

Test Report Serial Number: Test Report Date: Project Number:

45461377-R1.1						
17 March 2017						
1367						

SAR Test Report - New Certification

Applicant:	М	laxim	num Repor	rted 10g	SAR	
GARMIN	FC	cc	Hand	0.497		
Garmin International Inc.	ISI	ED	Hand	0.739	W/kg	
1200 East 151 St.	Ger	neral	Pop. Limit:	4.00		
Olathe, KS, 66062 USA						
FCC ID:		IS	ED Registrati	on Number		
IPH-A3119-10			1792A-A3	11910		
Product Model Number / HVIN			Product Nam	e / PMN		
012-03119-10		Fenix 5S				

In Accordance With:

FCC 47 CFR §2.1093

Radiofrequency Radiation Exposure Evaluation: Portable Devices

IC RSS-102 Issue 5

Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

Approved By:

Ben Hewson, President Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8 Canada

Test Lab Certificate: 2470.01

IC Registration 3874A-1

This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc.

© 2017 Celltech Labs Inc,

Table of Contents

1.0 DOCUMENT CONTROL	3
2.0 NORMATIVE REFERENCES	3
3.0 CLIENT AND DEVICE INFORMATION	4
4.0 STATEMENT OF COMPLIANCE	5
5.0 SAR MEASUREMENT SYSTEM	6
6.0 RF CONDUCTED POWER MEASUREMENT	7
7.0 NUMBER OF TEST CHANNELS (N _c)	7
8.0 ACCESSORIES EVALUATED	7
9.0 SAR MEASUREMENT SUMMARY	8
10.0 SCALING OF MAXIMUM MEASURE SAR	9
11.0 SAR EXPOSURE LIMITS	
12.0 DETAILS OF SAR EVALUATION	
13.0 MEASUREMENT UNCERTAINTIES	
14.0 FLUID DIELECTRIC PARAMETERS	
15.0 SYSTEM VERIFICATION TEST RESULTS	
16.0 MEASUREMENT SYSTEM SPECIFICATIONS	
17.0 TEST EQUIPMENT LIST	
18.0 FLUID COMPOSITION	
APPENDIX A – SYSTEM VERIFICATION PLOTS	24
APPENDIX B – MEASUREMENT PLOTS OF MAXIMUMUM MEASURED SAR	
APPENDIX C - SETUP PHOTOS	
APPENDIX D – DUT AND ACCESSORY PHOTOS	
APPENDIX E – PROBE CALIBRATION	
APPENDIX F – DIPOLE CALIBRATION	
APPENDIX G - PHANTOM	

1.0 DOCUMENT CONTROL

Tested By:	Jasmeet Gill			
Prepared By:	Jasmeet Gill			
Reviewed By:	Ben Hewson			
	Description			
Issue Number	Description	n	Ву	Issue Date
Issue Number 1.0	Description Initial Release		By Jasmeet Gill	Issue Date 08 March 2017

2.0 NORMATIVE REFERENCES

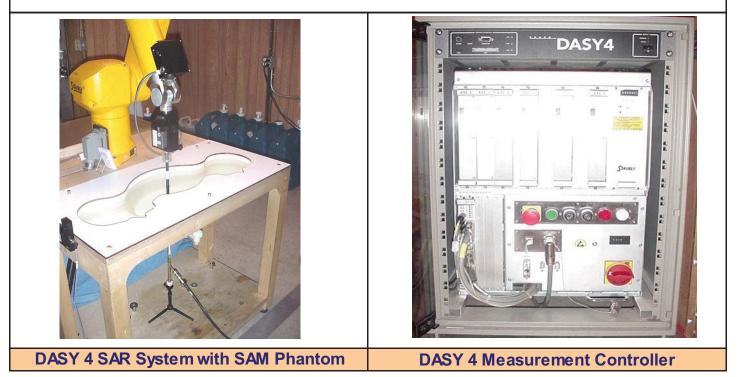
Normative References*									
ANSI / ISO 17025:2005	General Requirements for competence of testing and calibration laboratories								
FCC CFR Title 47 Part 2	Code of Federal Regulations								
Title 47:	Telecommunication								
Part 2.1093:	Radiofrequency Radiation Exposure Evaluation: Portable Devices								
Health Canada									
Safety Code 6 (2015)	Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range								
	from 3kHz to 300GHz								
Industry Canada Spectrum	Management & Telecommunications Policy								
RSS-102 Issue 5:	Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)								
IEEE International Committe	ee on Electromagnetic Safety								
IEEE 1528-2013:	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques								
IEC International Standard									
IEC 62209-2 2010	Human exposure to radio frequency fields from hand-held and body-mounted wireless communication								
	devices - Part 2								
FCC KDB									
KDB 865664 D01v01r04	SAR Measurement Requirements for 100MHz to 6GHz								
FCC KDB									
KDB 447498 D01v06	Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies								
FCC KDB									
KDB 248227 D01v02r02	SAR Test Guidane for IEEE 802.11 (WiFI) Transmitters								
* When the issue number	or issue date is omitted, the latest version is assumed.								

3.0 CLIENT AND DEVICE INFORMATION

	Client Information				
Applicant Name	Garmin International Inc.				
	1200 East 151 St				
Applicant Address	Olathe, KS, 66062				
	USA				
	DUT Information				
Device Identifier(s):	FCC ID: IPH-A3119-10				
Device identifier(S).	ISED: 1792A-A311910				
Type of Equipment:	Wireless Wrist-Worn GPS Device				
Device Model(s) / HVIN:	Fenix 5S				
Device Marketing Name / PMN:	Fenix 5S				
Test Sample Serial No.:	T/A Sample - Identical Prototype				
Transmit Frequency Range:	BLE: 2402-2480 MHz				
Transmit requency Range.	WiFi: 2412-2462 MHz				
Number of Channels:	n/a				
Manuf. Max. Rated Output Power:	BLE/ANT: 4dBm, WiFi: 23.5dBm				
Modulation:	DSSS, OFDM, GFSK, CW				
Duty Cycle:	100%				
DUT Power Source:	5VUSB, Internal Li-ion battery				
Deviation(s) from standard/procedure:	None				
Modification of DUT:	None				

4.0 STATEMENT OF COMPLIANCE

This measurem	nent report demonstrates that the:						
Applicant: Model / HVIN:							
Garmin International Inc.	012-03119-10						
complies with the SAR (Specific Absorption	on Rate) RF exposure requirements and limits specified in the following:						
Standard(s):	Measurement Procedure(s):						
FCC 47 CFR §2.1093	FCC KDB 865664, FCC KDB 447498, FCC KDB 643646						
Health Canada's Safety Code 6	Industry Canada RSS-102 Issue 5						
	IEEE Standard 1528-2013, IEC 62209-2						
Use Group:	X General Population / Uncontrolled						
Reason for Issue:							
New Certification							


A description of the device, operating configuration, detailed summary of the test results, methodology and procedures used during this evaluation, equipment used and the various provisions of the rules are included within this test report.

