MPE Cackator ME Expose use ERR# for use data ME ME <th></th> <th>Model</th> <th>AA3562</th> <th>Test Number</th> <th>211001</th> <th></th> <th></th> <th></th> <th></th>		Model	AA3562	Test Number	211001				
dita - dB pic compared to an iterative radius:	MPF Calculator								
S = por clasky in NVm2 ² I.4 Image: Normality Class por class y in NVm2 ³ Image: NVm2 ³ Image: NVm2 ³ Ima				TA power added to the amenina ga					
Comparing Conjugation (Note) 1.4 All consisting Conjugation (Note) 0.001 All conjugation (Note) All									
Output prove for is days Cycle queation (Mass) 0.001 Attems Gain (Mass) 0.3 Th Trequenty (MIz) 243 Calaziano pore (Mass) 0.001 dilla of 12 2.2 Image: Color of 1000 Cala Loss (dB) 200 200 dilla of 12 Color of 1000 -41000 -4100 -4100 -4100 -4100 -4100 -4100 -4100 -4100 -4100 -4100 -4100 -4100 -4100 -4100 -4100 -4100 -4100 -4100 -41000 -41000 -41000 -41000				1.4					
Ouga Power In 100+ into Cycle speciality (Mun) 0.001 distantial speciality (Mun)		Т	ransmitter Output power (W)	0.001					
Th Frequency (MH) 2440 Calculation power (Wath) 0.001 dBM = 2.17 = dB dBW end M 2.2 Cable Loss (dB) 0 Adjusted Power (MB) 1.25 Ammuna cube (MB) 2.0 - Cable Loss (dB) 0.001 1.25 Ammuna cube (MB) 0.001 BBP = PortSMD + Colon (BBP cube) (BB = BBP + Dir SMD + Colon (BBP cube) (BB = BBP + Dir SMD + Colon (BBP cube) (BB = BBP + Dir SMD + Colon (BBP cube) (BB + BBP + Dir SMD + Colon (BBP cube) (BB + BBP + Dir SMD + D	Output Power for % c								
Cake Lon (dl) 0.0 Adjoint Power (dlin) Cake Lon (dl) 0.0 Adjoint Power (dl) 0.0 Adjoint Power Power (dl) 0.0 Adjoint Power		Output Power for 100%	duty Cycle operation (Watts)	0.001	Ant	enna Gain (Numeric)	0.63		
Cable Loss (dB)Adjoint Power (dBm)1.53Advances are acces (dB)2.00	Tx Frequency (MHz)	2442	Calcualtion power (Watts)	0.001	dBd + 2.17 = dBi				
Calculate ERP (mo) 0.52 BBIC Description 0.63 Use of the	Cable Loss (dB)	0.0	Adjusted Power (dBm)	1 35	Anter				
Caladade EBP (con) 0.52 EBP = Poul3N-1 EBP = Poul3N-1 -0.50 -0.50 Poer dexty (S) www = 100 mol 200 mo	Cable Loss (db)	0.0	Adjusted I ower (dbill)	1.55					
$ \begin{array}{ c c c c c c } & IBP - 217.08 \\ \hline Bar = DBP - 217.08 \\ \hline Cequational Linit \left \overrightarrow{DP} - Creation request methods reget 1.13(0) \\ \hline Cequational Linit \left \overrightarrow{DP} - Creation request methods reget 1.13(0) \\ \hline Cequational Linit \left \overrightarrow{DP} - Creation request methods reget 1.13(0) \\ \hline Cequational Linit \left \overrightarrow{DP} - Creation request methods reget 1.13(0) \\ \hline Cequational Linit \left \overrightarrow{DP} - Creation request methods reget 1.13(0) \\ \hline Cequational Linit \left \overrightarrow{DP} - Creation request methods reget 1.13(0) \\ \hline Wurit \\ \hline Cequational Linit \\ \hline Wurit \\ \hline Cequational Linit \\ \hline Cequational Linit \\ \hline Wurit \\ \hline Frameword \\ \hline Wurit \\ \hline Frame$					EIRP = Po(dBM) + Gain(dB)				
