

Test Report Serial Number: Test Report Date: Project Number: 45461376-R1.1 17 March 2017 1367

SAR Test Report - New Certification

Applicant:

Garmin International Inc. 1200 East 151 St. Olathe, KS, 66062 USA

FCC ID:

IPH-A3119-00

Product Model Number / HVIN

012-03119-00

Maximum Reported 10g SAR						
FCC	Hand	0.078				
ISED	Hand	0.083	W/kg			
General	Pop. Limit:	4.00				

ISED Registration Number

1792A-A311900

Product Name / PMN

Fenix 5

In Accordance With:

FCC 47 CFR §2.1093

Radiofrequency Radiation Exposure Evaluation: Portable Devices

IC RSS-102 Issue 5

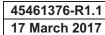
Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

Approved By:

Ben Hewson, President

Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8

Industry Canada



Test Lab Certificate: 2470.01

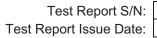
IC Registration 3874A-1

FCC Registration: 714830

This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc.

Table of Contents

1.0 DOCUMENT CONTROL	3
2.0 NORMATIVE REFERENCES	3
3.0 CLIENT AND DEVICE INFORMATION	4
4.0 STATEMENT OF COMPLIANCE	5
5.0 SAR MEASUREMENT SYSTEM	6
6.0 RF CONDUCTED POWER MEASUREMENT	7
7.0 NUMBER OF TEST CHANNELS (N _C)	7
8.0 ACCESSORIES EVALUATED	7
9.0 SAR MEASUREMENT SUMMARY	8
10.0 SCALING OF MAXIMUM MEASURE SAR	9
11.0 SAR EXPOSURE LIMITS	11
12.0 DETAILS OF SAR EVALUATION	12
13.0 MEASUREMENT UNCERTAINTIES	13
14.0 FLUID DIELECTRIC PARAMETERS	15
15.0 SYSTEM VERIFICATION TEST RESULTS	
16.0 MEASUREMENT SYSTEM SPECIFICATIONS	20
17.0 TEST EQUIPMENT LIST	
18.0 FLUID COMPOSITION	23
APPENDIX A – SYSTEM VERIFICATION PLOTS	24
APPENDIX B – MEASUREMENT PLOTS OF MAXIMUMUM MEASURED SAR	28
APPENDIX C - SETUP PHOTOS	36
APPENDIX D – DUT AND ACCESSORY PHOTOS	37
APPENDIX E – PROBE CALIBRATION	41
APPENDIX F – DIPOLE CALIBRATION	42
APPENDIX G - PHANTOM	43


45461376-R1.1 17 March 2017

1.0 DOCUMENT CONTROL

Tested By:	Jasmeet Gill			
Prepared By:	Jasmeet Gill			
Reviewed By:	Ben Hewson			
Issue Number	Description	n	Ву	Issue Date
1.0	Initial Releas	se	Jasmeet Gill	08 March 2017
1.1	Metal Band Evaluati	on Added	Jasmeet Gill	17 March 2017

2.0 NORMATIVE REFERENCES

	Normative References*
ANSI / ISO 17025:2005	General Requirements for competence of testing and calibration laboratories
FCC CFR Title 47 Part 2	Code of Federal Regulations
Title 47:	Telecommunication
Part 2.1093:	Radiofrequency Radiation Exposure Evaluation: Portable Devices
Health Canada	
Safety Code 6 (2015)	Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range from 3kHz to 300GHz
Industry Canada Spectrum	Management & Telecommunications Policy
RSS-102 Issue 5:	Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)
IEEE International Committe	ee on Electromagnetic Safety
IEEE 1528-2013:	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
IEC International Standard	
IEC 62209-2 2010	Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 2
FCC KDB	
KDB 865664 D01v01r04	SAR Measurement Requirements for 100MHz to 6GHz
FCC KDB	
KDB 447498 D01v06	Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies
FCC KDB	
KDB 248227 D01v02r02	SAR Test Guidane for IEEE 802.11 (WiFI) Transmitters
* When the issue number	or issue date is omitted, the latest version is assumed.

3.0 CLIENT AND DEVICE INFORMATION

Client Information					
Applicant Name	Garmin International Inc.				
	1200 East 151 St				
Applicant Address	Olathe, KS, 66062				
	USA				
	DUT Information				
Device Identifier(s):	FCC ID: IPH-A3119-00				
Device identifier(s).	ISED: 1792A-A311900				
Type of Equipment:	Wireless Wrist-Worn GPS Device				
Device Model(s) / HVIN:	Fenix 5				
Device Marketing Name / PMN:	Fenix 5				
Test Sample Serial No.:	T/A Sample - Identical Prototype				
Transmit Frequency Range:	BLE: 2402-2480 MHz				
Transmit Frequency Range.	WiFi: 2412-2462 MHz				
Number of Channels:	n/a				
Manuf. Max. Rated Output Power:	BLE/ANT: 4dBm, WiFi: 23.5dBm				
Modulation:	DSSS, OFDM, GFSK, CW				
Duty Cycle:	100%				
DUT Power Source:	5V USB, Internal Li-ion battery				
Deviation(s) from standard/procedure:	None				
Modification of DUT:	None				

45461376-R1.1 17 March 2017

4.0 STATEMENT OF COMPLIANCE

This measureme	ent report demonstrates that the:
Applicant:	Model / HVIN:
Garmin International Inc.	012-03119-00
complies with the SAR (Specific Absorption	n Rate) RF exposure requirements and limits specified in the following:
Standard(s):	Measurement Procedure(s):
FCC 47 CFR §2.1093	FCC KDB 865664, FCC KDB 447498, FCC KDB 643646
Health Canada's Safety Code 6	Industry Canada RSS-102 Issue 5
	IEEE Standard 1528-2013, IEC 62209-2
Use Group: Occupational / Controlled	X General Population / Uncontrolled
Reason for Issue:	
New Certification	

A description of the device, operating configuration, detailed summary of the test results, methodology and procedures used during this evaluation, equipment used and the various provisions of the rules are included within this test report.

5.0 SAR MEASUREMENT SYSTEM

SAR Measurement System

Celltech Labs Inc. SAR measurement facility employs a Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, a robot controller, a computer, a near-field probe, a probe alignment sensor, an Elliptical Planar Phantom (ELI) phantom and a specific anthropomorphic mannequin (SAM) phantom for Head and/or Body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller and a teach pendant (Joystick) to control the robot's servo motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical form the DAE to digital electronic signal and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter, a command decoder and a control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot utilizes a controller with built in VME-bus computer.