5.0 SAR MEASUREMENT SYSTEM

SAR Measurement System

Celltech Labs Inc. SAR measurement facility employs a Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, a robot controller, a computer, a near-field probe, a probe alignment sensor, an Elliptical Planar Phantom (ELI) phantom and a specific anthropomorphic mannequin (SAM) phantom for Head and/or Body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller and a teach pendant (Joystick) to control the robot's servo motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical form the DAE to digital electronic signal and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter, a command decoder and a control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot utilizes a controller with built in VME-bus computer.

6.0 RF CONDUCTED POWER MEASUREMENT

Table 6.0										
Conducted Power Measurements										
Channel	Frequency (MHz)	Measured Power (dBm)	Rated Power (dBm)	Power Power		SAR Test Channel (Y/N)				
1	2412	23.72	23.50	0.22	0.22	Y				
6	2437	23.40	23.50	0.21	-0.10	Y				
11	2462	23.17	23.50	0.22	-0.33	Y				
	Notes:									
The Conducted Power of the DUT was measured at the antenna port, the unit was tested at 100% duty cycle transmit.										

7.0 NUMBER OF TEST CHANNELS (*N_c*)

As per FCC KDB 248277, the required 802.11 test channels are Ch1, Ch6 and Ch 11

NOTE: These transmitters are not capable of simultaneous transmission. The 802.15 is rated at 4dBm and is below the threshold for standalone SAR evaluation.

8.0 ACCESSORIES EVALUATED

Table 8.0											
	Manufacturer's Accessory List										
Test Report ID Number	port Manufacturer's Description		UDC Group ⁽¹⁾	Type II Group ⁽²⁾	SAR ⁽³⁾ Evaluated	SAR ⁽⁴⁾ Tested					
T1	320-01D69-00	Ca-Assy. Universal Charger	n/a	n/a	N	N					
B1	013-00649-10	Metal Watch Band,SUS,Sebastian	n/a	n/a	Y	Y					

9.0 SAR MEASUREMENT SUMMARY

Table 9.0																
		-	2450 E	and Wifi- Fenix	5s BODY SAR	Evaluation Res	ults (FCC/IC)			-						
Ma	del					D	JT	Measured SAR								
Dete	Wit	Model				Accessories		cing	10g (W/kg)	SAR Drift						
Date		І Туре	Plot #			DUT	ANT	Duty Cycle								
	M/N		туре	туре	туре	туре	туре	туре	туре		(MHz)	Body	Audio	(mm)	(mm)	100%
28 Feb 2017	5S	Fenix	B1	2412	n/a	n/a	0	0	0.273	-1.860						
28 Feb 2017	5S	Fenix	B2	2437	n/a	n/a	0	0	0.289	-1.590						
01 Mar 2017	5S	Fenix	B3	2462	n/a	n/a	0	0	0.325	-1.050						
	SAR LIMIT(S)		Body		Spatial Peak		RF Exposure Category									
FCC 47 CFR 2.1093 Health Cana		Canada Safety	Code 6	4.0	W/kg	10g average		General Population								

Table 9.1												
			2450 Band Wif	i- Fenix 5s w/ N	letal Band BOD	Y SAR Evaluati	on Results (FC	C/IC)		-		
	Ma	odel						UT	Measured SAR			
Data	IVIC	dei	Dist #	Freq	Acces	Accessories		Accessories		cing	10g (W/kg)	SAR Drift
Date	84/61	Time	Plot #				DUT ANT		Duty Cycle			
	M/N T	Туре		(MHz)	Body	Audio	(mm)	(mm)	100%	(dB)		
16 Mar 2017	5S	Fenix	B4	2412	B1	n/a	0	0	0.372	-0.820		
16 Mar 2017	5S	Fenix	B5	2437	B1	n/a	0	0	0.380	-0.783		
16 Mar 2017	5S	Fenix	B6	2462	B1	n/a	0	0	0.457	-1.720		
	SAR LIMIT(S)				Body		Spatial Peak		RF Exposure Category			
FCC 47 CFR 2.1093 Health		Canada Safety	Code 6	4.0	W/kg 10g ave		verage	General Population				

10.0 SCALING OF MAXIMUM MEASURE SAR

Table 10.0)										
			Scali	ng of Ma	ximum M	easured	SAR ⁽¹⁾				
		Freq		sured eviation		C	Measured onducted Pov	ver		sured rift	Measured SAR (10g)
Plot ID	Configuration	(MHz)	Permittivity	Cond	uctivity		(dBm)		(d	B)	(W/kg)
B6	Body	2462	-6.51%	0	31%		23.2		1	720	0.457
Во	Body	2402	-0.5176	-0.	Step 1		23.2		-1.	720	0.457
				Fluid	d Sensitivity Adju	ustment					
		Scale					Measured				Step 1 Adjuste
		Facto	r				SAR			_	SAR (10g)
Plot ID		(%)		X			(W/kg)			=	(W/kg)
B3		0.959%	%	х			0.457			=	0.461
					Step 2						
					cturer's Tune-Up	o Tolerance					
	Measu			ted		Dulka		Step 1 Adju	isted SAR		Step 2 Adjuste
Plot ID	Conducted (dBm			wer 3m)		Delta (dB)	+	(W/I	(a)	=	SAR (10g) (W/kg)
TIOCID	(ubii	·/	(01	, , , , , , , , , , , , , , , , , , ,		(00)		(11/1	·9/		(W/Rg)
B6	23.2		23	3.5		-0.33	+	0.4	61	=	0.497
					Step 3						
	D. L. L. C. L. L			nultaneous Tra	ansmission - B		· WiFi				
	Rated Output Power (Pmax)	Freq	Separation Distance			nated AR		Step 2 Adjusted SAR			Step 3 Adjuste SAR (10g)
Plot ID	(mW)	(MHz)	(mm)			/kg)	+	(W/I	(g)	=	(W/kg)
						•					
B3	4	2480	5			000	+	0.49	97	=	0.497
					Step 4						
		Measur	ed		Drift Adjustme						Step 4 Adjuste
		Drift				Ste	p 3 Adjusted	SAR			SAR (10g)
Plot ID		(dB)		+		(W/kg)					(W/kg)
B3		-1.720)	+		0.497					0.739
БЗ		-1.720)	т	Step 5		0.497			=	0.739
					Reported SAF	2					
			FCC						IC		
DIVER	From Steps 1 through 3					From Steps 1 through 4					
Plot ID			10g SAR (W/kg) 0.000					-	AR (W/kg) .000		
B3			0.497						.739		

NOTES to Table 10.0

(1) Scaling of the Maximum Measured SAR is based on the highest, 100% duty cycle, Face, Body and/or Head SAR measured of ALL test channels, configurations and accessories used during THIS evaluation. The Measured Fluid Deviation parameters apply only to deviation of the tissue equivalent fluids used at the frequencies which produced the highest measured SAR. The Measured Conducted Power applies to the Conducted Power measured at the frequencies producing the highest Face and Body SAR. The

Measured Drift is the SAR drift associated with that specific SAR measurement. The Reported SAR is the accumulation of all SAR Adjustments from the applicable Steps 1 through 4. The Plot ID is for indentification of the SAR Measurement Plots in Annex A of this report.

NOTE: Some of the scaling factors in Steps 1 through 4 may not apply and are identified by light gray text.

