 12.00 0.016 -0 10.86 12.00 0.016 -0 10.86 12.00 0.016 -0 10.86 12.00 0.016 -0 10.86 12.00 0.016 -0 10.86 12.00 0.016 -0 10.86 10.00 0.010 -0 10.86 10.00 0.010 -0 10.86 10.00 10	-0.15	_		97.3	1.03	-												
U-NII-1 802.11n 20 36 5180 40 5200 44 5220 48 5240 802.11n40 40 36 5180 40 5200 48 5240 MCS0 - 11.71 12.00 0.016 - 11.20 12.00 0.016 - 10.86 12.00 0.016 - 10.86 12.00 0.016 - 10.86 12.00 0.016 - 80.011 802.11ac80 80 36 5180 MCS0 - 8.9 10.00 0.010 - 8.9 10.00 0.010 - 0.010 - 0.010 - 0.010 - 0.	-0.18			97.3	1.03	-												
U-NII-1 802.11n 20 40 5200 MCS0 - 11.20 12.00 0.016 -0 11.05 12.00 0.016 -0 11.05 12.00 0.016 -0 11.05 12.00 0.016 -0 11.05 12.00 0.016 -1 11.05 12.00 0.016 12.00 0.016 -1 11.05 12.00 0.016	-0.67			97.3	1.03	-												
802.11n 20	-0.29			97.3	1.03	_												
802.11n40 40 36 5180 44 MCS0 - 9.49 10.00 0.010 - 802.11ac80 80 36 5180 44 MCS0 - 9.9 10.00 0.010 - 802.11ac80 80 36 5180 MCS0 - 9.05 10.00 0.010 -	-0.80			97.3	1.03	_												
802.11n40 40 36 5180 MCS0 - 9.49 10.00 0.010 -0 8.9 10.00 0.010 -1 802.11ac80 80 36 5180 MCS0 - 9.05 10.00 0.010 -0 802.11ac80 80 36 5180 MCS0 - 9.05 10.00 0.010 -0 802.11ac80 80 36 5180 MCS0 - 9.05 10.00 0.010 -0 802.11ac80 80 36 5180 MCS0 - 9.05 10.00 0.010 -0 802.11ac80 80 36 5180 MCS0 - 9.05 10.00 0.010 -0 802.11ac80 80 36 5180 MCS0 - 9.05 10.00 0.010 -0 802.11ac80 80 36 5180 MCS0 - 9.05 10.00 0.010 -0 802.11ac80 80 36 5180 MCS0 - 9.05 10.00 0.010 -0 802.11ac80 80 36 5180 MCS0 - 9.05 10.00 0.010 -0 802.11ac80 80 36 5180 MCS0 - 9.05 10.00 0.010 -0 802.11ac80 80 36 5180 MCS0 - 9.05 10.00 0.010 -0 802.11ac80 80 36 5180 MCS0 - 9.05 10.00 0.010 -0 802.11ac80 80 36 5180 MCS0 - 9.05 10.00 0.010 -0 802.11ac80 80 80 80 80 80 80 80 80 80 80 80 80 8	-0.95	_		97.3	1.03	-												
802.11n40 40 44 5220 MCS0 - 8.9 10.00 0.010 -1 802.11ac80 80 36 5180 MCS0 - 9.05 10.00 0.010 -0	-1.14	_		97.3	1.03	-												
802.11ac80 80 36 5180 MCS0 - 9.05 10.00 0.010 -0	-0.51	_		97.3	1.03	-												
	-1.10 -0.95	_		97.3 97.3	1.03	-												
149 5745 15.22 16.00 0.040 -0	-0.93	_		97.3	1.03	Y												
	-1.03	_		97.3	1.03	-												
	-1.00			97.3	1.03													
	-1.00			97.3	1.03	 												
	-0.99			97.3	1.03													
	-1.24	_		97.3	1.03	<u> </u>												
	-1.37	_		97.3	1.03	 -												
155 5765		_				+												
	-1.47	_		97.3	1.03	-												
161 5805 14.41 16.00 0.040 -1	-1.59	-1	-1.59	97.3	1.03	-												
165 5825 14.62 16.00 0.040 -1	-1.38	1	-1.38	97.3	1.03	-												
802.11n40 40 MCS0 - 15.00						-												
802.11ac80 80 MCS0 - 15.00						-												

The rated power and tolerance are stated for typical transmission modes and data rates. Some modes and data rates may produce lower than rated conducted power levels. Power measurements taken across the various channels, modes and data rates did not produce levels in excess of the Rated Power plus Tolerance. SAR was evaluated using the power level setting specified by the manufacture to be the max output power and produce the most conservative SAR. SAR was evaluated at the <u>maximum average</u> tune up tolerance. See section 2.0 Client and Device Information for details. The <u>reported</u> SAR was not scaled down.

45461905 R1.0 15 May 2024

8.0 NUMBER OF TEST CHANNELS (Nc)

Table 8.1 Number of Test Channels

The intended use of the device is to be mounted on a vehicle' dashboard; however, the device could transmit while held in hand or on person. As such the device was evaluated for both Body and Extremity use.

Wi-FI SAR Evaluation:

SAR was evaluated in DSSS mode at the maximum duty cycle. The power level setting selected was specified by the manufacturer to be the max output power and produce the most conservative SAR.

As per FCC KDB 248227, the required 802.11 test channels are Ch1, Ch 6 and Ch 11; The highest conducted output power was found on Channel 6. As a result, this channel was selected for initial SAR evaluation.

SAR test reduction methodology was applied to reduce the total number of required test channels from the SAR test evaluation.

When applicable, SAR test reduction methods may be utilized.

802.11b DSSS SAR test reduction is determined according to the following:

- a) When the <u>reported</u> SAR of the highest measured maximum output power channel is ≤ to 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- b) When the <u>reported</u> SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest output power channel. When any <u>reported</u> SAR is > 1.2 W/Kg, SAR is required for the third channel.

2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

- a) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- b) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. An initial test position was established for Both UNII1 and UNII 3 bands.

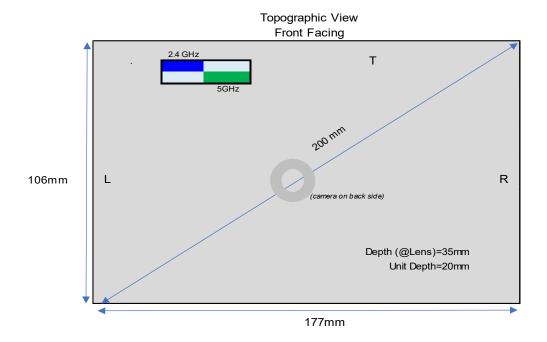
When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until reported SAR is ≤ 1.2 W/kg or all required channels are tested.

NOTE: The Bluetooth transmitter is capable of simultaneous transmission with the 5GHz WiFi Transmitter. The Bluetooth SAR was evaluated for simultaneous SAR.

Table 8.2 Antenna Distances

As per KDB 447498 D04V01, Appendix B, Sec B.4 SAR -based Exemption where appropriate SAR test exclusion based on antenna test separation distances may be applied.

The seperation distance is the smallest distance from any part of the antenna or radiating strucuture for all persons, during operation at the applicable ERP. For mobile or portable devices, the seperation distance is from the outer housing of the device where it is closest to the antenna. The SAR-based exemption formula for available time-averaged power or ERP, whichever is greater, of less than or equal to threshold P_{th} (mW) is


$$P_{\rm th} \ ({\rm mW}) = ERP_{\rm 20 \ cm} \ ({\rm mW}) = \begin{cases} 2040 f & 0.3 \ {\rm GHz} \le f < 1.5 \ {\rm GHz} \\ \\ 3060 & 1.5 \ {\rm GHz} \le f \le 6 \ {\rm GHz} \end{cases} \eqno(B.1)$$

$$P_{\text{th}} \text{ (mW)} = \begin{cases} ERP_{20 \text{ cm}} (d/20 \text{ cm})^x & d \le 20 \text{ cm} \\ ERP_{20 \text{ cm}} & 20 \text{ cm} < d \le 40 \text{ cm} \end{cases}$$
(B. 2)

where

$$x = -\log_{10}\left(\frac{60}{ERP_{20 \text{ cm}}\sqrt{f}}\right)$$

and f is in GHz, d is the separation distance (cm), and ERP_{20cm} is per Formula (B.1).