DASY 4 SAR System with SAM Phantom

DASY 4 Measurement Controller

6.0 RF CONDUCTED POWER MEASUREMENT

Table 6.0							
Conducted Power Measurements							
		Measured	Rated	Rated		SAR Test	
Channel	Frequency	Power	Power	Power	Delta	Channel	
	(MHz)	(dBm)	(dBm)	(W)	(dBm)	(Y/N)	
1	2412	23.08	23.50	0.22	-0.42	Υ	
1 6	2412 2437			0.22 0.21	-0.42 -0.67	Y Y	
1 6 11	-	22.83				Y Y Y	

The Conducted Power of the DUT was measured at the antenna port, the unit was tested at 100% duty cycle transmit.

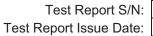
7.0 NUMBER OF TEST CHANNELS (N_c)

As per FCC KDB 248277, the required 802.11 test channels are Ch1, Ch6 and Ch 11

NOTE: These transmitters are not capable of simultaneous transmission. The 802.15 is rated at 4dBm and is below the threshold for standalone SAR evaluation.

8.0 ACCESSORIES EVALUATED

Table 8.0										
	Manufacturer's Accessory List									
Test Repor ID Numbe	Par Number	Description	UDC Group ⁽¹⁾	Type II Group ⁽²⁾	SAR ⁽³⁾ Evaluated	SAR ⁽⁴⁾ Tested				
T1	320-01D69-00	Ca-Assy. Universal Charger	n/a	n/a	N	N				
B1	013-00649-00	Metal Watch Band,SUS,Kestrel	n/a	n/a	Υ	Υ				


Test Report S/N: Test Report Issue Date: 17 March 2017

45461376-R1.1

9.0 SAR MEASUREMENT SUMMARY

Table 9.0													
	2450 Band Wifi - Fenix 5 BODY SAR Evaluation Results (FCC/IC)												
	Mo	odel								DUT		Measured SAR	
Date	IVIC	uei	Diet#	Freq	Accessories		Spacing		10g (W/kg)	SAR Drift			
Date	M/N	Tuno	Plot #				DUT	ANT	Duty Cycle				
	IVI/IN	Туре		(MHz)	Body	Audio	(mm)	(mm)	100%	(dB)			
28 Feb 2017	5	Fenix	B1	2412	n/a	n/a	0	0	0.038	-0.414			
28 Feb 2017	5	Fenix	B2	2437	n/a	n/a	0	0	0.050	-0.297			
01 Mar 2017	5	Fenix	B3	2462	n/a	n/a	0	0	0.063	-0.293			
	SAR LIMIT(S)		Body		Spatial Peak		RF Exposure Category						
FCC 47 CI	CFR 2.1093 Health Canada Safety Code 6		4.0	W/kg 10g average General Popula			on						

Table 9.1										
	2450 Band Wifi- Fenix 5 w/ Metal Band BODY SAR Evaluation Results (FCC/IC)									
	Ma	adal						UT	Measured SAR	
Date	Model		Plot #	Freq	Accessories		Spacing		10g (W/kg)	SAR Drift
Date	M/N	Type	PIOL#			DUT	ANT	Duty Cycle		
	IVI/IN	Туре		(MHz)	Body	Audio	(mm)	(mm)	100%	(dB)
16 Mar 2017	5	Fenix	B4	2412	B1	n/a	0	0	0.034	-0.190
16 Mar 2017	5	Fenix	B5	2437	B1	n/a	0	0	0.051	-0.080
16 Mar 2017	5	Fenix	В6	2462	B1	n/a	0	0	0.052	-0.251
	SAR LIMIT(S)			Body		Spatial Peak		RF Exposure Category		
FCC 47 CF	FCC 47 CFR 2.1093 Health Canada Safety Code 6		4.0 \	N/kg	10g average		General Population			

10.0 SCALING OF MAXIMUM MEASURE SAR

Table 10.0	0										
			Scali	ng of Ma	aximum M	easured	SAR (1)				
		Freq	Meas Fluid D	sured eviation			Measured onducted Pov	ver	Dı	sured	Measured SAR (10g)
Plot ID	Configuration	(MHz)	Permittivity	Cond	luctivity		(dBm)		(d	B)	(W/kg)
B3	Body	2462	-1.83%	7	51%		22.6		0.1	293	0.063
БЗ	Воду	2402	-1.03 //	7.	Step 1		22.0		-0.	293	0.003
				Fluid	d Sensitivity Adju	ustment			_		
		Scale	е				Measured				Step 1 Adjusted
		Facto	or				SAR				SAR (10g)
Plot ID		(%)		Х			(W/kg)			=	(W/kg)
		1.000		Х						=	0.000
B3		2.220	%	Х	Cton 2		0.063			=	0.064
				Manufa	Step 2 cturer's Tune-Up	Toloranco					
	Measu	red	Rai	ted	cturers rune-of) Tolerance					Step 2 Adjusted
	Conducted		Pov			Delta		Step 1 Adjus	sted SAR		SAR (10g)
Plot ID	(dBm	1)	(dE	Bm)		(dB)	+	(W/kg	g)	=	(W/kg)
			·				+	0.00	0	=	0.000
В3	22.6		23	3.5		-0.86	+	0.06	4	=	0.078
					Step 3						
				nultaneous Tr	ransmission - B		WiFi				1
	Rated Output Power (Pmax)	Freq	Separation Distance			nated AR		Step 2 Adjus	sted SAR		Step 3 Adjusted SAR (10g)
Plot ID	(mW)	(MHz)	(mm)		(W	/kg)	+	(W/kg	g)	=	(W/kg)
					0.0	000	+	0.00	0	=	0.000
В3	4	2480	5			000	+	0.07	8	=	0.078
					Step 4						
	1				Drift Adjustme	nt					_
		Measu Drift				Ste	p 3 Adjusted	SAR			Step 4 Adjusted SAR (10g)
Plot ID		(dB)		+			(W/kg)			=	(W/kg)
				+			0.000			=	0.000
В3		-0.293 +					0.078			=	0.083
					Step 5 Reported SAF	3					
			FCC		Reported OAI				IC		
	From Steps 1 through 3					From Steps 1 through 4					
Plot ID			10g SAR (W/kg)						R (W/kg)		
			0.000						000		
B3			0.078					0.	083		

45461376-R1.1 17 March 2017

NOTES to Table 10.0

(1) Scaling of the Maximum Measured SAR is based on the highest, 100% duty cycle, Face, Body and/or Head SAR measured of ALL test channels, configurations and accessories used during THIS evaluation. The Measured Fluid Deviation parameters apply only to deviation of the tissue equivalent fluids used at the frequencies which produced the highest measured SAR. The Measured Conducted Power applies to the Conducted Power measured at the frequencies producing the highest Face and Body SAR. The Measured Drift is the SAR drift associated with that specific SAR measurement. The Reported SAR is the accumulation of all SAR Adjustments from the applicable Steps 1 through 4. The Plot ID is for indentification of the SAR Measurement Plots in Annex A of this report.