Prove density (5) mit/m^2			EIRP						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Power density (S) mW/				Radiated (ERP) dBm	-2.820		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			4 p r^2						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		r (cm) FIRP (mW)							
5 mWcra ² Frequency MHz Occupational Limit (mWcra ²) Pable Limit (mWcra ²) Image of the second seco		· (cm, End (niw)							
5 mWcra ² Frequency MHz Occupational Limit (mWcra ²) Pable Limit (mWcra ²) Image of the second seco									
50 Win ² 30-1500 1 0.2 General Public Linki Win ² 1.500-10,000 5 1 1 0.2 10 Win ² 1.500-10,000 5 1 1 0.2 064557 ⁶ Win ² Ecado Fogueros participants 1 0.2 1 1 0.2 064557 ⁶ Win ² Frequency OME0 Occupational Linki 0.0 0									
General Polic Linit mW(m ²) 300-1500 1200 11500 1000 10000 100000 $1000000000000000000000000000000000000$				· · · · ·		l			
$ \begin{array}{ c c c c c c } \hline mW(m^2) & 1.500-10,000 & 5 & 1 \\ \hline mW(m^2) & 1.500-10,000 & 5 & 1 \\ \hline mW(m^2) & 1.500-10,000 & 0.60$	50								
10 Wur2 Image: second		-							
Occupational Linit Win ² IC radio frequency (Mit/) Occupational Linit (Win ²) IC radio frequency (Mit/) Polic Linit (Win ²) IC 0.06455/ ⁶⁵ 397 Win ² Frequency (Mit/) Occupational Linit (Win ²) IC IC IC 0.026219/ ⁶⁴⁴ Win ² 60:00-15:000 50 IC IC IC 0.026219/ ⁶⁴⁴ Win ² 60:00-15:000 50 IC IC IC 10 0.02619/ ⁶⁴⁴ Win ² 60:00-15:000 50 IC IC IC 10 0.00015:000 50 IC IC IC IC IC 10 0.00015:000 50 IC IC </td <td>1</td> <td></td> <td>1,500-10,000</td> <td>5</td> <td>1</td> <td> </td> <td></td> <td></td> <td></td>	1		1,500-10,000	5	1				
0.6455 $\frac{h^8}{P^8}$ Wm² IC radio frequency matinis negative mains per KSS-102 Interpret of the second	10	W/m ²							
0.6455 $\frac{h^8}{P^8}$ Wm² IC radio frequency matinis negative mains per KSS-102 Interpret of the second									
0.6455 $\frac{h^8}{P^8}$ Wm² IC radio frequency matinis negative mains per KSS-102 Interpret of the second		Occupational Limit							
39.7 Wm² Frequency (MHz) Occupational Link (Wm²) Public Link (Wm	0.6455 0.5		IC radio free	uency radiation exposure limits per	- RSS-102	1			
General Public Linit 100-6,000 $0.6455p^{0.5}$ 1 $0.2019j^{0.4101}$ Wm ² $6,000-15,000$ 50 1.291 1 1 5.4 Wm ² $300,6,000$ $0.02619j^{0.0134}$ 10 1 1 $f = Tmasuft Prequeery (MH)$ $f (MHz) =$ 2.442 MHz 1 1 $f = Tmasuft Prequeery (MH)$ $f (MHz) =$ 2.442 MHz 1 1 $f = Tmasuft Prequeery (MH)$ $f (MHz) =$ 2.442 MHz 1 1 $f = Tmasuft Prequeery (MH)$ $f (MHz) =$ 2.442 MHz 1 1 $h = Adjusted Power due to Day cyck or Cable Lass (aW) f (MHz) = P_1(mW) = 1.3646 fteW 1 h_a = Adjusted Power due to Day cyck or Cable Lass (aW) f (MHz) = P_1(mW)^2 1.3646 fteW 1 1 h_a = Adjusted Power due to Day cyck or Cable Lass (aW) h_a = Adjusted Power due to Day cyck or Cable Lass (aW) h_a = Adjusted Power due to Day cyck or Cable Lass (aW) h_a = Adjusted Power Day Cable Cable$					-	1			