	Top Left		Bottom	Right	Front	Back		
Antenna	Edge	Edge	Edge	Edge	Depth	Depth		
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)		
WLANBT	12.0	25.0	91.0	147.0	8.0	25.0		
5GHz	15.0	35.0	86.0	137.0	8.0	25.0		

Table 8.3 Body SAR test Exclusion Workchart

SAR Test Exclusion Analysis Antenna Separation to DUT Surfaces										
Band										
BODY	Configuration (1g)	2.4GHz		5GHz WLAN	BT/BLE					
		WiFi	U-NII-1	U-NII-3	ANT					
DUT	Frequency (MHz)	2462	5240	5745	2480					
Power	Pow er (mW)	63.10	15.80	39.80	5.60					
	Antenna Gain (dBi)	3.00	6.00	4.00	3.00					
DUT	Antenna Gain (dBd)	0.85	3.85	1.85	0.85					
Position	Total ERP (mW)	76.74	38.34	60.94	6.81					
	Separation Distance (mm)	25.00	25.00	25.00	25.00					
Back Side	Exclusion Threshold (Pth)(mW)	58.47	41.57	39.88	58.28					
	Testing Required	Yes	No	Yes	No					

- \sim Pth(mW) = ERP_ $20\text{cm}}$ (mW) = 2040f for 0.3GHz \leq f < 1.5GHz
- $\sim Pth(mW)$ = ERP $_{\!\!20cm}(mW)$ = 3060 for 1.5GHz $\leq f \leq 6GHz$
- ~ Pth(mW) = ERP $_{20cm}$ (mW) * (d / 20cm) X w here x = -log10(60 / ERP $_{20cm}$ \sqrt{f}) for d \leq 20cm
- ~ Pth(mW) = ERP_{20cm}(mW)) for 20cm < d ≤ 40cm ~ Total ERP = Pow er + Gain(dBd)
- \sim Gain(dBd) = Gain(dBi) 2.15

Table 8.4 Extremity SAR test Exclusion Workchart

SAR Test Exclusion Analysis Antenna Separation to DUT Surfaces										
		Band								
EXTREMIT	Y Configuration (10g)	2.4GHz WiFi	5GHz WLAN U-NII-1	5GHz WLAN U-NII-3	BT/BLE ANT					
DUT	Frequency (MHz)	2462	5240	5745	2480					
Power	Pow er (mW)	63.10	15.80	39.80	5.60					
	Antenna Gain (dBi)	3.00	6.00	4.00	3.00					
DUT	Antenna Gain (dBd)	0.85	3.85	1.85	0.85					
Position	Total ERP (mW)	76.74	38.34	60.94	6.81					
	Separation Distance (mm)	10	10	10	10					
Front Side	Exclusion Threshold (Pth)(mW)	25.56	15.64	14.73	25.44					
	Testing Required	Yes	Yes	Yes	No					
Back Side	Separation Distance (mm)	25.00	25.00	25.00	25.00					
	Exclusion Threshold (Pth)(mW)	146.18	103.93	99.71	145.70					
	Testing Required	No	No	No	No					
	Separation Distance (mm)	91.00	86.00	86.00	91.00					
Bottom Edge	Exclusion Threshold (Pth)(mW)	1709.16	1336.45	1314.11	1707.04					
	Testing Required	No	No	No	No					
	Separation Distance (mm)	12.00	15.00	15.00	12.00					
Top Edge	Exclusion Threshold (Pth)(mW)	36.16	36.15	34.33	36.00					
	Testing Required	Yes	Yes	Yes	No					
	Separation Distance (mm)	25.00	35.00	35.00	25.00					
Left Edge	Exclusion Threshold (Pth)(mW)	146.18	208.37	201.24	145.70					
	Testing Required	No	No	No	No					
	Separation Distance (mm)	147.00	137.00	137.00	147.00					
Right Edge	Exclusion Threshold (Pth)(mW)	4257.72	3499.41	3473.06	4255.65					
	Testing Required	No	No	No	No					

- ~ Pth(mW) = ERP_{20cm}(mW) = 2040f for 0.3GHz ≤ f < 1.5GHz ~ Pth(mW) = ERP_{20cm}(mW) = 3060 for 1.5GHz ≤ f ≤ 6GHz ~ Pth(mW) = ERP_{20cm}(mW) * (d / 20cm)* where x = -log 10(60 / ERP_{20cm} √f) for d ≤ 20cm ~ Pth(mW) = ERP_{20cm}(mW) for 20cm < d ≤ 40cm ~ Pth(mW) = ERP_{20cm}(mW) X 2.5 for 10g Extremity ~ Total ERP = Power + Gain(dBd) ~ Color(dBd) < Col

- ~ Gain(dBd) = Gain(dBi) 2.15

^{*} The exclusion chart for the ISED evaluation was more conservative and based on this and the results of preliminary SAR evaluations, more DUT positions were evaluated beyond those listed above.

* The BT and U-NII transmitters are capable of simultaneous transmission. BT SAR was evaluated for the purposes of simultaneous transmission analysis.

45461905 R1.0 15 May 2024

9.0 ACCESSORIES EVALUATED

Table 9.1 Manufacturer's Accessory List

There are no manufacturer's accessories available when used in a portable application.

Test Report Issue Date: 15 May 2024

45461905 R1.0

10.0 SAR MEASUREMENT SUMMARY

Table 10.1: Measured Results - Body 1g

	Measured 1g SAR Results - BODY Configuration																
Date	Plot	Test Frequency			OUT guration			Acc.	Sp DUT	acing Antenna	Measured SAR	SAR Drift	Delta Power	Crest Factor	Fluid Sensitivity	Duty Factor	reported SAR
2000	ID	(MHz)	Pos	Mode	BW	Mod	BR		(mm)	(mm)	(W/kg)	(dB)	(dB)	(n)	(n)	(%)	(W/kg)
2.4GI	HZ WLAN	& BT															
2/27/2024	B26	2437	Back Touch	802.11b	20	DSSS	5.5		0	25	0.242	0.350	-0.980	1.012	1.000	100.000	0.307
2/27/2024	B27	2412	Back Touch	802.11b	20	DSSS	5.5		0	25	0.195	0.150	-0.870	1.012	1.000	100.000	0.241
2/27/2024	B28	2462	Back Touch	802.11b	20	DSSS	5.5		0	25	0.120	0.470	-0.490	1.012	1.000	100.000	0.136
2/28/2024	B29	2441	Back Touch	802.15	20	GFSK			0	25	0.008	0.810	-0.310	1.297	1.000	100.000	0.011
5GHz	UNII-1 &U	NII-3															
2/21/2024	B18	5180	Back Touch	UNII-1	20	OFDM6	6		0	25	0.402	-0.170	-0.040	1.028	1.000	100.000	0.434
2/22/2024	B20	5200	Back Touch	UNII-1	20	OFDM6	6		0	25	0.413	0.110	-0.150	1.028	1.000	100.000	0.439
2/22/2024	B21	5240	Back Touch	UNII-1	20	OFDM6	6		0	25	0.506	-0.040	-0.670	1.028	1.000	100.000	0.612
2/22/2024	B22	5745	Back Touch	UNII-3	20	OFDM6	6		0	25	0.418	0.230	-0.780	1.028	1.000	100.000	0.514
2/22/2024	B23	5785	Back Touch	UNII-3	20	OFDM6	6		0	25	0.458	0.110	-1.000	1.028	1.000	100.000	0.593
2/22/2024	B24	5825	Back Touch	UNII-3	20	OFDM6	6		0	25	0.452	0.200	-0.990	1.028	1.000	100.000	0.583
			Applicable S	AR Limit						Use Gr	oup				Limit		
FCC	CFR 2.1	093		Health Canad	a Safety (Code 6		(Seneral	Population	n/User Unaw	are			1.6 W/kg		•

Test Report Issue Date: 15 May 2024

45461905 R1.0

Table 10.2: Measured Results – Extremity 10g

					Measure	d 10g S	AR Results	- EX	TREMI	TY Conf	iguration						
Date	Plot	Test		DUT Configuration			Acc.	Sp DUT	acing Antenna	Measured SAR	SAR Drift	Delta Power	Crest Factor	Fluid Sensitivity	Duty Factor	reported SAR	
Date	ID	Frequency (MHz)	Pos	Mode	BW	Mod	BR	ACC.	(mm)	(mm)	(W/kg)	(dB)	(dB)	(n)	(n)	(%)	(W/kg)
2.4GI	HZ WLAN	& BT							, ,	` '	, ,	` ,					, ,,
2/27/2024	E1	2437	Top Touch	802.11b	20	DSSS	5.5		0	12	0.047	0.350	-0.980	1.012	1.000	100.000	0.059
2/27/2024	E25	2437	Front Touch	802.11b	20	DSSS	5.5		0	10	0.067	0.470	-0.980	1.012	1.000	100.000	0.085
2/16/2024	E3	2437	Left Touch	802.11b	20	DSSS	5.5		0	25	0.040	1.320	-0.980	1.012	1.000	100.000	0.050
2/27/2024	E26	2437	Back Touch	802.11b	20	DSSS	5.5		0	25	0.133	0.350	-0.980	1.012	1.000	100.000	0.169
2/27/2024	E27	2412	Back Touch	802.11b	20	DSSS	5.5		0	25	0.109	0.150	-0.870	1.012	1.000	100.000	0.135
2/27/2024	E28	2462	Back Touch	802.11b	20	DSSS	5.5		0	25	0.068	0.470	-0.490	1.012	1.000	100.000	0.076
2/28/2024	E29	2441	Back Touch	802.15	20	GFSK			0	25	0.003	0.810	-0.310	1.297	1.000	100.000	0.004
5GHz	UNII-1 &U	INII-3															
2/20/2024	E9	5180	Top Touch	UNII-1	20	OFDM6	6		0	15	0.110	0.660	-0.040	1.028	1.000	100.000	0.114
2/21/2024	E16	5180	Front Touch	UNII-1	20	OFDM6	6		0	10	0.012	3.160	-0.040	1.028	1.000	100.000	0.013
2/22/2024	E17	5180	Left Touch	UNII-1	20	OFDM6	6		0	30	0.160	2.830	-0.040	1.028	1.000	100.000	0.166
2/21/2024	E18	5180	Back Touch	UNII-1	20	OFDM6	6		0	25	0.172	-0.170	-0.040	1.028	1.000	100.000	0.186
2/21/2024	E14	5200	Top Touch	UNII-1	20	OFDM6	6		0	15	0.137	-0.150	-0.150	1.028	1.000	100.000	0.151
2/22/2024	E20	5200	Back Touch	UNII-1	20	OFDM6	6		0	25	0.169	0.110	-0.150	1.028	1.000	100.000	0.180
2/22/2024	E21	5240	Back Touch	UNII-1	20	OFDM6	6		0	25	0.208	-0.040	-0.670	1.028	1.000	100.000	0.252
2/22/2024	E22	5745	Back Touch	UNII-3	20	OFDM6	6		0	25	0.177	0.230	-0.780	1.028	1.000	100.000	0.218
2/22/2024	E23	5785	Back Touch	UNII-3	20	OFDM6	6		0	25	0.192	0.110	-1.000	1.028	1.000	100.000	0.248
2/22/2024	E24	5825	Back Touch	UNII-3	20	OFDM6	6		0	25	0.192	0.200	-0.990	1.028	1.000	100.000	0.248
	•		Applicable S	AR Limit					,	Use Gr	oup				Limit		
FCC	CFR 2.1	1093		Health Canad	a Safety C	Code 6	•	0	Seneral	Populatio	n/User Unaw	are		•	4 W/kg	•	