Step 1

Per IEC-62209-1 and FCC KDB 865664. Scaling required only when Measured Fluid Deviation is greater than 5%. If the Measured Fluid Deviation is greater than 5%, Table 10.1 will be shown and will indicate the SAR scaling factor in percent (%). SAR is MULTIPLIED by this scaling factor only when the scaling factor is positive (+).

Step 2

Per KDB 447498. Scaling required only when the difference (Delta) between the Measured Conducted Power and the Manufacturer's Rated Conducted Power is (-) Negative. The absolute value of Delta is ADDED to the SAR.

Step 3

Per KDB 447498 4.3.2. The SAR, either measured or calculated, of ANY and ALL simultaneous transmitters must be added together and includes all contributors

Step 4

Per IEC 62209-1. Scaling required only when Measured Drift is (-) Negative. The absolute value of Measured Drift is added to Reported or Simultaneous Reported SAR.

Step 5

The Reported SAR is the Maximum Final Adjusted Cumulative SAR from the applicable Steps 1 through 4 and are reported on Page 1 of this report.

Table 10.1	
	ity Calculation (10g) Delta Er + C(sigma)*Delta Sigma
Frequency (GHz)	Plot ID
2.462	B3
Се	-0.1595
Сσ	0.2569
ΔE	-6.51%
Δσ	-0.31%
ΔSAR	0.9587%
Scale Factor Is P	ositive. Scaling Required

I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.

Jasmeet Gill Test Lab Engineer Celltech Labs Inc.

17 March 2017

Date

11.0 SAR EXPOSURE LIMITS

Table 11.0											
SAR RF EXPOSURE LIMITS											
FCC 47 CFR§2.1093	Health Canada Safety Code 6	General Population /	Occupational /								
100 47 CH (g2.1035	Thealth Canada Safety Code 0	Uncontrolled Exposure ⁽⁴⁾	Controlled Exposure ⁽⁵⁾								
Spa	tial Average ⁽¹⁾	0.08 W/kg	0.4 W/kg								
(averaged	over the whole body)	0.00 W/kg	0.4 Wildg								
Sp	atial Peak ⁽²⁾	1.6 W/kg	8.0 W/kg								
(Head and Trunk ave	eraged over any 1 g of tissue)	1.0 W/kg	0.0 W/Kg								
Sp	atial Peak ⁽³⁾	4.0 W/kg	20.0 W/kg								
(Hands/Wrists/Fee	t/Ankles averaged over 10 g)	4.0 W/kg	20.0 W/Kg								
(1) The Spatial Average	e value of the SAR averaged over	the whole body.									

(2) The Spatial Peak value of the SAR averaged over any 1 gram of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.

(3) The Spatial Peak value of the SAR averaged over any 10 grams of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.

(4) Uncontrolled environments are defined as locations where there is potential exposure to individuals who have no knowledge or control of their potential exposure.

(5) Controlled environments are defined as locations where there is potential exposure to individuals who have knowledge of their potential exposure and can exercise control over their exposure.

12.0 DETAILS OF SAR EVALUATION

	EVALUATION DETAILS
1	The DUT was evaluated for SAR in accordance with the procedures described in IEEE 1528, FCC KDB 865646 and RSS-102.
2	The DUT was evaluated for SAR at the maximum conducted output power level, preset by the manufacturer. The device was capable of transmitting in Continuous Wave (CW) and was testing in an unmodulated continuous transmit mode at 100% duty cycle.
3	Each SAR evaluations were performed while plugged into a USB Charger
4	The fluid temperature remained within +/-2°C from the time of the fluid dielectric parameter measurement to the completion of the SAR evaluation.
5	The fluid temperature remained within +/-0.5°C throughout the test day.

SCAN PROCEDURE									
Maximum distance from the closest measurement point to phantom surface.	4 ± 1mm								
Maximum probe angle normal to phantom surface.	5° ± 1°								
Area Scan Spatial Resolution ΔX , ΔY	12mm								
Zoom Scan Spatial Resolution ΔX , ΔY	5mm								
Zoom Scan Spatial Resolution ΔZ	5mm								
Zoom Scan Volume X, Y, Z	30mm x 30mm x 30mm								
Phantom	ELI								
Fluid Depth	150mm								
An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.									
A Zoom Scan centered over the peak SAR location Scan was used to determine the 1 gram and 10 gra SAR									

13.0 MEASUREMENT UNCERTAINTIES

Table 13.0									
UNCERTA	NTY BUD	GET FOR D	EVICE EVA	LUATION (IE	EE 15	528-20	13 Table 9)		
Uncertainty Component	IEEE 1528 Section	28 Uncertainty Prot		Divisor	ci 1g	ci 10g	Uncertainty Value ±% (1g)	Uncertainty Value ±% (10g)	V _i or V _{eff}
Measurement System									
Probe Calibration*	E.2.1	6.6	Normal	1	1	1	6.60	6.60	00
Axial Isotropy*	E.2.2	4.7	Rectangular	1.732050808	0.7	0.7	1.9	1.9	œ
Hemispherical Isotropy*	E.2.2	9.6	Rectangular	1.732050808	0.7	0.7	3.9	3.9	œ
Boundary Effect*	E.2.3	8.3	Rectangular	1.732050808	1	1	4.8	4.8	00
Linearity*	E.2.4	4.7	Rectangular	1.732050808	1	1	2.7	2.7	œ
System Detection Limits*	E.2.4	1.0	Rectangular	1.732050808	1	1	0.6	0.6	00
Modulation Response	E.2.5	4.0	Rectangular	1.732050808	1	1	2.3	2.3	œ
Readout Electronics*	E.2.6	1.0	Normal	1	1	1	1.0	1.0	œ
Response Time*	E.2.7	0.8	Rectangular	1.732050808	1	1	0.5	0.5	œ
Integration Time*	E.2.8	1.4	Rectangular	1.732050808	1	1	0.8	0.8	œ
RF Ambient Conditions - Noise	E.6.1	0.0	Rectangular	1.732050808	1	1	0.0	0.0	œ
RF Ambient Conditions - Reflection	E.6.1	0.0	Rectangular	1.732050808	1	1	0.0	0.0	œ
Probe Positioner Mechanical Tolerance*	E.6.2	0.4	Rectangular	1.732050808	1	1	0.2	0.2	œ
Probe Positioning wrt Phantom Shell*	E.6.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	œ
Extrapolation, interpolation & integration algorithms for max. SAR evaluation*	E.5	3.9	Rectangular	1.732050808	1	1	2.3	2.3	œ
Test Sample Related									
Test Sample Positioning	E.4.2	0.3	Normal	1	1	1	0.3	0.3	5
Device Holder Uncertainty*	E.4.1	3.6	Normal	1	1	1	3.6	3.6	00
SAR Drift Measurement**	E.2.9	0.0	Rectangular	1.732050808	1	1	0.0	0.0	00
SAR Scaling***	E.6.5	2.0	Rectangular	1.732050808	1	1	1.2	1.2	00
Phantom and Tissue Parameters									
Phantom Uncertainty*	E.3.1	4.0	Rectangular	1.732050808	1	1	2.3	2.3	00
SAR Correction Uncertainty	E.3.2	1.2	Normal	1	1	0.84	1.2	1.0	00
Liquid Conductivity (measurement)	E.3.3	6.8	Normal	1	0.78	0.71	5.3	4.8	10
Liquid Permittivity (measurement)	E.3.3	5.3	Normal	1	0.23	0.26	1.2	1.4	10
Liquid Conductivity (Temperature)	E.3.2	0.1	Rectangular	1.732050808	0.78	0.71	0.1	0.0	œ
Liquid Permittivity Temperature)	E.3.2	0.0	Rectangular	1.732050808	0.23	0.26	0.0	0.0	œ
Effective Degrees of Freedom	n ⁽¹⁾							V _{eff} =	873.2
Combined Standard Uncertainty			RSS				12.59	12.40	
Expanded Uncertainty (95% Confide	ence Interva	il)	k=2				25.18	24.80	
Mea	asurement l	Incertainty Tab	ole in accordan	ce with IEEE St	andard	1528-2	2003		