0.02019/ ⁶⁸¹⁴ W/m ² 6.000-15.000 50 1.291 5.4 W/m ² 48.300 0.02019/ ⁶⁸¹⁴ 1.291 6.000-15.000 50 10 10 10 f= Tansme Brequery (MHz) f(MHz) = 2.442 MHz 100 pr-Power laput to Autema (W) 0.0000 50 10 100 yor cycle (scenarding of operation) $\Re = 1000$ % 13.66 mW 100 Qc = Numtric Gaio of the Autema GN (nameric) 0.63 numeric 0.000 mWm ² Sg = Power Density of device at 20cm (W/m ²) Sg ₂₀ =(PA, Sg ₂)/(4.8R ₂₀) ² Sg ₂₀ (W/m ²) 0.000 mWm ² Sg = Power Density of device at 20cm (W/m ²) Sg ₂₀ =(PA, Sg ₂)/(4.8R ₂₀) ² Sg ₂₀ (W/m ²) 0.000 mWm ² Sg = Power Density of the device at the Compliance (m) $R_e^{-\sqrt{p}, G_0 4 \pi_0}^2$ Sg ₂₀ (W/m ²) 5.412 W/m ² 1 Se = Power Density of the device at the Compliance Destance RC (W/m ²) Sc =(PA, G_0)/(4.8R_2) ² Sg ₂₀ (W/m ²) 5.41 W/m ² 1 Se = Power Density of the device at the Compliance Destance RC (W/m ²) Sc =(PA, G_0)/(4.8R_2) ² Sg ₂₀ (W/m ²)	39.1				Public Limit (w/m)				
5.8 W_m^2 48-300 $0.2019/^{0.41}$ a 300-6.000 $0.02019/^{0.41}$ (1.61) (1.61) i= Tmaxini Frequency (MHz) $6.000-15.000$ 50 100 (1.61) (1.61) i= Tmaxini Frequency (MHz) (1.61) (1.61) (1.61) (1.61) (1.61) P_r -Dword for to Dury cycle (presenting of operation) (1.61) P_r (mW) = 1.36 mW (1.62) P_r -Adjuited Power due to Dury cycle (presenting of operation) $(1.62)/(1.64)/$	0.0000.006834								
$ \begin{array}{ c c c c c c } \hline \hline & 303-6.000 & 0.02619 y^{40.84} \\ \hline & 6.000-15,000 & 50 & 10 \\ \hline & & & & & & & & & & & & & & & & & &$				50	1.001				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5.4	W/m²							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				50					
Pr = Power laput to Antenna (mW) Pr (mW) 1.366 mW mm Duty cycle (pecentage of operation) % 100 % % Duty cycle (pecentage of cable Loss (mW) PA (mW) 1.36 mW % c_{a} Adjusted Pwer due to Duty cycle or Cable Loss (mW) Sg. = (P_{a}G_{SQ})(4\pi R_{20})^{2} Sg. (mW/m)^{2} 0.00 mW/m^{2} % Sg. = Power Density of device at 20m (mW/m) Sg. = (P_{a}G_{SQ})(4\pi R_{20})^{2} Sg. (mW/m)^{2} 0.00 mW/m^{2} % Sg. = Power Density of device at 20m (M/m) Sg. = (P_{a}G_{SQ})(4\pi R_{20})^{2} Sg. (mW/m)^{2} 0.00 W/m^{2} % Se. = Power Density of device at 20m (M/m) Sg. = (P_{a}G_{SQ})(4\pi R_{20})^{2} Sg. (W/m)^{2} 5.412 W/m^{2} % Se. = Power Density of device at 20m (M/m) Sc. = (P_{a}G_{SQ})(4\pi R_{C})^{2} Sc. (W/m)^{2} 5.41 W/m^{2} % Se. = Power Density of the device at the Compliance (cm) $R_{c} = (P_{a}G_{SQ})(4\pi R_{C})^{2}$ $R_{c} = 0$ 0.00 mm % Se. = Power Density of the device at the Compliance Distance R_{c} (W/m) Sc. (W/m) Sc. (W/m) S.10 W/m^{2} Sc. (W/m) S.20 W/m^{2} Sc. (W/m) S.20 W/m^{2} Sc. (W/m) S.20 W/m^{2} Sc. (W/m) S.20 W/m^{2} Rc.			6,000-15,000	50	10				