11.0 SCALING OF MAXIMUM MEASURE SAR

Table 11.1 SAR Scaling 1g -

	Scaling of Ma	aximum Me	easu	red SAR (1g)					
	Measured Parameters			Configura	tion					
"	weasureu Parameters	Body		Body		Body		Body		
	Plot ID	B26		B29		B21		B23		
Ma	ximum Measured SAR _M	0.242		0.008		0.506		0.458	()	W/kg
	Frequency	2437		2441		5240		5785	(1	(MHz)
Drif		0.350	(13)	0.810	(16)	-0.040		0.110	(21)	dB)
	Conducted Power	17.020		7.190		11.330		15.000	(dBm
DC	Transmiter Duty Cycle								('	(%)
DF	Use Duty Factor	100.0	(14)	100.0	(17)	100.0	(19)	100.0	(22)	(%)
	Fluid	Deviation from	om 1	Γarget						
Δе	Permitivity	-8.47%		-8.39%		-5.87%		-5.92%		
Δσ	Conductivity	8.23%		8.32%		-2.34%		-0.10%		
Flu	id Sensitivity Calculation	(1g)		IEC/IEEE	622	09-1528 7.8	3.2			
	Delta SAR = C	e * Δe + Cσ	* Δα	J		(1	8)			
	$Ce = (-0.0007854*f^3) + (0.0007854*f^3)$	09402*f ²) - (0	.027	'42*f) - 0.20	26	(!	9)			
	$C\sigma = (0.009804*f^3) - (0.086)$					(1	0)			
f	Frequency (GHz)	2.437		2.441		5.24		5.785		
	Се	-0.225		-0.225		-0.201		-0.199		
	Сσ	0.483		0.482		-0.028		-0.045		
	Ce * Δe	0.019		0.019		0.012		0.012		
	Cσ * Δσ	0.040		0.040		0.001		0.000		
	ΔSAR	0.059	(12)	0.059	(15)	0.012	(18)	0.012	(20)	%)
	Manufact	turer's Tune	up T	olerance						
Mea	sured Conducted Power	17.020		7.190		11.330		15.000	(dBm
Ra	ated Conducted Power	18.000		7.500		12.000		16.000	<u> </u>	dBm
	ΔΡ	-0.980 -0.310			-0.670		-1.000	(6	dB)	
	Transmitte	r Duty Cycle	[Cr	est Factor]						
Trai	nsmiter Duty Cycle (DC)	98.8		77.1		97.3		97.3	('	(%)
	CF (1/DC)	1.01		1.30		1.03		1.03		
	SAR Adius	tment for FI	luid :	Sensitivity						
S	SAR ₁ = SAR _M X [ΔSAR]	0.242	(12)	0.008	(15)	0.506	(18)	0.458	(20)	W/kg
	SAR Adjust	ment for Tu	neul	o Tolerance)					
	$SAR_2 = SAR_1 + [\Delta P]$	0.303		0.008		0.590		0.577		W/kg
	SAR	Adjustment	for	Drift						
,	SAR ₃ = SAR ₂ + [Drift]	0.303	(13)	0.008	(16)	0.596		0.577	(21)	W/kg
	SAR Adjustment for	Fransmitter	Duty	/ Cycle [Cre	st Fa	ctor]				
	SAR ₄ = SAR ₃ x [CF]	0.307		0.011		0.612		0.593	(1	W/kg
	SAR Adjus	tment for U	se D	uty Factor						
	SAR ₅ = SAR ₄ x [DF]	0.307	(14)	0.011	(17)	0.612	(19)	0.593	(22)	W/kg
		reported 1g	SAF	2						
	reported SAR	0.31		0.01		0.61		0.59	(W/kg

Table 11.2 SAR Scaling 10g

	Scaling of Ma	ximum Measu	red SAR (10g)			
D.	Measured Parameters		Configuration			
IV	neasured Parameters	Extremity	Extremity	Extremity	Extremity	
	Plot ID	E26	E29	E21	E23	
Max	ximum Measured SAR _M	0.133	0.003	0.208	0.192	(W/kg
	Frequency	2437	2441	5240	5785	(MHz
Drif	i Power Drift	0.350 (2)	0.810 (5)	-0.040	0.110 (10)	(dB)
	Conducted Power	17.020	7.190	11.330	15.000	(dBn
DC	Transmiter Duty Cycle					(%)
DF	Use Duty Factor	100.0 (3)	100.0 (6)	100.0 (8)	100.0 (11)	(%)
		Deviation from	Target			
Δe	Permitivity	-8.47%	-8.39%	-5.87%	-5.92%	
Δσ	Conductivity	8.23%	8.32%	-2.34%	-0.10%	
Flu	id Sensitivity Calculation	(1g)	IEC/IEEE 622	09-1528 7.8.2		
		Ce * Δe + Cσ * Δe	σ	(8)		
	Ce = (0.003456*f ³) - (0.03			(11)		
	$C\sigma = (0.004479*f^3) - (0.0$			(12)		
f	Frequency (GHz)	2.437	2.441	5.24	5.785	1
	Ce	-0.159	-0.159	-0.256	-0.255	1
	Сσ	0.262	0.261	-0.053	-0.033	1
	Ce * Δe	0.013	0.013	0.015	0.015	1
	Cσ * Δσ	0.022	0.022	0.001	0.000	1
	ΔSAR	0.035 (1)	0.035 (4)	0.016 (7)	0.015 (9)	(%)
	Manufac	turer's Tuneup 1	Tolerance			
Mea	sured Conducted Power	17.020	7.190	11.330	15.000	(dBm
Ra	ited Conducted Power	18.000	7.500	12.000	16.000	(dBn
	ΔΡ	-0.980	-0.310	-0.670	-1.000	(dB)
	Transmitte	r Duty Cycle [Cr	est Factor]			
Trar	nsmiter Duty Cycle (DC)	98.8	77.1	97.3	97.3	(%)
	CF (1/DC)	1.01	1.30	1.03	1.03	
	SAR Adjus	stment for Fluid	Sensitivity			
S	AR ₁ = SAR _M X [ΔSAR]	0.133 (1)	0.003 (4)	0.208 (7)	0.192 (9)	(W/k
	SAR Adjust	ment for Tuneu	p Tolerance			
	$SAR_2 = SAR_1 + [\Delta P]$	0.167	0.003	0.243	0.242	(W/k
	SAR	Adjustment for	Drift			
5	SAR ₃ = SAR ₂ + [Drift]	0.167 (2)	0.003 (5)	0.245	0.242 (10)	(W/k
	SAR Adjustment for	Transmitter Duty	y Cycle [Crest Fa	actor]		
	SAR ₄ = SAR ₃ x [CF]	0.169	0.004	0.252	0.248	(W/k
	SAR Adjus	stment for Use D	outy Factor			
	SAR ₅ = SAR ₄ x [DF]	0.169 (3)	0.004 (6)	0.252 (8)	0.248 (11)	(W/k
		reported 1g SAF	₹			
	reported SAR	0.17	0.00	0.25	0.25	(W/k

45461905 R1.0 15 May 2024

NOTES to Table

Scaling of the Maximum Measured SAR is based on the highest Face, Body, Extremity and/or Head SAR measured of ALL test channels, configurations and accessories used during THIS evaluation. The Measured Fluid Deviation parameters, Drift, Conducted Power, Duty Cycle [Crest] and Use Duty Factor apply only to those test frequencies and configurations producing the highest SAR. The reported SAR is the accumulation of all SAR Adjustments from the applicable steps above. The Plot ID is for identification of the SAR Measurement Plot(s) in the Annexes of this report.

NOTE: The above adjustments have been applied to ALL Measured SAR values. In some cases, the highest Measure SAR may not have produced the highest reported SAR after all adjustments have been made.

NOTE: Some of the above adjustments may not be applicable to each configuration. They are identified by grayed fields.

SAR

Per IEC/IEEE 62209-1528, FCC KDB 865664, ISED RSS-102 and ISED Notice 2012-DRS0529, SAR adjustment is applied when the calculated ΔSAR, resulting from the equations indicated, is negative (-).

ΔSAR is given as a percentage (%). The SAR is MULTIPLIED by this scaling factor only when the scaling factor is negative (-).

SAR,

Per IEC/IEEE 62209-1528, FCC KDB 865664 and ISED RSS-102, adjustment is required only when the difference (ΔP) between the Measured Conducted Power and the Manufacturer's Rated Conducted Power is (-) Negative.