NOTE: Some of the scaling factors in Steps 1 through 4 may not apply and are identified by light gray text.

Step 1

Per IEC-62209-1 and FCC KDB 865664. Scaling required only when Measured Fluid Deviation is greater than 5%. If the Measured Fluid Deviation is greater than 5%, Table 10.1 will be shown and will indicate the SAR scaling factor in percent (%). SAR is MULTIPLIED by this scaling factor only when the scaling factor is positive (+).

Step 2

Per KDB 447498. Scaling required only when the difference (Delta) between the Measured Conducted Power and the Manufacturer's Rated Conducted Power is (-) Negative. The absolute value of Delta is ADDED to the SAR.

Step 3

Per KDB 447498 4.3.2. The SAR, either measured or calculated, of ANY and ALL simultaneous transmitters must be added together and includes all contributors.

Step 4

Per IEC 62209-1. Scaling required only when Measured Drift is (-) Negative. The absolute value of Measured Drift is added to Reported or Simultaneous Reported SAR.

Step 5

The Reported SAR is the Maximum Final Adjusted Cumulative SAR from the applicable Steps 1 through 4 and are reported on Page 1 of this report.

Table 10.1

Fluid Sensitivity Calculation (10g)						
Delta SAR = Ce *	Delta Er + C(sigma)*Delta Sigma					
Frequency (GHz)	Plot ID					
2.462	В3					
Ce	-0.1595					
Сσ	0.2569					
ΔΕ	-1.83%					
Δσ	7.51%					
ΔSAR	2.22%					
Scale Factor Is Positive. Scaling Required						

I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.

Jasmeet Gill Test Lab Engineer Celltech Labs Inc.

17 March 2017

Date

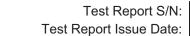
ort S/N: 45461376-R1.1 e Date: 17 March 2017

11.0 SAR EXPOSURE LIMITS

Table 11.0										
SAR RF EXPOSURE LIMITS										
FCC 47 CFR§2.1093	Health Canada Safety Code 6	General Population /	Occupational /							
10047 GFR92.1093	Tieartii Cariada Safety Code 0	Uncontrolled Exposure ⁽⁴⁾	Controlled Exposure ⁽⁵⁾							
Spa	tial Average ⁽¹⁾	0.08 W/kg	0.4 W/kg							
(averaged	over the whole body)	0.00 W/kg	0. 4 W/Ng							
Sp	oatial Peak ⁽²⁾	1.6 W/kg	8.0 W/kg							
(Head and Trunk av	eraged over any 1 g of tissue)	1.0 W/kg	0.0 W/kg							
Sp	oatial Peak ⁽³⁾	4.0 W/kg	20.0 W/kg							
(Hands/Wrists/Fee	t/Ankles averaged over 10 g)	4.0 W/kg	20.0 vv/kg							

- (1) The Spatial Average value of the SAR averaged over the whole body.
- (2) The Spatial Peak value of the SAR averaged over any 1 gram of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.
- (3) The Spatial Peak value of the SAR averaged over any 10 grams of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.
- (4) Uncontrolled environments are defined as locations where there is potential exposure to individuals who have no knowledge or control of their potential exposure.
- (5) Controlled environments are defined as locations where there is potential exposure to individuals who have knowledge of their potential exposure and can exercise control over their exposure.

45461376-R1.1 17 March 2017

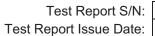

12.0 DETAILS OF SAR EVALUATION

	EVALUATION DETAILS									
1	The DUT was evaluated for SAR in accordance with the procedures described in IEEE 1528, FCC KDB 865646 and RSS-102.									
2	The DUT was evaluated for SAR at the maximum conducted output power level, preset by the manufacturer. The device was capable of transmitting in Continuous Wave (CW) and was testing in an unmodulated continuous transmit mode at 100% duty cycle.									
3	Each SAR evaluations were performed while plugged into a USB Charger									
4	The fluid temperature remained within +/-2°C from the time of the fluid dielectric parameter measurement to the completion of the SAR evaluation.									
5	The fluid temperature remained within +/-0.5°C throughout the test day.									

SCAN PROCEDURE	
Maximum distance from the closest measurement point to phantom surface.	4 ± 1mm
Maximum probe angle normal to phantom surface.	5° ± 1°
Area Scan Spatial Resolution ΔX, ΔY	12mm
Zoom Scan Spatial Resolution ΔX, ΔY	5mm
Zoom Scan Spatial Resolution ΔZ	5mm
Zoom Scan Volume X, Y, Z	30mm x 30mm x 30mm
Phantom	ELI
Fluid Depth	150mm

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1 gram and 10 gram peak spatial-averge SAR