Pr = Power laput to Antenna (mW) Pr (mW) 1.366 mW mm Duty cycle (pecentage of operation) % 100 % % Duty cycle (pecentage of cable Loss (mW) PA (mW) 1.36 mW % c_{a} Adjusted Pwer due to Duty cycle or Cable Loss (mW) Sg. = (P_{a}G_{SQ})(4\pi R_{20})^{2} Sg. (mW/m)^{2} 0.00 mW/m^{2} % Sg. = Power Density of device at 20m (mW/m) Sg. = (P_{a}G_{SQ})(4\pi R_{20})^{2} Sg. (mW/m)^{2} 0.00 mW/m^{2} % Sg. = Power Density of device at 20m (M/m) Sg. = (P_{a}G_{SQ})(4\pi R_{20})^{2} Sg. (mW/m)^{2} 0.00 W/m^{2} % Se. = Power Density of device at 20m (M/m) Sg. = (P_{a}G_{SQ})(4\pi R_{20})^{2} Sg. (W/m)^{2} 5.412 W/m^{2} % Se. = Power Density of device at 20m (M/m) Sc. = (P_{a}G_{SQ})(4\pi R_{C})^{2} Sc. (W/m)^{2} 5.41 W/m^{2} % Se. = Power Density of the device at the Compliance (cm) $R_{c} = (P_{a}G_{SQ})(4\pi R_{C})^{2}$ $R_{c} = 0$ 0.00 mm % Se. = Power Density of the device at the Compliance Distance R_{c} (W/m) Sc. (W/m) Sc. (W/m) S.10 W/m^{2} Sc. (W/m) S.20 W/m^{2} Sc. (W/m) S.20 W/m^{2} Sc. (W/m) S.20 W/m^{2} Sc. (W/m) S.20 W/m^{2} Rc.	f = Transmit Frequeenv (MHz)				f (MHz) =	2442	MHz		
Daty cycle (percentage of operation) 9 100 % 9 P_{a} a dipted Power due to Duty cycle or Cable Loss (mW) P_{a} (mW) 1,3,6 mW 0,63 mmercic S_{ab} = Power Density of device at 20m (mW/m ²) $S_{20} = [PA_{GN})(4\pi R_{20})^2$ S_{20} (mW/m ²) 0.00 mW/m ² 0.00 mW/m ² S_{30} = Power Density of device at 20m (mW/m ²) $S_{20} = [PA_{GN})(4\pi R_{20})^2$ S_{20} (mW/m ²) 0.00 mW/m ² 0.00 mW/m ² S_{a} = Power Density of device at 20m (mW/m ²) $S_{20} = [PA_{GN})(4\pi R_{20})^2$ S_{20} (M/m ²) 0.00 mW/m ² 0.00 mW/m ² S_{a} = Power Density of the device at the Compliance (cm) $R_{c} = \sqrt{P_{c} G_{c} 4\pi_{50}}$ R_{c} (cm) 0.04 cm 0.04 cm $S_{c} = Power Density of the device at the Compliance Distance R_{c} (W/m2) S_{c} = (P_{A}G_{N})(4\pi R_{c})^{2} S_{c} (W/m2) S.41 W/m2 R_{c} = 20 S_{c} = Power Density of the device at the Compliance Distance R_{c} (W/m2) S_{c} = (P_{A}G_{N})(4\pi R_{c})^{2} S_{c} (W/m2) S.41 W/m2 R_{c} = 0.00 S_{c} = Dower Density of the device at the Compliance Distance R_{c} (W/m2) S_{c} = (P_{A}G_{N})(4\pi R_{c})^{2} S_{c} (W/m2) S_{c} (W/m2) S_{c} (W/m2) S_{c} (W/m2) S_{c} (W/m2) S$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Duty cycle (percentage of oper	ration)			% =	100	%		
	PA = Adjusted Power due to D	uty cycle or Cable Loss (mW)			$P_A(mW) =$	1.36	mW		
	G _N = Numeric Gain of the Ante	nna			GN (numeric) =	0.63	numeric		
$\begin{split} & \text{S}_{L} = \text{Power Density Limit (W/m^2)} & \text{S}_{L} (W/m^2) = \begin{array}{ c c c c c } & \text{S}_{L} (W/m^2) = \begin{array}{ c c c c c } & \text{S}_{L} (W/m^2) = \begin{array}{ c c c c c } & \text{S}_{L} (W/m^2) = \begin{array}{ c c c c c } & \text{S}_{L} (W/m^2) = \begin{array}{ c c c c } & \text{S}_{L} (W/m^2) = \begin{array}{ c c c c } & \text{S}_{L} (W/m^2) = \begin{array}{ c c c } & \text{S}_{L} (W/m^2) = \begin{array}{ c } & \text{S}_{L}$	S20 = Power Density of device	at 20cm (mW/m2)		$S_{20}=(P_AG_N)/(4\pi R_{20})^2$	$S_{20} (mW/m^2) =$	0.00	mW/m ²		