 ΔP is given in dB. The absolute value of ΔP is ADDED (logarithmically) to the SAR when ΔP is negative (-).

SAR₃

Per IEC/IEEE 62209-1528, FCC KDB 865664 and ISED RSS-102, adjustment is required only when Measured Drift is negative (-). The absolute value of Measured Drift is ADDED (logarithmically) to the SAR.

Drift is given in dB. The absolute value of Drift is ADDED (logarithmically) to the SAR when Drift is negative (-).

Per IEC/IEEE 62209-1528, FCC KDB 865664 and ISED RSS-102, when the transmit Duty Cyle (DC) is less than 100%, the reported SAR must be scaled to 100% by the Crest Factor (CF). CF = 1/DC w here DC is in decimal.

CF is given as a decimal. The SAR is MULTIPLIED by this scaling factor only when the scaling factor is greater than 1.

Use Duty Factor applies to Push-To-Talk (PTT) transceivers or other devices whereby the user has some control of the transmitter onoff period. Per IEC/IEEE 62209-1528, FCC KDB 447498, FCC KDB 643646 and ISED RSS-102, a Duty Factor (DF) of 50% may be applied. In cases where Voice Activated transmit is employed, a DF of 75% may be applied.

DF is given as a percentage (5). The SAR is MULTIPLIED by this scaling factor only when the scaling factor is less than 100%.

reported SAR

The <u>reported</u> SAR is the Maximum SAR after all applicable adjustments have been made and is indicated on the cover page of this report.

Note (1): Delta SAR is Positive, SAR Adjustment for Fluid Sensitivity is not Required, in accordance with ISED Notice 2012-DRS0529

Note (2): Power Drift is Positive, Drift Adjustment not Required.

Note (3): Use Duty Factor is 100% No Duty Factor Correction applied.

Note (4): Delta SAR is Positive, SAR Adjustment for Fluid Sensitivity is not Required, in accordance with ISED Notice 2012-DRS0529

Note (5): Power Drift is Positive. Drift Adjustment not Required.

Note (6): Use Duty Factor is 100% No Duty Factor Correction applied.

Note (7): Delta SAR is Positive, SAR Adjustment for Fluid Sensitivity is not Required, in accordance with ISED Notice 2012-DRS0529

Note (8): Use Duty Factor is 100% No Duty Factor Correction applied.

Note (9): Delta SAR is Positive, SAR Adjustment for Fluid Sensitivity is not Required, in accordance with ISED Notice 2012-DRS0529 Note (10): Power Drift is Positive, Drift Adjustment not Required.

Note (11): Use Duty Factor is 100% No Duty Factor Correction applied

Note (12): Delta SAR is Positive, SAR Adjustment for Fluid Sensitivity is not Required, in accordance with ISED Notice 2012-DRS0529

Note (13): Power Drift is Positive, Drift Adjustment not Required.
Note (14): Use Duty Factor is 100 % No Duty Factor Correction applied

Note (15): Delta SAR is Positive, SAR Adjustment for Fluid Sensitivity is not Required, in accordance with ISED Notice 2012-DRS0529

Note (16): Power Drift is Positive, Drift Adjustment not Required.

Note (17): Use Duty Factor is 100% No Duty Factor Correction applied

Note (18): Delta SAR is Positive, SAR Adjustment for Fluid Sensitivity is not Required, in accordance with ISED Notice 2012-DRS0529 Note (19): Use Duty Factor is 100% No Duty Factor Correction applied.

Note (20): Delta SAR is Positive, SAR Adjustment for Fluid Sensitivity is not Required, in accordance with ISED Notice 2012-DRS0529 Note (21): Power Drift is Positive, Drift Adjustment not Required.

Note (22): Use Duty Factor is 100% No Duty Factor Correction applied

45461905 R1.0 15 May 2024

11.3 Simultaneous Transmission SAR Analysis

Only the Bluetooth and U-NII transmitters are capable of simultaneous transmission. The following is the analysis of the simultaneous transmission configurations.

From Table 11.1 above, the <u>reported</u> Standalone SAR are as follows: <u>BODY SAR (1g)</u>

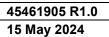
Bluetooth (SAR_{BT}): 0.011W/kg WiFi (SAR_{WiFiI}): 0.612W/kg (U-NII)

Simultaneous SAR (SAR_{TOT}) = SAR_{BT} + SAR_{WiFi} = 0.011 + 0.612 = 0.623 = 0.62W/kg

EXTREMITY SAR (10g)

Bluetooth (SAR_{BT}): 0.004W/kg WiFi (SAR_{WiFiI}): 0.252W/kg (U-NII)

Simultaneous SAR (SAR_{TOT}) = SAR_{BT} + SAR_{WiFi} = 0.004 + 0.252 = 0.256 = 0.26W/kg



12.0 SAR EXPOSURE LIMITS

Table 12.1 Exposure Limits

	SAR RF EXPOSURE LIMITS								
FCC 47 CFR§2.1093	Health Canada Safety Code 6	General Population /	Occupational /						
FCC 47 CFR92.1093	Health Canada Safety Code 6	Uncontrolled Exposure ⁽⁴⁾	Controlled Exposure ⁽⁵⁾						
Spa	tial Average ⁽¹⁾	0.08 W/kg	0.4 W/kg						
(averaged	over the whole body)	0.00 W/Ng	0.1 Ti///(g						
Sp	atial Peak ⁽²⁾	1.6 W/kg	8.0 W/kg						
(Head and Trunk ave	eraged over any 1 g of tissue)	1.0 W/Kg	0.0 W/kg						
Sp	atial Peak ⁽³⁾	4.0 W/kg	20.0 W/kg						
(Hands/Wrists/Fee	t/Ankles averaged over 10 g)	4.0 W/kg	20.0 W/Kg						

- (1) The Spatial Average value of the SAR averaged over the whole body.
- (2) The Spatial Peak value of the SAR averaged over any 1 gram of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.
- (3) The Spatial Peak value of the SAR averaged over any 10 grams of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.
- (4) Uncontrolled environments are defined as locations where there is potential exposure to individuals who have no knowledge or control of their potential exposure.
- (5) Controlled environments are defined as locations where there is potential exposure to individuals who have knowledge of their potential exposure and can exercise control over their exposure.

13.0 DETAILS OF SAR EVALUATION

13.1 Day Log

DAY LOG								
Date	Ambient Temp	Fluid Temp	Relative Humidity	Barometric Pressure	uid Die	SPC	est	
	(° C)	(°C)	(%)	(kPa)	Flui	S	<u> </u>	Task
20 Feb 2024	22.3	22.1	26%	101.4	Х	Х	Х	5250H/5750H Fluids. SPC & SAR Testing
21 Feb 2024	22.5	23.0	25%	101.5			Х	5250H SAR Testing
22 Feb 2024	23.8	23.2	23%	102.7			Х	5250H/5750H SAR Testing
27 Feb 2024	22.5	23.3	19%	101.9	Х	Х	Х	2450H Fluids, SPC & SAR Testing
28 Feb 2024	22.4	22.0	21%	100.5			Х	2450H SAR Testing

45461905 R1.0 15 May 2024

13.2 DUT Setup and Configuration

	DUT Setup and Configuration
1	The device was evaluated for Extremity at a 0mm distance, for Body at a 5mm distance, from a flat phantom filled with head tissue-equivalent medium. The DUT was evaluated for SAR in accordance with the procedures as described in FCC KDB 447498, 248227, 865664 and IEC/IEEE.
	2.4GHz 802.11g/n OFDM SAR Test Exclusion
2	As Per KDB 248227 D01v02r02 - 5.2.2, b) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2W/kg When applying this formula to 10-g, the threshold should be multiplied by 2.5, i.e. when 10-g extremity SAR s considered the threshold adjusted SAR is ≤ 3.0W/kg Maximum 802.11g/n OFDM specified power(POFDM)= 18dBm (63mW) Maximum 802.11b DSSS specified power (PDSSS)= 18 dBm (63mW) Ratio OFDM/DSSS power = 100% Highest reported SAR (SARMAX)= 0.31W/kg POFDM/PDSSS X SARMAX = 0.31 W/kg ≤ 3.0 W/kg (Extremity) and ≤ 1.5 W/kg (Body) and SAR test exclusion applies.
	UNII-1 rated power is the same or lower in higher order modulations as a result the UNII-1 802.11A OFDM6 SAR value would not be higher, further testing is not required in UNII-1. UNII-3 rated power is the same or lower in higher order modulations as a result the UNII-3 802.11A OFDM6 SAR value would not be higher, further testing is not required in UNII-3.
3	The Device was capable of transmitting at various modulations, data rates and duty cycles. The Conducted Power was measured at the lowest modulation and largest bandwidth and with the Duty cycle noted. The DUT was evaluated for SAR at the maximum conducted output power level, preset by the manufacturer, and adjusted crest factor for 100% duty cycle.
4	Bluetooth was evaluated for SAR in BT BR (GFSK) mode with a transmit duty cycle of noted and with a crest factor adjustment to 100% duty cycle if required, in the worst-case configuration from the WiFi test evaluation. The Duty cycle could not be altered in test mode or by the user. The DUT was evaluated for SAR at the maximum conducted output power level, preset by the manufacturer.
5	Each SAR evaluation was performed with the device battery fully charged.

13.3 DUT Positioning

DUT Posit	ioning
-----------	--------

Positioning

The DUT Positioner was securely fastened to the Phantom Platform. Registration marks were placed on the DUT and the Positioner to ensure consistent positioning of the DUT for each test evaluation.