13.0 MEASUREMENT UNCERTAINTIES

Ta	L	А	2	

NTY BUD	CET EOD D	EVIOE EVA						
(GETTOKD	EVICE EVA	LUATION (IE	EE 15	28-20	13 Table 9)		
IEEE 1528 Section	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Uncertainty Value ±% (1g)	Uncertainty Value ±% (10g)	V _i or V _{eff}
E.2.1	6.6	Normal	1	1	1	6.60	6.60	00
E.2.2	4.7	Rectangular	1.732050808	0.7	0.7	1.9	1.9	00
E.2.2	9.6	Rectangular	1.732050808	0.7	0.7	3.9	3.9	∞
E.2.3	8.3	Rectangular	1.732050808	1	1	4.8	4.8	∞
E.2.4	4.7	Rectangular	1.732050808	1	1	2.7	2.7	∞
E.2.4	1.0	Rectangular	1.732050808	1	1	0.6	0.6	∞
E.2.5	4.0	Rectangular	1.732050808	1	1	2.3	2.3	∞
E.2.6	1.0	Normal	1	1	1	1.0	1.0	∞
E.2.7	0.8	Rectangular	1.732050808	1	1	0.5	0.5	∞
E.2.8	1.4	Rectangular	1.732050808	1	1	0.8	0.8	∞
E.6.1	0.0	Rectangular	1.732050808	1	1	0.0	0.0	00
E.6.1	0.0	Rectangular	1.732050808	1	1	0.0	0.0	∞
E.6.2	0.4	Rectangular	1.732050808	1	1	0.2	0.2	∞
E.6.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	∞
E.5	3.9	Rectangular	1.732050808	1	1	2.3	2.3	∞
E.4.2	0.3	Normal	1	1	1	0.3	0.3	5
E.4.1	3.6	Normal	1	1	1	3.6	3.6	∞
E.2.9	0.0	Rectangular	1.732050808	1	1	0.0	0.0	∞
E.6.5	2.0	Rectangular	1.732050808	1	1	1.2	1.2	∞
E.3.1	4.0	Rectangular	1.732050808	1	1	2.3	2.3	∞
E.3.2	1.2	Normal	1	1	0.84	1.2	1.0	∞
E.3.3	6.8	Normal	1	0.78	0.71	5.3	4.8	10
E.3.3	5.3	Normal	1	0.23	0.26	1.2	1.4	10
E.3.2	0.1	Rectangular	1.732050808	0.78	0.71	0.1	0.0	∞
E.3.2	0.0	Rectangular	1.732050808	0.23	0.26	0.0	0.0	∞
1 ⁽¹⁾							V _{eff} =	873.2
		RSS				12.59	12.40	
ence Interva	I)	k=2				25.18	24.80	
	E.2.1 E.2.2 E.2.2 E.2.3 E.2.4 E.2.4 E.2.5 E.2.6 E.2.7 E.2.8 E.6.1 E.6.1 E.6.2 E.6.3 E.6.1 E.6.2 E.6.3 E.5 E.4.2 E.4.1 E.2.9 E.6.5 E.3.1 E.3.2 E.3.3 E.3.3 E.3.2 E.3.2	1528 Section Value ±%	E.2.1 6.6 Normal E.2.2 4.7 Rectangular E.2.2 9.6 Rectangular E.2.3 8.3 Rectangular E.2.4 4.7 Rectangular E.2.5 4.0 Rectangular E.2.6 1.0 Normal E.2.7 0.8 Rectangular E.2.8 1.4 Rectangular E.6.1 0.0 Rectangular E.6.1 0.0 Rectangular E.6.2 0.4 Rectangular E.6.3 2.9 Rectangular E.6.3 2.9 Rectangular E.4.1 3.6 Normal E.2.9 0.0 Rectangular E.3.1 4.0 Rectangular E.3.2 1.2 Normal E.3.3 6.8 Normal E.3.3 5.3 Normal E.3.2 0.1 Rectangular E.3.1 Rectangular E.3.2 0.1 Rectangular E.3.1 Rectangular E.3.2 0.1 Rectangular E.3.3 Rectangular E.3.4 Rectangular E.3.5 Rectangular E.3.6 Rectangular E.3.7 Rectangular E.3.8 Rectangular E.3.9 Rectangular E.3.1 Rectangular E.3.2 Rectangular E.3.3 Rectangular E.3.4 Rectangular E.3.5 Rectangular E.3.6 Rectangular E.3.7 Rectangular E.3.8 Rectangular E.3.9 Rectangular E.3.9 Rectangular E.3.1 Rectangular E.3.2 Rectangular E.3.3 Rectangular E.3.4 Rectangular E.3.5 Rectangular E.3.6 Rectangular E.3.7 Rectangular E.3.8 Rectangular Rectangular	Section Section Divisor Divi	Section Section Probability Divisor 1g 1g	1528	E.2.1 6.6 Normal 1 1 1 6.60 E.2.2 4.7 Rectangular 1.732050808 0.7 0.7 1.9 E.2.3 8.3 Rectangular 1.732050808 1 1 4.8 E.2.4 4.7 Rectangular 1.732050808 1 1 4.8 E.2.5 4.0 Rectangular 1.732050808 1 1 2.7 E.2.6 1.0 Normal 1 1 1 1.0 E.2.7 0.8 Rectangular 1.732050808 1 1 1.0 E.2.8 1.4 Rectangular 1.732050808 1 1 0.5 E.2.8 1.4 Rectangular 1.732050808 1 1 0.5 E.2.8 1.4 Rectangular 1.732050808 1 1 0.8 E.6.1 0.0 Rectangular 1.732050808 1 1 0.8 E.6.1 0.0 Rectangular 1.732050808 1 1 0.0 E.6.2 0.4 Rectangular 1.732050808 1 1 0.0 E.6.3 2.9 Rectangular 1.732050808 1 1 0.2 E.5 3.9 Rectangular 1.732050808 1 1 0.2 E.5 3.9 Rectangular 1.732050808 1 1 0.3 E.4.1 3.6 Normal 1 1 1 3.6 E.2.9 0.0 Rectangular 1.732050808 1 1 0.0 E.6.5 2.0 Rectangular 1.732050808 1 1 0.0 E.6.5 2.0 Rectangular 1.732050808 1 1 0.0 E.3.1 4.0 Rectangular 1.732050808 1 1 0.8 E.3.2 1.2 Normal 1 1 0.84 1.2 E.3.3 6.8 Normal 1 0.78 0.71 5.3 E.3.2 0.1 Rectangular 1.732050808 0.78 0.71 0.1 E.3.2 0.0 Rectangular 1.732050808 0.78 0.71 0.1 E.3.2 0.0 Rectangular 1.732050808 0.23 0.26 0.0 101	1528

⁽¹⁾ The Effective Degrees of Freedom is > 30 therefore a coverage factor of k=2 represents an approximate confidence level of 95%.