$\begin{split} \begin{array}{c c c c c c c c c c c c c c c c c c c $	S ₂₀ = Power Density of device	at 20cm (W/m ²)			$S_{20} (W/m^2) =$	0.00	W/m ²		
Rc = Minimundistance to the Radiating Benent for Compliance (cm) Rc = $\langle P_{0}, C_{0}, 4\pi_{0,0} \rangle$ Rc = $\langle (m)^2 \rangle$ <	S _L = Power Density Limit (W/n	n ²)					W/m ²		
Sc = Power Density of the d=vice at the Compliance Distance R_c (W/m ²) Sc = (P_A G_N)/(4\pi R_C) ² Sc (W/m^2) Sc.41 W/m ² Image: Compliance Distance R_C (W/m ²) R ₃₀ = 20cm For Complaince with Canada General Population Limits, User Manual must indicate a minitum seperation distance of 0.4 Image: Compliance With Canada General Population Limits, a minitum seperation distance of 0.000 Meters 0.000 Meters Image: Compliance With Canada General Population Limits, a minitum seperation distance of 0.000 Meters 0.000 Meters Image: Compliance With Canada General Population Limits, a minitum seperation distance of 0.000 Meters 0.000 Meters Image: Compliance With Canada General Population Limits, a minitum seperation distance of 0.000 Meters Image: Compliance With Canada General Population Limits, a minitum seperation distance of 0.000 Meters Image: Compliance With Canada General Population Limits, a minitum seperation distance of 0.000 Meters Image: Compliance With Canada General Population Limits, a minitum seperation distance of 0.000 Meters Image: Compliance With Canada General Population Limits, a minitum seperation distance of 0.000 Meters Image: Compliance With Canada General Population Limits, a minitum seperation distance of 0.000 Meters Image: Compliance With Canada General Population Limits, a minitum seperation distance of 0.000 Meters Image: Compliance With Canada General Population Limits, a minitum seperation distance of 0.000 Meters Image: Compliance With Canada General Population Limits, a minitum seperation distance of 0.000 Meters Image: Compliance With Canada General Population Limits, a minitum seperation	$R_{C} = M$ inimum distance to the l	Radiating Element for Compliance	: (cm)	$R_C = \sqrt{(P_A G_N / 4 \pi s_L)}$	$R_{C}(cm) =$	0.4	cm		
Rage 20cmRage 20cmRage 20cmIntermation of the set of th	S _C = Power Density of the devi	ice at the Compliance Distance R	(W/m ²)	$S_{C} = (P_{A}G_{N})/(4\pi R_{C})^{2}$	$S_C (W/m^2) =$	5.41	W/m ²		
Or in Meters for Complaince with Canada General Population Limits, a minimum seperation distance of Summary: Standalone MPE Calculations and SummaryOne	R ₂₀ = 20cm				R20=	20	cm		
Summary: Standalone MPE Calculations and Summary Image: Calculations and Summary									