FACE Configuration

Head SAR - (held- to-face). Devices that are designed to be near extremity and may operate with in a mode for voice communication, with the device positioned next to the mouth. When next-to-mouth SAR evaluation is required, the device is positioned at 10mm from a flat phantom filled with head tissue-equivalent medium.

BODY Configuration

Devices that are designed to be worn on the Body or on person are positioned on the device holder with a body worn accessory in place against the surface of the phantom, or with-out an accessory at 5mm from the bottom of the phantom in the Body configuration.

HEAD Configuration

This device is not intended to be held to the ear and was not tested in the HEAD configuration.

Extremity Configuration

Devices that are designed to be near extremity, or hand-held are positioned with the back side directly against the phantom surface.

45461905 R1.0 15 May 2024

13.4 General Procedures and Report

General Procedures and Reporting

General Procedures

The fluid dielectric parameters of the Active Tissue Simulating Liquid (TSL) were measured as described in this Section, recorded and entered into the DASY Measurement Server. Active meaning the TSL used during the SAR evaluation of the DUT. The temperature of the Active TSL was measured and recorded prior to performing a System Performance Check (SPC). An SPC was performed with the Active TSL prior to the start of the test series. The temperature of the Active TSL was measured throughout the day and the Active TSL temperature was maintained to $\pm 0.5^{\circ}$ C. The Active TSL temperature was maintained to within $\pm 2.0^{\circ}$ C throughout the test series. The liquid parameters shall be measured within 24 hours before the start of a test series and if it takes longer than 48 hours, the liquid parameters shall also be measured at the end of the test series.

An Area Scan exceeding the length and width of the DUT projection was performed and the locations of all maximas within 2dB of the Peak SAR recorded. A Zoom Scan centered over the Peak SAR location(s) was performed and the 1g and 10g SAR values recorded. The resolutions of the Area Scan and Zoom Scan are described in the Scan Resolution table(s) in this Section. A Power Reference Measurement was taken at the phantom reference point immediately prior to the Area Scan. A Power Drift measurement was taken at the phantom reference point immediately following the Zoom Scan to determine the power drift. A Z-Scan from the <u>Maximum Distance to Phantom Surface</u> to the fluid surface was performed following the power drift measurement.

Reporting

The 1g SAR, 10g SAR and power drift measurements are recorded in the SAR Measurement Summary tables in the SAR Measurement Summary Section of this report. The SAR values shown in the SAR column are the SAR values reported by the SAR Measurement Server with the DUT operating at maximum transmit duty cycle. These tables also include other information such as transmit channel and frequency, modulation, accessories tested and DUT-phantom separation distance.

In the Scaling of Maximum Measured SAR Section of this report, the highest measured SAR in the BODY configuration, within the entire scope of this assessment, are, when applicable, scaled for Fluid Sensitivity, Manufacturer's Tune-Up Tolerance, Simultaneous Transmission and Drift. With the exception of Duty Cycle correction/compensation, SAR values are ONLY scaled up, not down. The final results of this scaling is the reported SAR which appears on the Cover Page of this report.

45461905 R1.0 15 May 2024

13.5 Fluid Dielectric and Systems Performance Check

Fluid Dielectric and Systems Performance Check

Fluid Dielectric Measurement Procedure

The fluid dielectric parameters of the Tissue Simulating Liquid (TSL) are measured using the Open-Ended Coax Method connected to an Agilent 8753ET Network Analyzer connected to a measurement server running Aprel Dielectric Property Measurement System. A frequency range of ± 100MHz for frequencies > 300MHz and ± 50MHz for frequencies ≤ 300MHz with frequency step size of 10MHz is used. The center frequency is centered around the SAR measurement probe's calibration point for that TSL frequency range. A calibration of the setup is performed using a short-open-deionized water (at 23°C in a 300ml beaker) method. A sample of the TSL is placed in a 300ml beaker and the open-ended coax is submerged approximately 8mm below the fluid surface in the approximate center of the beaker. A check of the setup is made to ensure no air is trapped under the open-ended coax. The sample of TSL is measured and compared to the FCC KDB 865664 targets for HEAD or BODY for the entire fluid measurement range. Fluid adjustment are made if the dielectric parameters are > 5% in range that the DUT is to be tested. If the adjustments fail to bring the parameters to ≤ 5% but are < 10%, the SAR Fluid Sensitivity as per IEC 62201-1 and FCC KDB 865664 are applied to the highest measured SAR. A TSL with dielectric parameters > 10% in the DUT test frequency range are not used.

Systems Performance Check

The fluid dielectric parameters of the Active TSL are entered into the DASY Measurement Server at each of the 10MHz step size intervals. Active meaning the TSL used during the SAR evaluation of the DUT. The DASY Measurement System will automatically interpolate the dielectric parameters for DUT test frequencies that fall between the 10MHz step intervals.

A Systems Performance Check (SPC) is performed in accordance with IEEE 1528 "System Check" and FCC KDB 865664 "System Verification". A validation source, dipole or Confined Loop Antenna (CLA), is placed under the geometric center of the phantom and separated from the phantom in accordance to the validation source's Calibration Certificate data. A CW signal set to the frequency of the validate source's and SAR measurement probe's calibration frequency with a forward power set to the validation source's Calibration Certificate data power setting is applied to the validation source. An Area Scan is centered over the projection of the validation source's feed point and an Area Scan is taken. A Zoom Scan centered over the Peak SAR measurement of the Area Scan and the 1g and 10g SAR is measured. The measured 1g and 10g SAR is compared to the 1g and 10g SAR measurements from the validation source's Calibration Certificate. When required, the measured SAR is normalized to 1.0W and compared to the normalized SAR indicated on the validation source's Calibration Certificate. The SPC is considered valid when the measured and normalized SAR is 5 10% of the measured and normalize SAR of the validation source's Calibration Certificate.

The fluid dielectric parameters of the Active TSL and SPC are repeated when the Active TSL has been in use for greater than 84 hours or if the Active TSL temperature has exceed ± 1°C of the initial fluid analysis.

13.6 Scan Resolution 100MHz to 2GHz

Scan Resolution 100MHz to 2GHz							
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm						
(Geometric Center of Probe Center)	4 = 1 111111						
Maximum probe angle normal to phantom surface.	5° ± 1°						
(Flat Section ELI Phantom)	5° ± 1°						
Area Scan Spatial Resolution ΔX, ΔΥ	15 mm						
Zoom Scan Spatial Resolution ΔX , ΔY	7.5 mm						
Zoom Scan Spatial Resolution ∆Z	5 mm						
(Uniform Grid)	3 111111						
Zoom Scan Volume X, Y, Z	30 mm						
Fluid Depth	150 ± 5 mm						
_	-						

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

13.7 Scan Resolution 2GHz to 3GHz

Scan Resolution 2GHz to 3GHz	
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm
(Geometric Center of Probe Center)	41111111
Maximum probe angle normal to phantom surface.	5° ± 1°
(Flat Section ELI Phantom)	5° ± 1°
Area Scan Spatial Resolution ΔX, ΔΥ	12 mm
Zoom Scan Spatial Resolution ΔX , ΔY	5 mm
Zoom Scan Spatial Resolution ∆Z	5 mm
(Uniform Grid)	5 111111
Zoom Scan Volume X, Y, Z	30 mm
Fluid Depth	150 ± 5 mm

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

13.8 Scan Resolution 5GHz to 6GHz

Scan Resolution 5GHz to 6GHz	
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm
(Geometric Center of Probe Center)	4 1 1 111111
Maximum probe angle normal to phantom surface.	5° ± 1°
(Flat Section ELI Phantom)	5 I 1
Area Scan Spatial Resolution ΔX, ΔΥ	10 mm
Zoom Scan Spatial Resolution ΔX , ΔY	4 mm
Zoom Scan Spatial Resolution ∆Z	2 mm
(Uniform Grid)	2 111111
Zoom Scan Volume X, Y, Z	22 mm
Fluid Depth	100 ± 5 mm

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

45461905 R1.0 15 May 2024

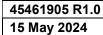
14.0 MEASUREMENT UNCERTAINTY

Table 14.1 Measurement Variablity

Per FCC KDB Publication 865664, SAR measurement variability is not required to be assessed for each frequency band where all measured SAR values are <0.8 W/kg for 1g and < 2.0 W/kg for 10g.

Table 14.2 Measurement Uncertainty

Per FCC KDB 865664 when the highest measured SAR is <1.5 W/kg for 1 g and < 3.75 W/kg for 10g all frequency bands, the extensive SAR measurement uncertainty analysis tables described in IEEE std 1528-2013 are not required.