^{*} Provided by SPEAG

Table 13.1	Table	13.1
-------------------	-------	------

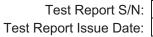
Calculation of the Degrees and Effective Degrees of Freedom

$$v_{i} = n - 1$$

$$v_{eff} = \frac{u_{c}^{4}}{m}$$

$$\sum_{i=1}^{\infty} \frac{c_{i}^{4}u_{i}^{4}}{v_{i}}$$

45461376-R1.1 17 March 2017


14.0 FLUID DIELECTRIC PARAMETERS

Aprel Laboratory Test Result for UIM Dielectric Parameter Tue 28/Feb/2017 10:36:20

Freq Frequency(GHz) FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma

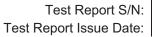
Test_e Epsilon of UIM
Test_s Sigma of UIM

******	******	*****	******	*******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
2.3500	52.83	1.85	52.36	1.96
2.3600	52.82	1.86	52.07	1.95
2.3700	52.81	1.87	52.06	1.98
2.3800	52.79	1.88	51.97	2.00
2.3900	52.78	1.89	52.04	2.01
2.4000	52.77	1.90	51.92	2.01
2.4100	52.75	1.91	52.11	2.04
2.4200	52.74	1.92	52.00	2.05
2.4300	52.73	1.93	51.75	2.07
2.4400	52.71	1.94	51.77	2.09
2.4500	52.70	1.95	51.92	2.12
2.4600	52.69	1.96	51.74	2.10
2.4700	52.67	1.98	51.97	2.13
2.4800	52.66	1.99	51.83	2.12
2.4900	52.65	2.01	51.54	2.17
2.5000	52.64	2.02	51.64	2.18
2.5100	52.62	2.04	51.68	2.18
2.5200	52.61	2.05	51.59	2.19
2.5300	52.60	2.06	51.62	2.20
2.5400	52.59	2.08	51.37	2.23
2.5500	52.57	2.09	51.59	2.24
	Freq 2.3500 2.3600 2.3700 2.3800 2.3900 2.4000 2.4100 2.4200 2.4300 2.4400 2.4500 2.4600 2.4700 2.4800 2.4900 2.5000 2.5100 2.5200 2.5300 2.5400	Freq	Freq FCC_eBFCC_sE 2.3500 52.83 1.85 2.3600 52.82 1.86 2.3700 52.81 1.87 2.3800 52.79 1.88 2.3900 52.78 1.89 2.4000 52.77 1.90 2.4100 52.75 1.91 2.4200 52.74 1.92 2.4300 52.73 1.93 2.4400 52.71 1.94 2.4500 52.70 1.95 2.4600 52.69 1.96 2.4700 52.67 1.98 2.4800 52.66 1.99 2.4900 52.65 2.01 2.5000 52.64 2.02 2.5100 52.62 2.04 2.5200 52.61 2.05 2.5400 52.59 2.08	2.3500 52.83 1.85 52.36 2.3600 52.82 1.86 52.07 2.3700 52.81 1.87 52.06 2.3800 52.79 1.88 51.97 2.3900 52.78 1.89 52.04 2.4000 52.77 1.90 51.92 2.4100 52.75 1.91 52.11 2.4200 52.74 1.92 52.00 2.4300 52.73 1.93 51.75 2.4400 52.71 1.94 51.77 2.4500 52.70 1.95 51.92 2.4600 52.69 1.96 51.74 2.4700 52.67 1.98 51.97 2.4800 52.66 1.99 51.83 2.4900 52.65 2.01 51.54 2.5000 52.64 2.02 51.64 2.5100 52.62 2.04 51.68 2.5200 52.61 2.05 51.59 2.5400 5

Table 14.0										
			FI UID	DIF	EL ECT	TRIC P	ΔR	AMETER	S	
							-	, time i eix		
Date:	28 Feb Fluid 2017 Temp:			23	Frequency:		2450MHz	Tissue:	Body	
Freq (MHz))	Te	est_e	T	est_s	Target_	_e	Target_s	Deviation Permittivity	Deviation Conductivity
2350.0000		52	.3600	1.	.9600	52.830	0	1.85	-0.89%	5.95%
2360.0000		52	.0700	1.	.9500	52.820	0	1.86	-1.42%	4.84%
2370.0000		52	.0600	1.	.9800	52.810	0	1.87	-1.42%	5.88%
2380.0000		51	.9700	2	.0000	52.790	0	1.88	-1.55%	6.38%
2390.0000		52	.0400	2	.0100	52.780	0	1.89	-1.40%	6.35%
2400.0000		51	.9200	2	.0100	52.770	0	1.90	-1.61%	5.79%
2410.0000		52	.1100	2	.0400	52.750	0	1.91	-1.21%	6.81%
2412.0000	*	52	52.0880		.0420	52.748	0	1.91	-1.25%	6.80%
2420.0000		52	52.0000		.0500	52.7400 1		1.92	-1.40%	6.77%
2430.0000		51	51.7500		.0700	52.730	0	1.93	-1.86%	7.25%
2437.0000	*	51	.7640	2	.0840	52.716	0	1.94	-1.81%	7.59%
2440.0000		51	.7700	2	.0900	52.710	0	1.94	-1.78%	7.73%
2450.0000		51	.9200	2	.1200	52.700	0	1.95	-1.48%	8.72%
2460.0000		51	.7400	2	.1000	52.690	0	1.96	-1.80%	7.14%
2462.0000	*	51	.7860	2	.1060	52.686	0	1.96	-1.71%	7.23%
2470.0000		51	.9700	2	.1300	52.670	0	1.98	-1.33%	7.58%
2472.0000	*	51	.9420	2	.1280	52.668	0	1.98	-1.38%	7.37%
2480.0000		51	.8300	2	.1200	52.660	0	1.99	-1.58%	6.53%
2490.0000		51	.5400	2	.1700	52.650	0	2.01	-2.11%	7.96%
2500.0000		51	.6400	2	.1800	52.640	0	2.02	-1.90%	7.92%
2510.0000		51	.6800	2	.1800	52.620	0	2.04	-1.79%	6.86%
2520.0000		51	.5900	2	.1900	52.610	0	2.05	-1.94%	6.83%
2530.0000		51	.6200	2	.2000	52.600	0	2.06	-1.86%	6.80%
2540.0000		51	.3700	2	.2300	52.590	0	2.08	-2.32%	7.21%
2550.0000		51	.5900	2	.2400	52.570	0	2.09	-1.86%	7.18%

*Channel Frequency Tested

45461376-R1.1 17 March 2017


Aprel Laboratory
Test Result for UIM Dielectric Parameter
Wed 15/Mar/2017 15:26:44
Freq Frequency(GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