(1) The Effective Degrees of Freedom is > 30 therefore a coverage factor of k=2 represents an approximate confidence level of 95%.

* Provided by SPEAG

Table 13.1]	
Calculation of the Degree	es and Eff	ective Degrees of Freedom
v _i = <i>n</i> - 1	v _{eff} =	$ \frac{u_c^4}{\sum_{j=1}^{m} \frac{c_i^4 u_i^4}{v_i}} $

14.0 FLUID DIELECTRIC PARAMETERS

Aprel Laboratory Test Result for UIM Dielectric Parameter Tue 28/Feb/2017 10:36:20 Freq Frequency(GHz) FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eBFCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ****** ************ Freq FCC_eBFCC_sBTest_e Test_s 2.3500 52.83 1.85 52.36 1.96 2.3600 52.07 52.82 1.86 1.95 52.81 52.06 2.3700 1.98 1.87 2.3800 52.79 51.97 2.00 1.88 1.89 2.3900 52.78 52.04 2.01 2.4000 52.77 1.90 51.92 2.01 2.4100 52.75 1.91 52.11 2.04 2.4200 52.74 52.00 2.05 1.92 2.4300 52.73 1.93 51.75 2.07 2.4400 52.71 1.94 51.77 2.09 2.4500 52.70 1.95 51.92 2.12 2.4600 52.69 1.96 51.74 2.10 2.13 2.4700 52.67 1.98 51.97 2.4800 52.66 1.99 51.83 2.12 2.4900 52.65 2.01 51.54 2.17 2.5000 52.64 2.02 51.64 2.18 2.5100 52.62 2.04 51.68 2.18 2.5200 52.61 2.05 51.59 2.19 2.20 2.5300 52.60 2.06 51.62 2.5400 52.59 2.08 51.37 2.23 2.5500 52.57 2.09 51.59 2.24

Table	14.0
-------	------

FLUID DIELECTRIC PARAMETERS												
Date:	-	Feb 17		uid np:	23	Frequen	cy:	2450MHz	Tissue:	Body		
Freq (MHz))	Те	est_e	Test_	_s	Target_	e	Target_s	Deviation Permittivity	Deviation Conductivity		
2350.0000		52	.3600	1.960	00	52.8300	C	1.85	-0.89%	5.95%		
2360.0000		52	.0700	1.950	00	52.8200	C	1.86	-1.42%	4.84%		
2370.0000		52	.0600	1.980	00	52.8100	C	1.87	-1.42%	5.88%		
2380.0000		51	.9700	2.000	00	52.7900	C	1.88	-1.55%	6.38%		
2390.0000		52	.0400	2.010	00	52.7800	C	1.89	-1.40%	6.35%		
2400.0000		51	.9200	2.010	00	52.7700	C	1.90	-1.61%	5.79%		
2410.0000		52	.1100	2.040	00	52.7500	C	1.91	-1.21%	6.81%		
2412.0000	*	52	.0880	2.042	20	52.7480	C	1.91	-1.25%	6.80%		
2420.0000		52.0000		2.050	00	52.7400	C	1.92	-1.40%	6.77%		
2430.0000		51	.7500	2.070	00	52.7300	C	1.93	-1.86%	7.25%		
2437.0000	*	51	51.7640 2.084		40	52.7160 1.94		1.94	-1.81%	7.59%		
2440.0000		51.7700		2.0900		52.7100	52.7100		-1.78%	7.73%		
2450.0000		51	.9200	2.120	00	52.7000	C	1.95	-1.48%	8.72%		
2460.0000		51	.7400	2.1000		52.6900		1.96	-1.80%	7.14%		
2462.0000	*	51	.7860	2.10	60	52.6860)	1.96	-1.71%	7.23%		
2470.0000		51	.9700	2.130	00	52.6700	C	1.98	-1.33%	7.58%		
2472.0000	*	51	.9420	2.128	30	52.6680	C	1.98	-1.38%	7.37%		
2480.0000		51	.8300	2.120	00	52.6600	C	1.99	-1.58%	6.53%		
2490.0000		51	.5400	2.170	00	52.6500	C	2.01	-2.11%	7.96%		
2500.0000		51	.6400	2.180	00	52.6400	C	2.02	-1.90%	7.92%		
2510.0000		51	.6800	2.180	00	52.6200	C	2.04	-1.79%	6.86%		
2520.0000		51	.5900	2.190	00	52.6100	C	2.05	-1.94%	6.83%		
2530.0000		51	.6200	2.200	00	52.6000	C	2.06	-1.86%	6.80%		
2540.0000		51	.3700	2.230	00	52.5900	C	2.08	-2.32%	7.21%		
2550.0000		51	.5900	2.240	00	52.5700	C	2.09	-1.86%	7.18%		

*Channel Frequency Tested

Aprel Laboratory Test Result for UIM Dielectric Parameter Wed 15/Mar/2017 15:26:44 Frequency(GHz) Freq FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eBFCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ***** Freq FCC_eBFCC_sBTest_e Test_s 2.3500 52.83 1.85 49.24 1.82 2.3600 49.36 52.82 1.86 1.82 2.3700 49.22 52.81 1.87 1.83 2.3800 52.79 1.88 49.26 1.84 2.3900 52.78 49.24 1.84 1.89 2.4000 52.77 1.90 49.14 1.88 2.4100 49.19 1.85 52.75 1.91 2.4200 52.74 1.92 49.18 1.90 2.4300 52.73 1.93 49.14 1.94 49.10 1.95 2.4400 52.71 1.94 2.4500 52.70 49.24 1.97 1.95 2.4600 52.69 1.96 49.28 1.96 2.4700 52.67 1.98 49.17 1.95 2.4800 52.66 1.99 48.99 1.98 2.4900 52.65 2.01 48.67 2.00 48.86 2.5000 52.64 2.02 1.99 48.72 2.5100 52.62 2.04 2.00