15.0 FLUID DIELECTRIC PARAMETERS

Table 15.1 Fluid Dielectric Parameters 5250MHz HEAD TSL

	FLUID DIELECTRIC PARAMETERS								Fluid Sensitivity Calculation IEC/IEEE 62209-1528 7.8.2			
Date: 20-Fe	b-202	4 Fluid Te	emp: 23.5	Frequency:	5250MHz	Tissue:	Head	ΔSAR	ΔSAR	SAR Correction		
Freq		Tool 5	Test σ	Torrect 5	Target σ	Deviation	Deviation	ДЗАК	ДОАК	Factor (1)		
(MHz)		Test &	(S/m)	Target &	(S/m)	Permittivity	Conductivity	1g	10g	1g	10g	
5170.0000		33.8900	4.5600	36.0200	4.62	-5.91%	-1.30%	0.012	0.016	1.000	1.000	
5180.0000	*	33.5300	4.6000	36.0100	4.63	-6.89%	-0.65%	0.014	0.018	1.000	1.000	
5190.0000		33.8800	4.6300	36.0000	4.64	-5.89%	-0.22%	0.012	0.015	1.000	1.000	
5210.0000		34.0400	4.6600	35.9700	4.67	-5.37%	-0.21%	0.011	0.014	1.000	1.000	
5220.0000	*	33.7200	4.6200	35.9600	4.68	-6.23%	-1.28%	0.013	0.017	1.000	1.000	
5230.0000		33.6400	4.6000	35.9500	4.69	-6.43%	-1.92%	0.013	0.017	1.000	1.000	
5240.0000	*	33.8300	4.5900	35.9400	4.70	-5.87%	-2.34%	0.012	0.016	1.000	1.000	
5250.0000		33.6300	4.6800	35.9300	4.71	-6.40%	-0.64%	0.013	0.017	1.000	1.000	

^{*}Channel Frequency Tested

Table 15.2 Fluid Dielectric Parameters 5750MHz HEAD TSL

		F	Fluid Sensitivity Calculation IEC/IEEE 62209-1528 7.8.2								
Date: 20-Feb	-202	4 Fluid Te	emp: 23.5	Frequency:	5750MHz	Tissue:	Head	ΔSAR	ΔSAR	SAR Co	rrection
Freq		Tool 5	Test σ	Torrect 5	Target σ	Deviation	Deviation	ДЗАК	ДОАК	Factor (1)	
(MHz)		Test &	(S/m)	Target &	(S/m)	Permittivity	Conductivity	1g	10g	1g	10g
5740.0000		33.4200	5.2500	35.3700	5.21	-5.51%	0.77%	0.011	0.014	1.000	1.000
5745.0000	*	33.3600	5.2600	35.3650	5.22	-5.67%	0.86%	0.011	0.014	1.000	1.000
5750.0000		33.3000	5.2700	35.3600	5.22	-5.83%	0.96%	0.011	0.015	1.000	1.000
5780.0000		33.2100	5.2500	35.3200	5.25	-5.97%	0.00%	0.012	0.015	1.000	1.000
5785.0000	*	33.2250	5.2500	35.3150	5.26	-5.92%	-0.10%	0.012	0.015	1.000	1.000
5790.0000		33.2400	5.2500	35.3100	5.26	-5.86%	-0.19%	0.012	0.015	1.000	1.000
5820.0000		33.0300	5.3000	35.2800	5.29	-6.38%	0.19%	0.013	0.016	1.000	1.000
5825.0000	*	33.0750	5.3350	35.2750	5.30	-6.24%	0.76%	0.012	0.016	1.000	1.000
5830.0000		33.1200	5.3700	35.2700	5.30	-6.10%	1.32%	0.012	0.015	1.000	1.000

^{*}Channel Frequency Tested

Table 15.3 Fluid Dielectric Parameters 2450MHz HEAD TSL

	FLUID DIELECTRIC PARAMETERS								Fluid Sensitivity Calculation IEC/IEEE 62209-1528 7.8.2			
Date:	27-Feb	-202	4 Fluid Te	emp: 22.5	Frequency:	2450MHz	Tissue:	Head	ΔSAR	ΔSAR	SAR Co	rrection
	Freq		Test ε	Test σ	Torget 5	Target σ	Deviation	Deviation	додіх	доліх	Facto	or (1)
	(MHz)		Test &	(S/m)	Target &	(S/m)	Permittivity	Conductivity	1g	10g	1g	10g
241	0.0000		36.0300	1.8900	39.2700	1.76	-8.25%	7.39%	0.055	0.033	1.000	1.000
241	2.0000	*	36.0360	1.8920	39.2660	1.76	-8.23%	7.38%	0.055	0.033	1.000	1.000
242	0.0000		36.0600	1.9000	39.2500	1.77	-8.13%	7.34%	0.054	0.032	1.000	1.000
243	0.0000		35.8700	1.9200	39.2400	1.78	-8.59%	7.87%	0.057	0.034	1.000	1.000
243	7.0000	*	35.9050	1.9340	39.2260	1.79	-8.47%	8.23%	0.059	0.035	1.000	1.000
244	0.0000		35.9200	1.9400	39.2200	1.79	-8.41%	8.38%	0.059	0.035	1.000	1.000
244	1.0000	*	35.9270	1.9400	39.2180	1.79	-8.39%	8.32%	0.059	0.035	1.000	1.000
245	0.0000		35.9900	1.9400	39.2000	1.80	-8.19%	7.78%	0.056	0.033	1.000	1.000
246	0.0000		35.9900	1.9600	39.1900	1.81	-8.17%	8.29%	0.058	0.034	1.000	1.000
246	2.0000	*	35.9620	1.9560	39.1860	1.81	-8.23%	7.95%	0.056	0.034	1.000	1.000
247	0.0000		35.8500	1.9400	39.1700	1.82	-8.48%	6.59%	0.050	0.030	1.000	1.000

16.0 SYSTEM VERIFICATION TEST RESULTS

Table 16.1 - 5250MHz

System Verification Test Results							
D	4-	Frequency	Validation Source				
Da	ate	(MHz)	P	P/N			
20 Feb	2024	5250	D5G	HzV2	1031		
Fluid Type	Fluid Temp °C	Ambient Temp °C	Ambient Humidity (%)	Forward Power (mW)	Source Spacing (mm)		
Head	22.1	22	26%	50	10		
	Fluid Parameters						
	Permittivity		Conductivity				
Measured	Target	Deviation	Measured	Target	Deviation		
33.63	35.93	-6.40%	4.68	4.71	-0.64%		
		Measur	ed SAR				
	1 gram			10 gram			
Measured	Target	Deviation	Measured	Target	Deviation		
3.90	3.97	-1.85%	1.12	1.15	-2.23%		
	Measured SAR Normalized to 1.0W						
	1 gram			10 gram			
Normalized	Target	Deviation	Normalized	Target	Deviation		
78.00	79.47	-1.85%	22.40	22.91	-2.23%		

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEC/IEEE 62209-1528 and FCC KDB 846224,

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.

Table 16.2 - 5750MHz

System Verification Test Results							
D	ate	Frequency	Validation Source				
Da	116	(MHz)	P/N		S/N		
20 Fel	2024	5750	D5G	HzV2	1031		
	Fluid	Ambient	Ambient	Forward	Source		
Fluid Type	Temp	Temp	Humidity	Power	Spacing		
	°C	°C	(%)	(mW)	(mm)		
Head	22.1	22	26%	50	10		
	Fluid Parameters						
Permittivity			Conductivity				
Measured	Target	Deviation	Measured	Target	Deviation		
33.30	35.36	-5.83%	5.27	5.22	0.96%		
		Measur	ed SAR				
	1 gram		10 gram				
Measured	Target	Deviation	Measured	Target	Deviation		
3.83	3.78	1.40%	1.09	1.10	-0.95%		
	Measured SAR Normalized to 1.0W						
	1 gram 10 gram						
Normalized	Target	Deviation	Normalized	Target	Deviation		
76.60	75.54	1.40%	21.80	22.01	-0.95%		

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEC/IEEE 62209-1528 and FCC KDB 846224,

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.

Table 16.3 - 2450MHz

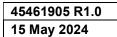
System Verification Test Results							
D	.4.	Frequency	Validation Source				
Da	ate	(MHz)	P/N		S/N		
27 Fel	2024	2450	D24	50V2	825		
	Fluid	Ambient	Ambient	Forward	Source		
Fluid Type	Temp	Temp	Humidity	Power	Spacing		
	°C	°C	(%)	(mW)	(mm)		
Head	23.3	23	19%	250	10		
Fluid Parameters							
	Permittivity		Conductivity				
Measured	Target	Deviation	Measured	Target	Deviation		
35.99	39.20	-8.19%	1.94	1.80	7.78%		
		Measur	ed SAR				
	1 gram		10 gram				
Measured	Target	Deviation	Measured	Target	Deviation		
12.80	13.18	-2.88%	5.73	6.01	-4.58%		
	Me	asured SAR N	ormalized to 1	.0W			
	1 gram			10 gram			
Normalized	Target	Deviation	Normalized	Target	Deviation		
51.20	52.72	-2.88%	22.92	24.02	-4.56%		

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEC/IEEE 62209-1528 and FCC KDB 846224,

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.