******	******	*****	******	******
Freq	FCC_eB	FCC_sE	B Test_e	Test_s
2.3500	52.83	1.85	49.24	1.82
2.3600	52.82	1.86	49.36	1.82
2.3700	52.81	1.87	49.22	1.83
2.3800	52.79	1.88	49.26	1.84
2.3900	52.78	1.89	49.24	1.84
2.4000	52.77	1.90	49.14	1.88
2.4100	52.75	1.91	49.19	1.85
2.4200	52.74	1.92	49.18	1.90
2.4300	52.73	1.93	49.14	1.94
2.4400	52.71	1.94	49.10	1.95
2.4500	52.70	1.95	49.24	1.97
2.4600	52.69	1.96	49.28	1.96
2.4700	52.67	1.98	49.17	1.95
2.4800	52.66	1.99	48.99	1.98
2.4900	52.65	2.01	48.67	2.00
2.5000	52.64	2.02	48.86	1.99
2.5100	52.62	2.04	48.72	2.00
2.5200	52.61	2.05	48.72	2.04
2.5300	52.60	2.06	48.85	2.07
2.5400	52.59	2.08	48.81	2.08
2.5500	52.57	2.09	48.97	2.10

Table 14.1																	
			FLUID	DIE	LEC ⁻	TRIC F	PAR	AMET	ER	S							
											<u>'</u>						
Date:	_	Mar 17		uid np:	23.2	.2 Frequency:		2450MHz		Tissue:	Body						
Freq (MHz))	Te	est_e	Te	st_s	Targe	t_e	Target	_s	Deviation Permittivity	Deviation Conductivity						
2350.0000		49	.2400	1.8	3200	52.83	00	1.85		-6.80%	-1.62%						
2360.0000		49	.3600	1.8	3200	52.82	00	1.86		-6.55%	-2.15%						
2370.0000		49	.2200	1.8	300	52.81	00	1.87		-6.80%	-2.14%						
2380.0000		49	.2600	1.8	3400	52.79	00	1.88		-6.69%	-2.13%						
2390.0000		49	.2400	1.8	3400	52.78	00	1.89		-6.71%	-2.65%						
2400.0000		49	.1400	1.8	800	52.77	00	1.90		-6.88%	-1.05%						
2410.0000		49	.1900	1.8	3500	52.75	00	1.91		-6.75%	-3.14%						
2412.0000	*	49	49.1880		8600	52.74	80	1.91		-6.75%	-2.72%						
2420.0000		49	49.1800		1.9000 52.7400 1.9		1.92		-6.75%	-1.04%							
2430.0000		49	49.1400		400	52.73	00	1.93		-6.81%	0.52%						
2437.0000	* 49.11		437.0000 *		49.1120		49.1120		49.1120		470	52.71	60	1.94		-6.84%	0.52%
2440.0000		49	.1000	1.9	500	52.71	00	1.94		-6.85%	0.52%						
2450.0000		49	.2400	1.9	700	52.70	00	1.95		-6.57%	1.03%						
2460.0000		49	.2800	1.9	600	52.69	00	1.96		-6.47%	0.00%						
2462.0000	*	49	.2580	1.9	580	52.68	60	1.96		-6.51%	-0.31%						
2470.0000		49	.1700	1.9	500	52.67	00	1.98		-6.65%	-1.52%						
2472.0000	*	49	.1340	1.9	560	52.66	80	1.98		-6.71%	-1.31%						
2480.0000		48	.9900	1.9	008	52.66	00	1.99		-6.97%	-0.50%						
2490.0000		48	.6700	2.0	0000	52.65	00	2.01		-7.56%	-0.50%						
2500.0000		48	.8600	1.9	900	52.64	00	2.02		-7.18%	-1.49%						
2510.0000		48	.7200	2.0	0000	52.62	00	2.04		-7.41%	-1.96%						
2520.0000		48	.7200	2.0	400	52.61	00	2.05		-7.39%	-0.49%						
2530.0000		48	.8500	2.0	700	52.60	00	2.06		-7.13%	0.49%						
2540.0000		48	18.8100 2		008	52.59	00	2.08		-7.19%	0.00%						
2550.0000		48	.9700	2.1	000	52.57	00	2.09		-6.85%	0.48%						

*Channel Frequency Tested

15.0 SYSTEM VERIFICATION TEST RESULTS

Table 15.0											
			-	Systen	n Verificat	ion Test R	esults				
			Fluid	Fluid	Ambient	Ambient	Forward	Dipole		Validation	
		Frequency	Туре	Temp	Temp	Humidity	Power	Spacing			
Date		(MHz)		°C	°C	(%)	(mW)	(mm)	P/N		S/N
28-Feb	-17	2450	Body	23	20	12%	250	10	D2450V2		825
		SA	AR			Fluid Parameters					
	1 gram			10 gram			Permittivity			Conductivity	,
Measured	Target	Deviation	Measured	Target	Deviation	Measured	Target	Deviation	Measured	Target	Deviation
12	13	-7.69%	5.57	6.05	-7.93%	51.92	52.7	-1.48%	2.12	1.95	8.72%

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

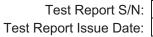

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value

Table 15.0												
				Syste	m Verificat	tion Test R	esults					
			Fluid	Fluid	Ambient	Ambient	Forward	Dipole		Validation		
		Frequency	Туре	Temp	Temp	Humidity	Power	Spacing	Source			
Date	1	(MHz)		°C	°C	(%)	(mW)	(mm)	P/N		S/N	
15-Mar	-17	2450	Body	23.2	23	21%	250	10	D2450V2		825	
		SA	١R					Fluid Pa	rameters			
	1 gram			10 gram		Permittivity Conductivity				/		
Measured	Target	Deviation	Measured	Target	Deviation	Measured	Target	Deviation	Measured	Target	Deviation	
12.6	13	-3.08%	5.8	6.05	-4.13%	49.2	52.7	-6.57%	1.97	1.95	1.03%	

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

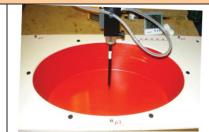
The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value