2.05

2.06 2.08

2.09

52.61

52.60

52.59

52.57

2.5200

2.5300

2.5400

2.5500

48.72

48.85

48.81

48.97

2.04

2.07

2.08

2.10

Table	14.1
-------	------

FLUID DIELECTRIC PARAMETERS																																												
Date:	-	Mar 17	Fl Ten	uid np: 2	23.2	Freque	ency:	2450N	IHz	Tissu	ie:	Body																																
Freq (MHz))	Tes	st_e	Test	_s	Targe	et_e	Targe	t_s	Deviation Permittivi		Deviation Conductivity																																
2350.0000		49.2	2400	1.82	00	52.83	300	1.85	5	-6.80%		-1.62%																																
2360.0000		49.3	8600	1.82	00	52.82	200	1.86	6	-6.55%		-2.15%																																
2370.0000		49.2	2200	1.83	00	52.81	00	1.87	7	-6.80%		-2.14%																																
2380.0000		49.2	2600	1.84	00	52.79	900	1.88	3	-6.69%		-2.13%																																
2390.0000		49.2	2400	1.84	00	52.78	300	1.89	9	-6.71%		-2.65%																																
2400.0000		49.1	400	1.88	00	52.77	700	1.90)	-6.88%		-1.05%																																
2410.0000		49.1	900	1.85	00	52.75	500	1.91	1	-6.75%		-3.14%																																
2412.0000	*	49.1	880	1.86	00	52.74	80	1.91	1	-6.75%		-2.72%																																
2420.0000		49.1800		49.1800		1.90	00	52.74	100	1.92	2	-6.75%		-1.04%																														
2430.0000		49.1	400	0 1.9400		52.7300		1.93		-6.81%		0.52%																																
2437.0000	*	49.1120		49.1120		1.94	70	52.71	60	1.94	1	-6.84%		0.52%																														
2440.0000		49.1000		49.1000		49.1000		49.1000		49.1000		49.1000		49.1000		49.1000		49.1000		49.1000		49.1000		49.1000		49.1000		49.1000		49.1000		49.1000		49.1000		1.95	00	52.71	00	1.94	1	-6.85%		0.52%
2450.0000		49.2	49.2400		1.9700		.7000 1.95		5	-6.57%		1.03%																																
2460.0000		49.2800		49.2800		49.2800		49.2800		1.96	00	52.69	900	1.96	6	-6.47%		0.00%																										
2462.0000	*	49.2580		49.2580		49.2580		49.2580		1.95	80	52.68	360	1.96	6	-6.51%		-0.31%																										
2470.0000		49.1	700	1.95	00	52.67	'00	1.98	3	-6.65%		-1.52%																																
2472.0000	*	49.1	340	1.95	60	52.66	680	1.98	3	-6.71%		-1.31%																																
2480.0000		48.9900		1.98	00	52.66	600	1.99	9	-6.97%		-0.50%																																
2490.0000		48.6	5700	2.00	00	52.65	500	2.01	1	-7.56%		-0.50%																																
2500.0000		48.8	8600	1.99	00	52.64	100	2.02	2	-7.18%		-1.49%																																
2510.0000		48.7	200	2.00	00	52.62	200	2.04	1	-7.41%		-1.96%																																
2520.0000		48.7	200	2.04	00	52.61	00	2.05	5	-7.39%		-0.49%																																
2530.0000		48.8	3500	2.07	00	52.60	000	2.06	6	-7.13%		0.49%																																
2540.0000		48.8	3100	2.08	00	52.59	900	2.08	3	-7.19%		0.00%																																
2550.0000		48.9	9700	2.10	00	52.57	700	2.09	9	-6.85%		0.48%																																

*Channel Frequency Tested

15.0 SYSTEM VERIFICATION TEST RESULTS

Table 15.0															
		System Verification Test Results													
		Frequenc y	Fluid Type	Fluid Temp	Ambient Temp	Ambient Humidity	Forward Power	Dipole Spacing							
Date		(MHz)		°C	°C	(%)	(mW)	(mm)	P/	N	S/N				
28-Feb	-17	2450	Body	23	20	12%	250	10	D245	50V2	825				
	SAR Fluid Parameters														
	4			10 gram		Permittivity				Conductivity					
	1 gram			i e grann											
Measured	Target	Deviation	Measure d	Target	Deviatio n	Measure d	Target	Deviatio n	Measure d	Target	Deviatio n				
Measured 12		Deviation -7.69%				Measure	,	Deviatio	Measure d 2.12		Deviatio				

manufacturer's dipole calibration target SAR value

Table 15.1	ble 15.1														
	System Verification Test Results														
			Fluid	Fluid	Ambient	Ambient	Forward	Dipole	Validation						
		Frequency	Туре	Temp	Temp	Humidity	Power	Spacing		Source					
Date	1	(MHz)		°C	°C	(%)	(mW)	(mm)	P/I	N	S/N				
15-Mar	-17	2450	Body	23.2	23	21%	250	10	D245	0V2	825				
		SA	R					Fluid Pa	rameters						
	1 gram		10 gram				Permittivity		c	onductivity	y				
Measured	Target	Deviation	Measured	Target	Deviation	Measured	Target	Deviation	Measured	Target	Deviation				
12.6	13	-3.08%	5.8	6.05	-4.13%	49.2	52.7	-6.57%	1.97	1.95	1.03%				
Prior to the	e SAR e	valuations,	system che	cks were	performed	on the pla	nar sectio	n of the ph	antom and	a SPEAC	6				

validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value

16.0 MEASUREMENT SYSTEM SPECIFICATIONS

Table 16.0				
Ме	asurement System Specification			
Specifications				
Positioner	Stäubli Unimation Corp. Robot Model: RX60L			
Repeatability	0.02 mm			
No. of axis	6			
Data Acquisition Electronic (DAE) System				
Cell Controller				
Processor	AMD Athlon XP 2400+			
Clock Speed	2.0 GHz			
Operating System	Windows XP Professional			
Data Converter				
Features	Signal Amplifier, multiplexer, A/D converter, and control logic			
Software	Measurement Software: DASY4, V4.7 Build 80			
Software	Postprocessing Software: SEMCAD, V1.8 Build 186			
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock			
DASY4 Measurement Server				
Function	Real-time data evaluation for field measurements and surface detection			
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM			
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface			
E-Field Probe				
Model	EX3DV4			
Serial No.	3600			
Construction	Triangular core fiber optic detection system			
Frequency	10 MHz to 6 GHz			
Linearity	±0.2 dB (30 MHz to 3 GHz)			
Phantom				
Туре	ELI			
Shell Material	Fiberglass			
Thickness	2mm +/2mm			
Volume	> 30 Liter			