Test Report Issue Date: 15 May 2024

45461905 R1.0

17.0 SYSTEM VALIDATION SUMMARY

Table 17.1 System Validation Summary

SAR Validation Summary Chart								
Validation Probe Probe Validation Frequency Validation Result					lts			
Date	Model	S/N	Source	(MHz)	Linearity	Isotropy	Extrapolation	
	✓ = Complete				✓ = Not Required			
21-Jun-23	EX3DV4	7826	D2450V2	2450	Pass	Pass	Pass	
28-Jun-23	EX3DV4	7826	D5GHzV2	5250	Pass	Pass	Pass	
30-Jun-23	EX3DV4	7826	D5GHzV2	5750	Pass	Pass	Pass	

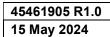
18.0 MEASUREMENT SYSTEM SPECIFICATIONS

Table 18.1 Measurement System Specifications

Measurement System Specification						
Specifications						
Positioner	Stäubli Unimation Corp. Robot Model: TX90XL					
Repeatability	+/- 0.035 mm					
No. of axis	6.0					
Data Acquisition Electronic	(DAE) System					
Cell Controller						
Processor	Intel(R) Core(TM) i7-7700					
Clock Speed	3.60 GHz					
Operating System	Windows 10 Professional					
Data Converter						
Features	Signal Amplifier, multiplexer, A/D converter, and control logic					
Coffusions	Measurement Software: DASY6, V 6.4.0.12171 / DASY52 V52.10.0.1446					
Software	Postprocessing Software: SEMCAD X, V14.6.10(Deployment Build)					
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock					
DASY Measurement Server						
Function	Real-time data evaluation for field measurements and surface detection					
Hardware	Intel ULV Celeron CPU 400 MHz; 128 MB chip disk; 128 MB RAM					
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface					
E-Field Probe	·					
Model	EX3DV4					
Serial No.	3600					
Construction	Triangular core fiber optic detection system					
Frequency	10 MHz to 6 GHz					
Linearity	±0.2 dB (30 MHz to 3 GHz)					
Phantom						
Туре	ELI Elliptical Planar Phantom					
Shell Material	Fiberglass					
Thickness	2mm +/2mm					
Volume	> 30 Liter					

Massurement System Specification							
Measurement System Specification							
	Probe Specification						
	Symmetrical design with triangular core;						
Construction:	Built-in shielding against static charges						
	PEEK enclosure material (resistant to organic solvents, glycol)						
	In air from 10 MHz to 2.5 GHz						
Calibration:	In head simulating tissue at frequencies of 900 MHz						
	and 1.8 GHz (accuracy \pm 8%)						
Frequency:	10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)						
Directivity:	± 0.2 dB in head tissue (rotation around probe axis)						
Directivity.	\pm 0.4 dB in head tissue (rotation normal to probe axis)						
Dynamic Range:	5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB						
Surface Detect:	±0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces						
	Overall length: 330 mm; Tip length: 16 mm;						
Dimensions:	Body diameter: 12 mm; Tip diameter: 6.8 mm						
	Distance from probe tip to dipole centers: 2.7 mm						
Application:	General dosimetry up to 3 GHz; Compliance tests of mobile phone	EX3DV4 E-Field Probe					
	Phantom Specification						

The ELI V5.0 phantom is an elliptical planar fiberglass shell phantom with a shell thickness of 2.0mm +/- .2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEEE 1528-2013, IEC 62209-1 and IEC 62209-2.


ELI Phantom

Device Positioner Specification

The DASY device positioner has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Positioner

19.0 TEST EQUIPMENT LIST

Table 19.1 Equipment List and Calibration

Test Equipment List							
DESCRIPTION	ASSET NO.	SERIAL NO.	DATE CALIBRATED	CALIBRATION DUE			
Schmid & Partner DASY 6 System	-	-	-	-			
-DASY Measurement Server	00158	1078	CNR	CNR			
-Robot	00046	599396-01	CNR	CNR			
-DAE4	00019	353	16-Apr-23	16-May-24			
-EX3DV4 E-Field Probe	00357	7826	16-May-23	16-May-24			
-D2450V2 Validation Dipole	00219	825	24-Apr-21	24-Apr-24			
ELI Phantom	00247	1234	CNR	CNR			
SAM Phantom	00154	1033	CNR	CNR			
MFP Phantom	00355	1177/2	CNR	CNR			
HP 85070C Dielectric Probe Kit	00033	none	CNR	CNR			
Gigatronics 8652A Power Meter	00007	1835801	10-May-22	10-May-25			
Gigatronics 80701A Power Sensor	00186	1837002	COU	COU			
Gigatronics 80334A Power Sensor	00237	1837001	10-May-22	10-May-25			
HP 8753ET Network Analyzer	00134	US39170292	6-Jan-24	6-Jan-27			
Rohde & Schwarz SMR20 Signal Generator	00006	100104	COU	COU			
Amplifier Research 10W1000C Power Amplifier	00041	27887	CNR	CNR			
Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR			
Narda Directional Coupler 3020A	00064	-	CNR	CNR			
Bipolar Power Supply 6299A	00086	1144A02155	CNR	CNR			
DC-18G 10W 30db Attenuator	00102	-	COU	COU			
R&S FSP40 Spectrum Analyzer	00241	100500	9-Aug-21	9-Aug-24			
HP 8566B Spectrum Analyzer	00051	2747A055100	6-Jul-24	6-Jul-27			
RF Cable-SMA	00311	-	CNR	CNR			
HP Calibration Kit	00145	-	CNR	CNR			

CNR = Calibration Not Required SB=Stand By COU = Calibrate on Use

20.0 FLUID COMPOSITION

Table 20.1 Fluid Composition 2450MHz HEAD TSL

Tissue Simula	2450MHz Body							
	Component by Percent Weight							
Water	Water Glycol Salt ⁽¹⁾ HEC ⁽²⁾							
69.98	0.0							

- (1) Non-lodinized
- (2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g
- (3) Dow Chemical Dowicil 75 Antimicrobial Perservative

Table 20.2 Fluid Composition 5250, 5750MHz HEAD TSL

The 5GHz Head TSL is a SPEAG proprietary broad band fluid:

Type: **HBBL3500-5500V2**Batch number: **131210-2**P/N: **SL AAH 502 AC**

END OF REPORT

APPENDIX A – SYSTEM VERIFICATION PLOTS

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1031

Procedure Name: SPC 5250H Input=50 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw

Communication System: UID 0, CW (0); Frequency: 5250 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; $\sigma = 4.68$ S/m; $\varepsilon_r = 33.63$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Date/Time: 2/20/2024 4:40:57 PM

DASY5 Configuration:

Probe: EX3DV4 - SN7826; ConvF(5.59, 5.24, 5.42) @ 5250 MHz; Calibrated: 5/16/2023

Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn353; Calibrated: 4/18/2023

Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: xxxx

Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

SPC/SPC 5250H Input=50 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw/Area Scan (61x31x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 31.68 V/m; Power Drift = -0.06 dB

Fast SAR: SAR(1 g) = 4.04 W/kg; SAR(10 g) = 1.17 W/kg

Maximum value of SAR (interpolated) = 5.09 W/kg

SPC/SPC 5250H Input=50 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw/Area Scan (7x4x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 3.68 W/kg

SPC/SPC 5250H Input=50 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw/Zoom Scan (8x8x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

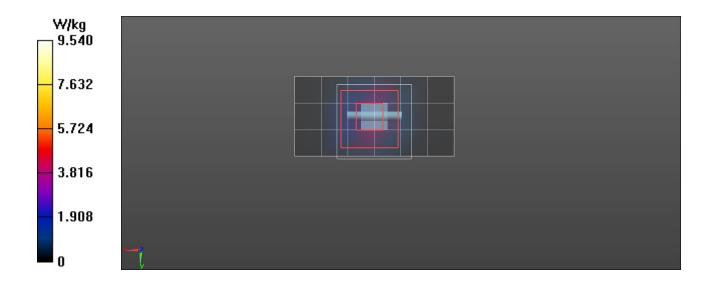
Reference Value = 31.68 V/m: Power Drift = -0.06 dB

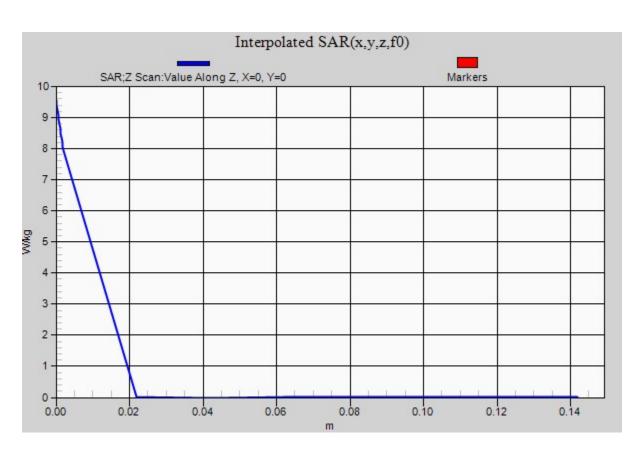
Peak SAR (extrapolated) = 16.1 W/kg

SAR(1 q) = 3.9 W/kq; SAR(10 q) = 1.12 W/kq

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 53.7%


Maximum value of SAR (measured) = 8.13 W/kg


SPC/SPC 5250H Input=50 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw/Z Scan (1x1x19):

Measurement grid: dx=20mm, dy=20mm, dz=20mm

Penetration depth = n/a (n/a, 2.955) [mm]

Maximum value of SAR (interpolated) = 9.54 W/kg

45461905 R1.0 15 May 2024

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:xxx

Procedure Name: SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000 mw 2

Communication System: UID 0, CW (0); Frequency: 5750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5750 MHz; $\sigma = 5.27$ S/m; $\varepsilon_r = 33.3$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Date/Time: 2/20/2024 5:34:11 PM

DASY5 Configuration:

Probe: EX3DV4 - SN7826; ConvF(5.14, 4.73, 4.93) @ 5750 MHz; Calibrated: 5/16/2023

- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/18/2023
- Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: xxxx
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

SPC/SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000 mw 2/Area Scan (31x61x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 28.13 V/m; Power Drift = -0.03 dB

Fast SAR: SAR(1 g) = 3.65 W/kg; SAR(10 g) = 1.01 W/kg

Maximum value of SAR (interpolated) = 8.38 W/kg

SPC/SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000 mw 2/Area Scan (4x7x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 6.98 W/kg

SPC/SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000 mw 2/Zoom Scan (7x7x6)/Cube