16.0 MEASUREMENT SYSTEM SPECIFICATIONS

Table 16.0					
Measurement System Specification					
Specifications					
Positioner	Stäubli Unimation Corp. Robot Model: RX60L				
Repeatability	0.02 mm				
No. of axis	6				
Data Acquisition Electronic (DAE) System					
Cell Controller					
Processor	AMD Athlon XP 2400+				
Clock Speed	2.0 GHz				
Operating System	Windows XP Professional				
<u>Data Converter</u>					
Features	Signal Amplifier, multiplexer, A/D converter, and control logic				
Software	Measurement Software: DASY4, V4.7 Build 80				
Software	Postprocessing Software: SEMCAD, V1.8 Build 186				
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock				
DASY4 Measurement Server					
Function	Real-time data evaluation for field measurements and surface detection				
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM				
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface				
E-Field Probe					
Model	EX3DV4				
Serial No.	3600				
Construction	Triangular core fiber optic detection system				
Frequency	10 MHz to 6 GHz				
Linearity	±0.2 dB (30 MHz to 3 GHz)				
<u>Phantom</u>					
Туре	ELI				
Shell Material	Fiberglass				
Thickness	2mm +/2mm				
Volume	> 30 Liter				

Table 16.1

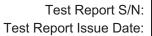
Measurement System Specification (Continued)


	Probe Specification	
	Symmetrical design with triangular core;	
Construction:	Built-in shielding against static charges	
	PEEK enclosure material (resistant to organic solvents, glycol)	
	In air from 10 MHz to 2.5 GHz	
Calibration:	In head simulating tissue at frequencies of 900 MHz	
	and 1.8 GHz (accuracy ± 8%)	
Frequency:	10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz)	
Directivity:	±0.2 dB in head tissue (rotation around probe axis)	
Directivity.	±0.4 dB in head tissue (rotation normal to probe axis)	
Dynamic Range:	5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB	
Surface Detect:	±0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces	
Dimensions:	Overall length: 330 mm; Tip length: 16 mm; Body diameter: 12 mm; Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm	
Application:	General dosimetry up to 3 GHz; Compliance tests of mobile phone	
	DI (0 10 0	

EX3DV4 E-Field Probe

Phantom Specification

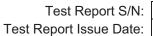
The ELI V5.0 phantom is an elliptical planar fiberglass shell phantom with a shell thickness of 2.0mm +/- .2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEEE 1528-2013, IEC 62209-1 and IEC 62209-2.


ELI Phantom

Device Positioner Specification

The DASY4 device positioner has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Positioner



17.0 TEST EQUIPMENT LIST

Та	L	A	7	
ı a	u	_	-	u

Test Equipment List					
DESCRIPTION	ASSET NO.	SERIAL NO.	DATE CALIBRATED	CALIBRATION INTERVAL	
Schmid & Partner DASY4 System	-	-	-	-	
-DASY4 Measurement Server	00158	1078	CNR	CNR	
-Robot	00046	599396-01	CNR	CNR	
-DAE4	00019	353	20 April 2016	Annual	
-EX3DV6 E-Field Probe	00213	3600	27 April 2016	Annual	
-CLA150 Validation Source	00251	4007	24 Jan 2016	Triennial	
-D835V2 Validation Dipole	00217	4D075	23 April 2015	Triennial	
-D450V3 Validation Dipole	00221	1068	21 April 2015	Triennial	
ELI Phantom	00247	-	CNR	CNR	
HP 85070C Dielectric Probe Kit	00033	none	CNR	CNR	
Gigatronics 8652A Power Meter	00110	1835801	29 Feb 2016	Triennial	
Gigatronics 80701A Power Sensor	00248	1833687	29 Feb 2016	Triennial	
HP 8753ET Network Analyzer	00134	US39170292	22 Oct 2014	Triennial	
Rohde & Schwarz SMR20 Signal Generator	00006	100104	8 May 2014	Triennial	
Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR	

CNR = Calibration Not Required

18.0 FLUID COMPOSITION

Table 18.0			2450MHz Body		
Tissue Simulating Liquid (TSL) Composition					
Component by Percent Weight					
Water	Glycol	Salt ⁽¹⁾	HEC ⁽²⁾	Bacteriacide ⁽³⁾	
69.98	30.0	0.02	0.0	0.0	

- (1) Non-lodinized
- (2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g
- (3) Dow Chemical Dowicil 75 Antimicrobial Perservative

APPENDIX A – SYSTEM VERIFICATION PLOTS

Date/Time: 28/02/2017 10:33:44 AM

Test Laboratory: Celltech Labs

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 825; Calibrated: 25/04/2012

Program Name: 2450MHz Body SPC

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

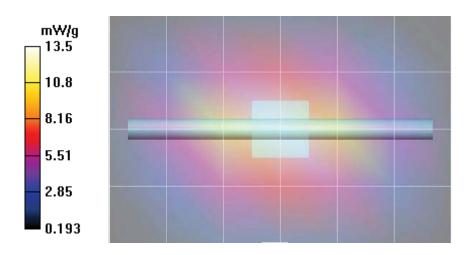
Medium parameters used: f = 2450 MHz; $\sigma = 2.12 \text{ mho/m}$; $\varepsilon_r = 51.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

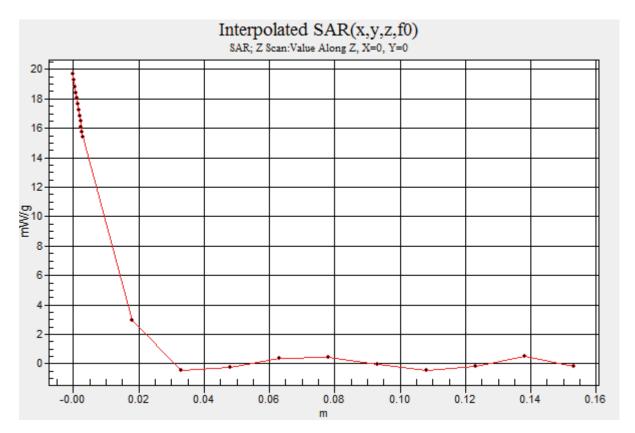
- Probe: EX3DV4 - SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145


2450MHz Body Dipole d=10mm P=250mW TS=[11.7][13.0][14.3]/Area Scan (5x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.5 mW/g

2450MHz Body Dipole d=10mm P=250mW TS=[11.7][13.0][14.3]/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 96.1 V/m; Power Drift = -0.091 dB


Peak SAR (extrapolated) = 24.8 W/kg

SAR(1 g) = 12 mW/g; SAR(10 g) = 5.57 mW/g Maximum value of SAR (measured) = 13.6 mW/g