Tabla	16 1	
laple	10.1	

Descention of the province of the proprince of the province of the province of the					
Construction: Symmetrical design with triangular core; Built-In shielding against static charges PEEK enclosure material (resistant to organic solvents, glycol) In air form 10 MHz to 2.5 GHz In head simulating tissue at frequencies of 900 MHz Calibration: In head simulating tissue at frequencies of 900 MHz and 1.8 GHz (accuracy ± 8%) Frequency: 10 MHz to > 6 GHz; Linearity; ± 0.2 dB (30 MHz to 3 GHz) Directivity: ± 0.2 dB in head tissue (rotation around probe axis) ± 0.4 dB in head tissue (rotation normal to probe axis) Dynamic Range: 5 µWg to > 100 mW/g; Linearity; ± 0.2 dB Surface Detect: ± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces Dimensions: Body diameter: 12 mm; Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm EX3DV4 E-Field Probe Phantom Specification The ELI V5.0 phantom is an elliptical planar fiberglass shell phantom with a shell thickness of 2.0mm +/2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEEE 1528-2013, IEC 62209-1 and IEC 62209-2. ELI Phantom Divice Positioner has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation arangle of 65°. The		Measurement System Specification (Continu	ed)		
Construction: Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, glycol) In air from 10 Mtz to 2.5 GHz Calibration: In head simulating tissue at frequencies of 900 MHz and 1.8 GHz (accuracy ± 8%) In head simulating tissue at frequencies of 900 MHz and 1.8 GHz (accuracy ± 8%) Directivity: ± 0.2 dB in head tissue (rotation around probe axis) ± 0.4 dB in head tissue (rotation normal to probe axis) In fair from the tissue (rotation normal to probe axis) Dynamic Range: 5 µW/g to > 100 mW/g. Linearity: ± 0.2 dB Surface Detect: ± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces Dimensions: Doverall length: 330 mm; Tip length: 16 mm; Body dismeter: 12 mm; Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm EX3DV4 E-Field Probe Phantom Specification The ELI V5.0 phantom is an elliptical planar fiberglass shell phantom with a shell thickness of 2.0mm +/2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEEE 1528-2013, IEC 62209-1 and IEC 62209-2. ELI Phantom Device Positioner Specification The DASY4 device positioner has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of botts for locking the device pholder. The bottom plate contains three pair of botts for locking		Probe Specification			
Calibration: In head simulating tissue at frequencies of 900 MHz and 1.8 GHz (accuracy ± 9%). Frequency: 10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz) Directivity: ± 0.2 dB in head tissue (rotation around probe axis) ± 0.2 dB in head tissue (rotation normal to probe axis) Experiment of the exp	Construction:	Built-in shielding against static charges			
Directivity: ± 0.2 dB in head tissue (rotation around probe axis) ± 0.4 dB in head tissue (rotation normal to probe axis) Dynamic Range: 5 µW/g to > 100 mW/g; Linearity: ± 0.2 dB Surface Detect: ± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces Dimensions: Overall length: 330 mm; Tip length: 16 mm; Body diameter: 12 mm; Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm EX3DV4 E-Field Probe Application: General dosimetry up to 3 GHz; Compliance tests of mobile phone EX3DV4 E-Field Probe The ELI V5.0 phantom is an elliptical planar fiberglass shell phantom with a shell thickness of 2.0mm +/2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEEE 1528-2013, IEC 62209-1 and IEC 62209-2. ELI Phantom Device Positioner Specification ELI Phantom ELI Phantom Device Positioner Specification ELI Phantom ELI Phantom Directive positioner has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of botts for locking the device holder. The device holder positions are adjusted to the standard measurement Image of 65°. The bottom plate contains three pair of botts for locking the device	Calibration:	Calibration: In head simulating tissue at frequencies of 900 MHz			
Directivity: ± 0.4 dB in head tissue (rotation normal to probe axis) Dynamic Range: 5 μW/g to > 100 mW/g: Linearity: ± 0.2 dB Surface Detect: ± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces Dimensions: Overall length: 330 mm; Tip length: 16 mm; Body diameter: 12 mm; Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm EX3DV4 E-Field Probe Application: General dosimetry up to 3 GHz; Compliance tests of mobile phone EX3DV4 E-Field Probe Phantom Specification The ELI V5.0 phantom is an elliptical planar fiberglass shell phantom with a shell thickness of 2.0mm +/2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEEE 1528-2013, IEC 62209-1 and IEC 62209-2. ELI Phantom Divide Positioner Specification The DASY4 device positioner has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bots for locking the device holder. The device holder positions are adjusted to the standard measurement	Frequency:	10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz)			
Surface Detect: ± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces Dimensions: Overall length: 330 mm; Tip length: 16 mm; Body diameter: 12 mm; Tip diameter: 6.8 mm Distance from probe tip to dipole centers; 2.7 mm EX3DV4 E-Field Probe Application: General dosimetry up to 3 GHz; Compliance tests of mobile phone EX3DV4 E-Field Probe The ELI V5.0 phantom is an elliptical planar fiberglass shell phantom with a shell thickness of 2.0mm +/2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEEE 1528-2013, IEC 62209-1 and IEC 62209-2. ELI Phantom Device Positioner Specification	Directivity:				
Dimensions: Overall length: 330 mm; Tip length: 16 mm; Body diameter: 12 mm; Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm EX3DV4 E-Field Probe Application: General dosimetry up to 3 GHz; Compliance tests of mobile phone EX3DV4 E-Field Probe The ELI V5.0 phantom is an elliptical planar fiberglass shell phantom with a shell thickness of 2.0mm +/2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEEE 1528-2013, IEC 62209-1 and IEC 62209-2. ELI Phantom ELI Phantom Device Positioner Specification ELI Phantom The DASY4 device positioner has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement Image: Content is a contained in the standard measurement	Dynamic Range:	5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB			
Phantom Specification The ELI V5.0 phantom is an elliptical planar fiberglass shell phantom with a shell thickness of 2.0mm +/2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEEE 1528-2013, IEC 62209-1 and IEC 62209-2. ELI Phantom Device Positioner Specification The DASY4 device positioner has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement Image: Colspan="2">Image: Colspan="2">Output		Overall length: 330 mm; Tip length: 16 mm; Body diameter: 12 mm; Tip diameter: 6.8 mm			
The ELI V5.0 phantom is an elliptical planar fiberglass shell phantom with a shell thickness of 2.0mm +/2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEEE 1528-2013, IEC 62209-1 and IEC 62209-2.	Application:	General dosimetry up to 3 GHz; Compliance tests of mobile phone	EX3DV4 E-Field Probe		
thickness of 2.0mm +/2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEEE 1528-2013, IEC 62209-1 and IEC 62209-2. ELI Phantom Device Positioner Specification The DASY4 device positioner has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement		Phantom Specification			
Device Positioner Specification The DASY4 device positioner has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder positions are adjusted to the standard measurement	thickness of 2.0n	nm +/2mm at the planar area. This phantom conforms to OET	FIL Phantom		
The DASY4 device positioner has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement		Device Positioner Specification	EEFF huntom		
Device Positioner	body axis) and th	ce positioner has two scales for device rotation (with respect to the ne device inclination (with respect to the line between the ear lane between the ear openings and the mouth tip has a rotation			

17.0 TEST EQUIPMENT LIST

Table 17.0				
	Test Equipn	nent List		
DESCRIPTION	ASSET NO.	SERIAL NO.	DATE CALIBRATED	CALIBRATION INTERVAL
Schmid & Partner DASY4 System	-	-	-	-
-DASY4 Measurement Server	00158	1078	CNR	CNR
-Robot	00046	599396-01	CNR	CNR
-DAE4	00019	353	20 April 2016	Annual
-EX3DV6 E-Field Probe	00213	3600	27 April 2016	Annual
-CLA150 Validation Source	00251	4007	24 Jan 2016	Triennial
-D835V2 Validation Dipole	00217	4D075	23 April 2015	Triennial
-D450V3 Validation Dipole	00221	1068	21 April 2015	Triennial
ELI Phantom	00247	-	CNR	CNR
HP 85070C Dielectric Probe Kit	00033	none	CNR	CNR
Gigatronics 8652A Power Meter	00110	1835801	29 Feb 2016	Triennial
Gigatronics 80701A Power Sensor	00248	1833687	29 Feb 2016	Triennial
HP 8753ET Network Analyzer	00134	US39170292	22 Oct 2014	Triennial
Rohde & Schwarz SMR20 Signal Generator	00006	100104	8 May 2014	Triennial
Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR

CNR = Calibration Not Required

18.0 FLUID COMPOSITION

Table 18.0			2450MHz Body		
Tissue Simulating Liquid (TSL) Composition				n	
	Component by Percent Weight				
Water	Glycol	Salt ⁽¹⁾	HEC ⁽²⁾	Bacteriacide ⁽³⁾	
69.98	30.0	0.02	0.0	0.0	

(1) Non-lodinized

(2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g

(3) Dow Chemical Dowicil 75 Antimicrobial Perservative

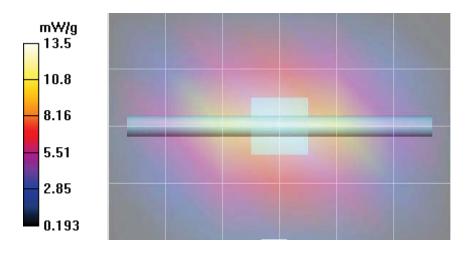
APPENDIX A – SYSTEM VERIFICATION PLOTS

Date/Time: 28/02/2017 10:33:44 AM

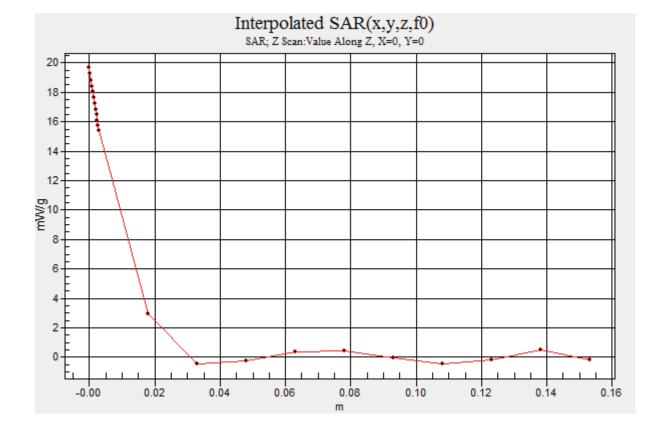
Test Laboratory: Celltech Labs

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 825; Calibrated: 25/04/2012 Program Name: 2450MHz Body SPC

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 2.12 mho/m; ϵ_r = 51.9; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY4 Configuration:

- Probe: EX3DV4 SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145


2450MHz Body Dipole d=10mm P=250mW TS=[11.7][13.0][14.3]/Area Scan (5x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.5 mW/g

2450MHz Body Dipole d=10mm P=250mW TS=[11.7][13.0][14.3]/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 96.1 V/m; Power Drift = -0.091 dB Peak SAR (extrapolated) = 24.8 W/kg SAR(1 g) = 12 mW/g; SAR(10 g) = 5.57 mW/g Maximum value of SAR (measured) = 13.6 mW/g

Date/Time: 15/03/2017 2:09:52 PM

Test Laboratory: Celltech Labs

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 825; Calibrated: 25/04/2012 Program Name: 2450MHz Body SPC

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.97 mho/m; ϵ_r = 49.2; ρ = 1000 kg/m³ Phantom section: Flat Section

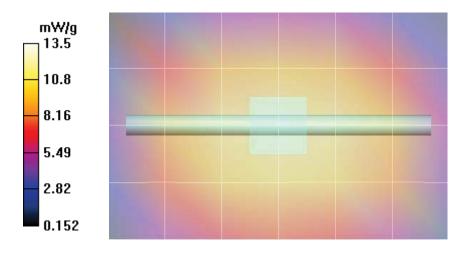
DASY4 Configuration:

- Probe: EX3DV4 - SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016

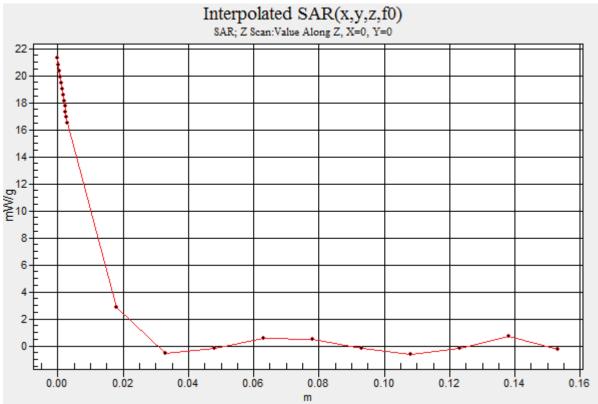
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016

- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx


- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145

2450MHz Body Dipole d=10mm P=250mW TS=[11.7][13.0][14.3]/Area Scan (5x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.5 mW/g


2450MHz Body Dipole d=10mm P=250mW TS=[11.7][13.0][14.3]/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 89.2 V/m; Power Drift = 0.136 dB Peak SAR (extrapolated) = 26.0 W/kg SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.8 mW/g

Maximum value of SAR (measured) = 14.2 mW/g

APPENDIX B – MEASUREMENT PLOTS OF MAXIMUMUM MEASURED SAR

Plot B1

Date/Time: 28/02/2017 1:46:43 PM

Test Laboratory: Celltech Labs

DUT: Fenix 5/5s; Type: Sports Watch; Serial: Program Name: 2450MHz Body

Communication System: CW; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2412 MHz; σ = 2.04 mho/m; ϵ_r = 52.1; ρ = 1000 kg/m³ Phantom section: Flat Section

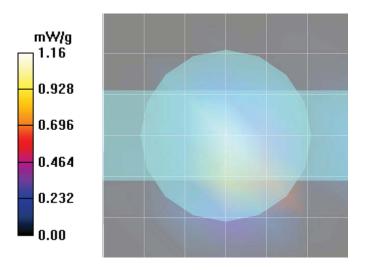
DASY4 Configuration:

- Probe: EX3DV4 - SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016

- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx


- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145

B1 Fenix 5s 2412 MHz Body/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (measured) = 1.16 mW/g

B1 Fenix 5s 2412 MHz Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 25.6 V/m; Power Drift = -1.86 dB Peak SAR (extrapolated) = 3.33 W/kg **SAR(1 g) = 0.992 mW/g; SAR(10 g) = 0.273 mW/g**

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (measured) = 1.43 mW/g

Plot B2

Date/Time: 28/02/2017 3:31:46 PM

Test Laboratory: Celltech Labs

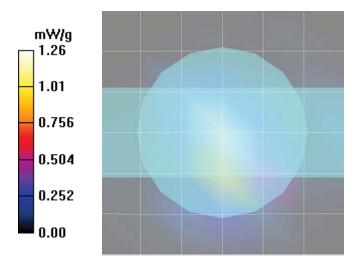
DUT: Fenix 5/5s; Type: Sports Watch; Serial: Program Name: 2450MHz Body