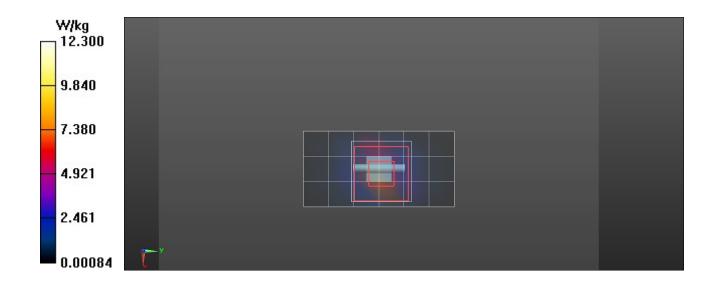
0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 28.13 V/m; Power Drift = -0.03 dB

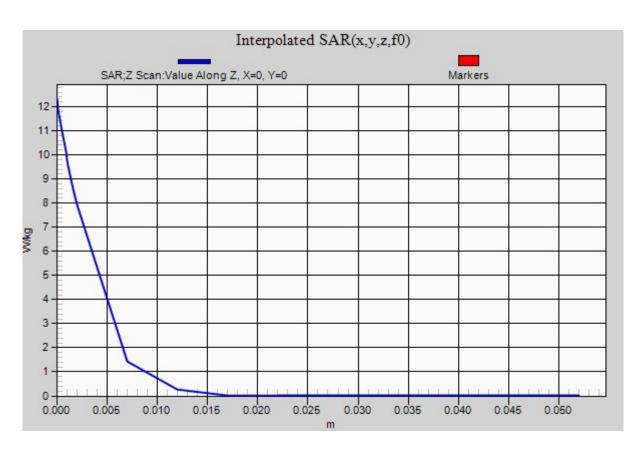
Peak SAR (extrapolated) = 17.5 W/kg

SAR(1 g) = 3.83 W/kg; SAR(10 g) = 1.09 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 50.4%


Maximum value of SAR (measured) = 8.17 W/kg


SPC/SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000 mw 2/Z Scan (1x1x22):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Penetration depth = 2.847 (2.951, 2.680) [mm]

Maximum value of SAR (interpolated) = 12.3 W/kg

45461905 R1.0 15 May 2024

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:825

Procedure Name: SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg 3 2 2

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.94$ S/m; $\epsilon_r = 35.99$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Date/Time: 2/27/2024 4:10:29 PM

DASY5 Configuration:

- Probe: EX3DV4 SN7826; ConvF(7.91, 7.42, 7.62) @ 2450 MHz; Calibrated: 5/16/2023
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/18/2023
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: xxxx
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

SPC/SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg 3 2 2/Area Scan (81x31x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Reference Value = 86.88 V/m; Power Drift = -0.00 dB

Fast SAR: SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.18 W/kg

Maximum value of SAR (interpolated) = 15.4 W/kg

SPC/SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg 3 2 2/Area Scan (9x4x1): Measurement grid:

dx=12mm, dy=12mm

Maximum value of SAR (measured) = 12.1 W/kg

SPC/SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg 3 2 2/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

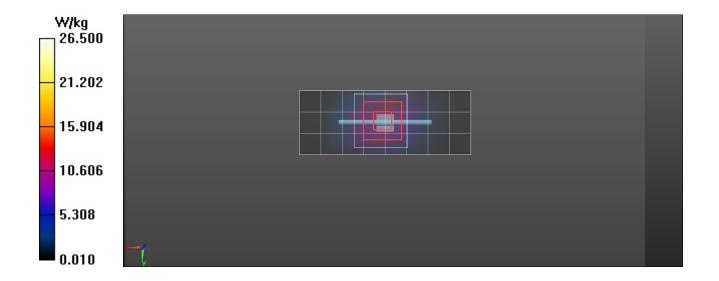
Reference Value = 86.88 V/m; Power Drift = -0.00 dB

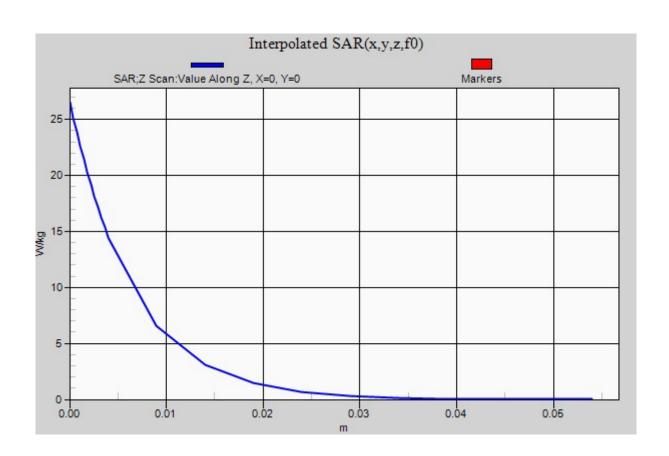
Peak SAR (extrapolated) = 28.4 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.73 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm

Ratio of SAR at M2 to SAR at M1 = 45.6%


Maximum value of SAR (measured) = 14.5 W/kg


SPC/SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg 3 2 2/Z Scan (1x1x22): Measurement grid:

dx=20mm, dy=20mm, dz=5mm

Penetration depth = 6.555 (6.367, 6.658) [mm]

Maximum value of SAR (interpolated) = 26.5 W/kg

APPENDIX B - MEASUREMENT PLOTS OF MAXIMUM MEASURED SAR

B21/E21

DUT: B4450 - Top/Back; Type: Transmitter; Serial: Sample Proto-Type Procedure Name: B21/E21-B4450, NA Back Side, 5240MHz OFDM-6Mbps,WIFI

Communication System: UID 0, CW (0); Frequency: 5240 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5240 MHz; $\sigma = 4.59 \text{ S/m}$; $\epsilon_r = 33.83$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Date/Time: 2/22/2024 12:54:59 PM

DASY5 Configuration:

- Probe: EX3DV4 SN7826; ConvF(5.59, 5.24, 5.42) @ 5240 MHz; Calibrated: 5/16/2023
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/18/2023
- Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1177/2
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

5250H/B21/E21-B4450, NA Back Side, 5240MHz OFDM-6Mbps,WIFI/Area Scan (12x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.524 W/kg

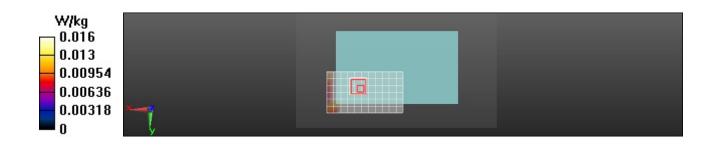
5250H/B21/E21-B4450, NA Back Side, 5240MHz OFDM-6Mbps,WIFI/Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

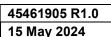
Reference Value = 8.777 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.73 W/kg

SAR(1 g) = 0.506 W/kg; SAR(10 g) = 0.208 W/kg

Smallest distance from peaks to all points 3 dB below = 16.8 mm


Ratio of SAR at M2 to SAR at M1 = 54.6%


Maximum value of SAR (measured) = 1.10 W/kg

5250H/B21/E21-B4450, NA Back Side, 5240MHz OFDM-6Mbps,WIFI/Z Scan (1x1x19): Measurement grid: dx=20mm, dy=20mm, dz=20mm

Penetration depth = n/a (n/a, 0) [mm]

Maximum value of SAR (interpolated) = 0.0159 W/kg

B26/E26

DUT: B4450 - Top/Back; Type: Transmitter; Serial: Sample Proto-Type Procedure Name: B26/E26-B4450, Back Side, 2437MHz 5.5mb, WIFI

Communication System: UID 0, CW (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.934 \text{ S/m}$; $\epsilon_r = 35.905$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Date/Time: 2/27/2024 6:05:40 PM

DASY5 Configuration:

Probe: EX3DV4 - SN7826; ConvF(7.91, 7.42, 7.62) @ 2437 MHz; Calibrated: 5/16/2023

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353: Calibrated: 4/18/2023
- Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1177/2
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

2450H/B26/E26-B4450, Back Side, 2437MHz 5.5mb,WIFI/Area Scan (10x6x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.271 W/kg

2450H/B26/E26-B4450, Back Side, 2437MHz 5.5mb, WIFI/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.217 V/m; Power Drift = 0.35 dB

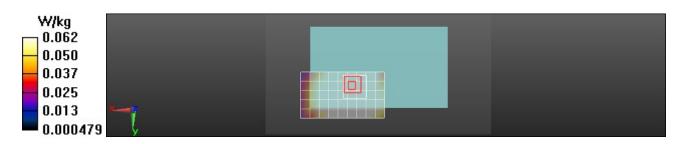
Peak SAR (extrapolated) = 0.461 W/kg

SAR(1 g) = 0.242 W/kg; SAR(10 g) = 0.133 W/kg

Smallest distance from peaks to all points 3 dB below = 19.4 mm

Ratio of SAR at M2 to SAR at M1 = 50.1%

Info: Interpolated medium parameters used for SAR evaluation.


Maximum value of SAR (measured) = 0.375 W/kg

2450H/B26/E26-B4450, Back Side, 2437MHz 5.5mb,WIFI/Z Scan (1x1x19): Measurement grid: dx=20mm, dy=20mm, dz=20mm

Info: Interpolated medium parameters used for SAR evaluation.

Penetration depth = n/a (n/a, 5.368) [mm]

Maximum value of SAR (interpolated) = 0.0620 W/kg