Band (MHZ) Tx Duty Cyck (%) Tx Frequeny (MHz) Power Total (mW) Antenna Gain (numeric) S_L (W/m ²) S_{20} (W/m ²) R_c (m) S_c (W/m ²) 2402-2480 100 2442 1 0.63 5.412 0.00 0.4 5.41 Band (MHZ) Tx Duty Cyck (%) Tx Frequeny (MHz) Power Total (mW) Antenna Gain (dBi) SL (W/m2) S20 (W/m2) RC (m) SC (W/m2) 2412-2462 100 2437 32.21 0.59 5.404 0.04 1.7 5.40 2412-2462 100 2437 32.21 0.59 5.404 0.04 1.7 5.40 Transmitter 1 Transmitter 2		Of an ivicici		a coaciari opunatori Linino, d Itilii		0.00			
Band (MHZ) Tx Duty Cyck (%) Tx Frequeny (MHz) Power Total (mW) Antenna Gain (numeric) S_L (W/m ²) S_{20} (W/m ²) R_c (m) S_c (W/m ²) 2402-2480 100 2442 1 0.63 5.412 0.00 0.4 5.41 Band (MHZ) Tx Duty Cyck (%) Tx Frequeny (MHz) Power Total (mW) Antenna Gain (dBi) SL (W/m2) S20 (W/m2) RC (m) SC (W/m2) 2412-2462 100 2437 32.21 0.59 5.404 0.04 1.7 5.40 2412-2462 100 2437 32.21 0.59 5.404 0.04 1.7 5.40 Transmitter 1 Transmitter 2	Summary: Standalone MPE	E Calculations and Summary							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Tx Frequeny (MHz)	Power Total (mW)	Antenna Gain (numeric)	$S_L (W/m^2)$	S ₂₀ (W/m ²)	R _C (cm)	S _C (W/m ²
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2402-2480	100	2442	1	0.63	5.412	0.00	0.4	5.41
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							600 (TT) - T	DG ()	
Image: Construction of the construction of									
Transmitter 1 Transmitter 2 Tx Frequeny (MHz) 2442 2437 S20 (W/m²) 0.00 0.04 SL (W/m²) 5.412 5.404 Power Ratio (SL / S20) 0.000 0.007 Sun of Power Ratios at 20cm (Tx1 + Tx2) 0.007	2412-2402	100	2437	52.21	0.59	5.404	0.04	1./	3.40
Transmitter 1 Transmitter 2 Tx Frequeny (MHz) 2442 2437 S20 (W/m²) 0.00 0.04 SL (W/m²) 5.412 5.404 Power Ratio (SL / S20) 0.000 0.007 Sun of Power Ratios at 20cm (Tx1 + Tx2) 0.007		Simlutaneous MPE Calculati	Dn						
S20 (W/m²) 0.00 0.04 SL (W/m²) 5.412 5.404 Power Ratio (SL / S20) 0.000 0.007 Sum of Power Ratios at 20cm (Tx1 + Tx2) 0.007									
SL (W/m²) 5.412 5.404 Power Ratio (S _L / S ₂₀) 0.000 0.007 Sun of Power Ratios at 20cm (Tx1 + Tx2) 0.007	Tx Frequeny (MHz)	2442							
Power Ratio (SL / S20) 0.000 0.007 Sum of Power Ratios at 20cm (Tx1 + Tx2) 0.007	S ₂₀ (W/m ²)	0.00	0.04						
Sum of Power Ratios at 20cm (Tx1 + Tx2) 0.007	$S_L (W/m^2)$	5.412	5.404						
Sum of Power Ratios at 20cm (Tx1 + Tx2) 0.007	Power Ratio (S _L / S ₂₀)	0.000	0.007						
			0.007						

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1

 Garmin International, Inc.
 FCC ID: IPH-A3562

 Model: AA3562
 IC: 1792A-A3562

 Test: 211001 SN's: 3387568865, 3387568938, 3387568865, 3387568897
 Jate: October 27, 2021

 File: AA3562 RFExp
 Page 1 of 2

	Model: AA3562		Test Number	211001		
MPE Calculator	RF Exposure uses EIRP for	calculation. EIRP is based or	TX power added to the antenna ga	in in dBi.		
	dBi = dB gain compared to a	n isotropic radiator.				