Communication System: CW; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 2.08 mho/m; ϵ_r = 51.8; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145


B2 Fenix 5s 2437 MHz Body/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (measured) = 1.26 mW/g

B2 Fenix 5s 2437 MHz Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 26.3 V/m; Power Drift = -1.59 dB Peak SAR (extrapolated) = 3.56 W/kg **SAR(1 g) = 1.04 mW/g; SAR(10 g) = 0.289 mW/g**

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 1.43 mW/g

Plot B3

Date/Time: 01/03/2017 10:45:23 AM

Test Laboratory: Celltech Labs

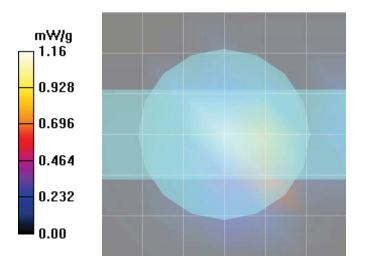
DUT: Fenix 5/5s; Type: Sports Watch; Serial: Program Name: 2450MHz Body

Communication System: CW; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; σ = 2.11 mho/m; ϵ_r = 51.8; ρ = 1000 kg/m³ Phantom section: Flat Section

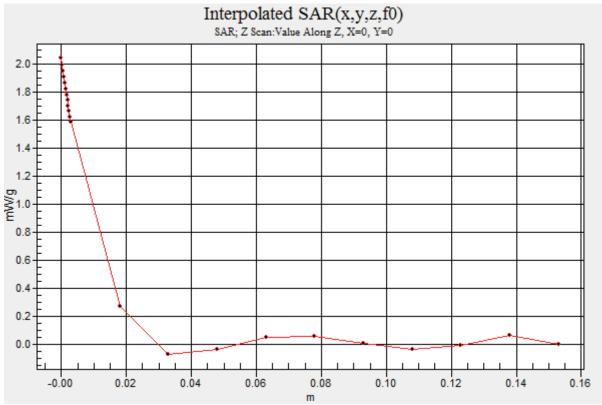
DASY4 Configuration:

- Probe: EX3DV4 - SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145


B3 Fenix 5s 2462 MHz Body/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (measured) = 1.16 mW/g


B3 Fenix 5s 2462 MHz Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 27.3 V/m; Power Drift = -1.05 dB Peak SAR (extrapolated) = 3.32 W/kg SAR(1 g) = 1.1 mW/g; SAR(10 g) = 0.325 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 1.58 mW/g

B4

Date/Time: 16/03/2017 12:22:11 PM

Test Laboratory: Celltech Labs

DUT: Fenix 5/5s; Type: Sports Watch; Program Name: 2450MHz Body

Communication System: CW; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2412 MHz; σ = 1.86 mho/m; ϵ_r = 49.2; ρ = 1000 kg/m³ Phantom section: Flat Section

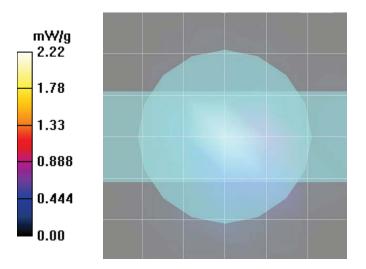
DASY4 Configuration:

- Probe: EX3DV4 - SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016

- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx


- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145

B4 Fenix 5S 2412 MHz Body, metal band/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (measured) = 2.22 mW/g

B4 Fenix 5S 2412 MHz Body,metal band/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 37.6 V/m; Power Drift = -0.820 dB Peak SAR (extrapolated) = 4.07 W/kg **SAR(1 g) = 1.36 mW/g; SAR(10 g) = 0.372 mW/g**

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (measured) = 1.95 mW/g

B5

Date/Time: 16/03/2017 8:49:23 AM

Test Laboratory: Celltech Labs

DUT: Fenix 5/5s; Type: Sports Watch; Program Name: 2450MHz Body

Communication System: CW; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 1.95 mho/m; ϵ_r = 49.1; ρ = 1000 kg/m³ Phantom section: Flat Section

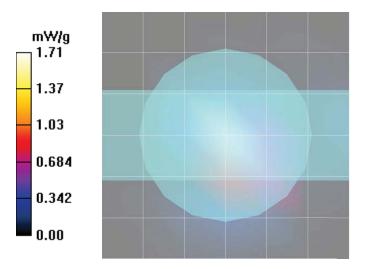
DASY4 Configuration:

- Probe: EX3DV4 - SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016

- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx


- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145

B5 Fenix 5S 2437 MHz Body, metal band/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (measured) = 1.71 mW/g

B5 Fenix 5S 2437 MHz Body,metal band/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 32.2 V/m; Power Drift = -0.783 dB Peak SAR (extrapolated) = 4.60 W/kg **SAR(1 g) = 1.39 mW/g; SAR(10 g) = 0.380 mW/g**

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (measured) = 1.98 mW/g

B6

Date/Time: 16/03/2017 2:43:09 PM

Test Laboratory: Celltech Labs

DUT: Fenix 5/5s; Type: Sports Watch; Program Name: 2450MHz Body

Communication System: CW; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; σ = 1.96 mho/m; ϵ_r = 49.3; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

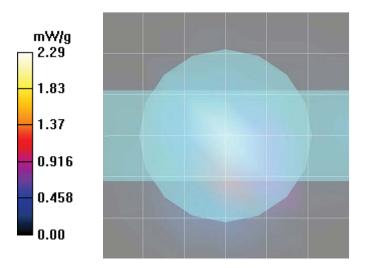
- Probe: EX3DV4 - SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)

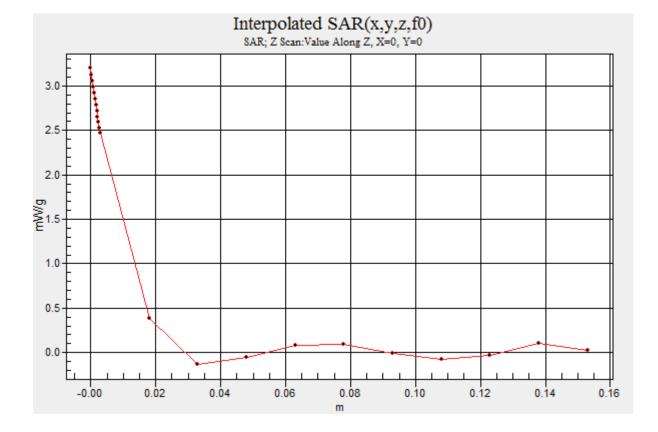
- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016

- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145


B6 Fenix 5S 2462 MHz Body, metal band 2/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (measured) = 2.29 mW/g


B6 Fenix 5S 2462 MHz Body,metal band 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 38.4 V/m; Power Drift = -1.72 dB Peak SAR (extrapolated) = 5.59 W/kg

SAR(1 g) = 1.67 mW/g; SAR(10 g) = 0.457 mW/g

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (measured) = 2.34 mW/g