	S = power density in mW/cm					
	Tra	ansmitter Output power (mW) 32.2			
	1	ransmitter Output power (W	0.032			
Output Power for %	duty Cycle operation (Watts)	10	0.032		Antenna Gain (dBi)	-2.3
	Output Power for 100%	duty Cycle operation (Watts	0.032	Ante	nna Gain (Numeric)	0.59
x Frequency (MHz)	2437	Calcualtion power (Watts) 0.032	dBd + 2.17 = dBi	dBi to dBd	2.2
				4	Antenna Gain (dBd)	-4.47
able Loss (dB)	0.0 Adjusted Power (dB) 15.08	Antenna minus cable (dBi)		-2.30
				Ante	Antenna Gain (Numeric)	
	Calculated ERP (mw)			EIRP = Po(d		
	Calculated EIRP (mw)	18.967		Radiated (EIRP) dBm ERP = EIRP - 2.17		
		EIRP				
	Power density (S) mW/			R	adiated (ERP) dBm	10.610
		4 p r^2				
	r (cm) EIRP (mW)					
	I (CIII) EIKP (INW)					
			e 11-22 11-25	1.1010		
5	Occupational Limit mW/cm ²	FCC radio Frequency (MHz)	frequency radiation exposure limits p Occupational Limit (mW/cm ²)	Public Limit (mW/cm ²)		
	mW/cm Frequency (MHZ) W/m ² 30-300		1	0.2		
50	General Public Limit	300-1,500	f/300	6.2 f/1500		
1			5	1		
1	mW/cm ²	1,300-10,000	5	1		
10	W/m ²					
	Occupational Limit					
$0.6455 f^{0.5}$		IC radio fre	IC radio frequency radiation exposure limits pe			
, 0.64557 39.3		Frequency (MHz)				
37.1	W/III General Public Limit	100-6,000	Occupational Limit (W/m ²) $0.6455f^{0.5}$	Public Limit (w/m)		
0.00 00.0834		· · · · · · · · · · · · · · · · · · ·				
0.02619 <i>f</i> ^{0.683}		6,000-15,000	50	1 201		
5.4	W/m ²	48-300		1.291		
		300-6,000		0.02619 <i>f</i> ^{0.6834}		
		6,000-15,000	50	10		
= Transmit Frequecny (MHz				f (MHz) =	2437	
P _T = Power Input to Antenna (mW)				$P_T (mW) =$	32.2107	
Duty cycle (percentage of operation)				% =	100	%
$P_A = Adjusted$ Power due to Duty cycle or Cable Loss (mW)				$P_A(mW) =$	32.21	mW
G _N = Numeric Gain of the Antenna				GN (numeric) =	0.59	numeric
S_{20} = Power Density of device at 20cm (mW/m ²)			$S_{20}=(P_AG_N)/(4\pi R_{20})^2$	$S_{20} (mW/m^2) =$	0.00	mW/m ²
S ₂₀ = Power Density of device at 20cm (W/m ²)			$S_{20} = (P_A G_N) / (4\pi R_{20})^2$	$S_{20} (W/m^2) =$	0.04	W/m ²
L = Power Density Limit (W/	/m ²)			$S_{L} (W/m^{2}) =$	5.404	W/m ²
C = Minimum distance to the	e Radiating Element for Compliance	: (cm)	$R_C = \sqrt{(P_A G_N / 4\pi s_i)}$	R_{C} (cm) =	1.7	cm
c = Power Density of the de	vice at the Compliance Distance Re	2 (W/m ²)	$S_{C} = (P_{A}G_{N})/(4\pi R_{C})^{2}$	$S_{C}(W/m^{2}) =$	$(2) = 5.40 \text{ W/m}^2$	
20 = 20cm				R20=		cm
	For Complaince with Can	ada General Population Limit	s, User Manual must indicate a mini	num seperation distance of	1.7	cm
	0.1.14		la General Population Limits, a mini		0.00	Meters

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1

 Garmin International, Inc.
 FCC ID: IPH-A3562

 Model: AA3562
 IC: 1792A-A3562

 Test: 211001 SN's: 3387568865, 3387568938, 3387568865, 3387568897

 Test to: CFR47 15C, RSS-210, RSS-247
 Date: October 27, 2021

 File: AA3562 RFExp
 Page 2 of 2