45461376-R1.1 17 March 2017

Date/Time: 15/03/2017 2:09:52 PM

Test Laboratory: Celltech Labs

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 825; Calibrated: 25/04/2012

Program Name: 2450MHz Body SPC

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.97 \text{ mho/m}$; $\varepsilon_r = 49.2$; $\rho = 1000 \text{ kg/m}^3$

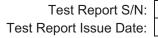
Phantom section: Flat Section

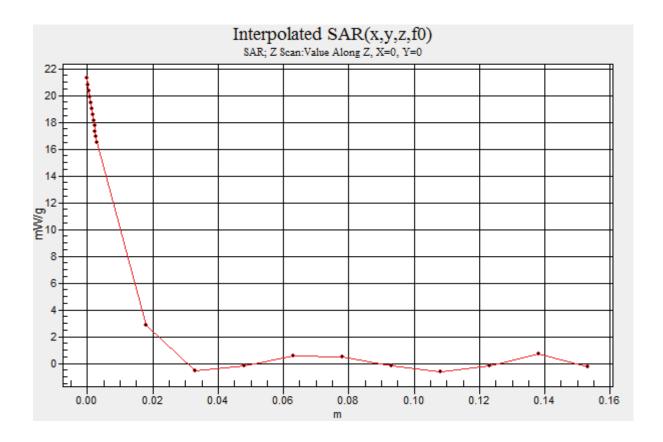
DASY4 Configuration:

- Probe: EX3DV4 SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145

2450MHz Body Dipole d=10mm P=250mW TS=[11.7][13.0][14.3]/Area Scan (5x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.5 mW/g

2450MHz Body Dipole d=10mm P=250mW TS=[11.7][13.0][14.3]/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,


dy=7.5mm, dz=5mm


Reference Value = 89.2 V/m; Power Drift = 0.136 dB

Peak SAR (extrapolated) = 26.0 W/kg

SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.8 mW/g Maximum value of SAR (measured) = 14.2 mW/g

mW/g
13.5
10.8
8.16
5.49
2.82
0.152

APPENDIX B - MEASUREMENT PLOTS OF MAXIMUMUM MEASURED SAR

Plot B1

Date/Time: 28/02/2017 2:07:13 PM

Test Laboratory: Celltech Labs

DUT: Fenix 5/5s; Type: Sports Watch; Program Name: 2450MHz Body

Communication System: CW; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 2.04 \text{ mho/m}$; $\epsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

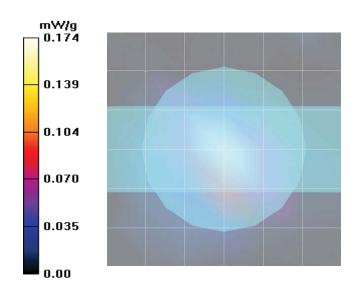
- Probe: EX3DV4 SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145

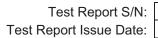
B1 Fenix 5 2412 MHz Body 2/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.174 mW/g

B1 Fenix 5 2412 MHz Body 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 9.62 V/m; Power Drift = -0.414 dB


Peak SAR (extrapolated) = 0.277 W/kg

SAR(1 g) = 0.109 mW/g; SAR(10 g) = 0.038 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.147 mW/g

Plot B2

Date/Time: 28/02/2017 3:46:21 PM

Test Laboratory: Celltech Labs

DUT: Fenix 5/5s; Type: Sports Watch; Program Name: 2450MHz Body

Communication System: CW; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 2.08 \text{ mho/m}$; $\epsilon_r = 51.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016

- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx

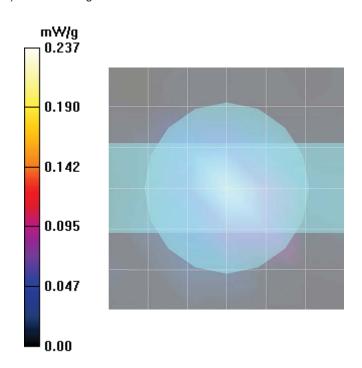
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145

B2 Fenix 5 2437 MHz Body/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.237 mW/g

B2 Fenix 5 2437 MHz Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 11.5 V/m; Power Drift = -0.297 dB

Peak SAR (extrapolated) = 0.355 W/kg

SAR(1 g) = 0.140 mW/g; SAR(10 g) = 0.050 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.198 mW/g

45461376-R1.1 17 March 2017

Plot B3

Date/Time: 01/03/2017 11:01:39 AM

Test Laboratory: Celltech Labs

DUT: Fenix 5/5s; Type: Sports Watch; Program Name: 2450MHz Body

Communication System: CW; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; σ = 2.11 mho/m; ϵ_r = 51.8; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016

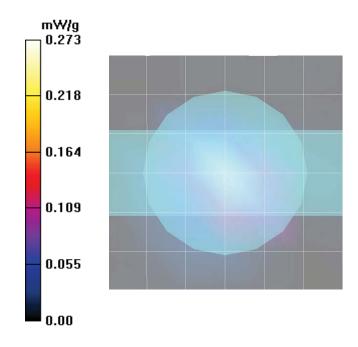
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145

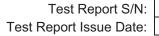
B3 Fenix 5 2462 MHz Body/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation!

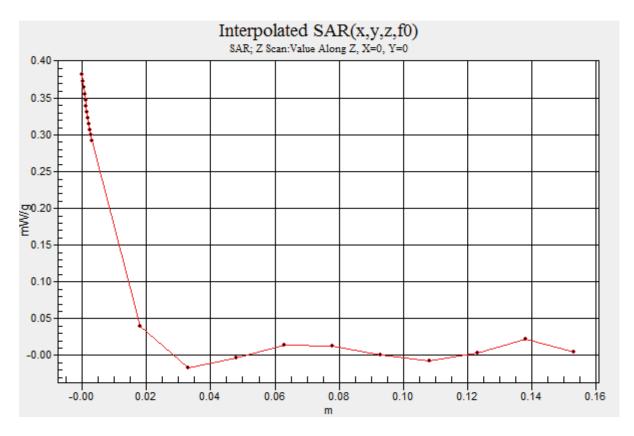
Maximum value of SAR (measured) = 0.273 mW/g

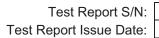
B3 Fenix 5 2462 MHz Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 12.6 V/m; Power Drift = -0.293 dB


Peak SAR (extrapolated) = 0.669 W/kg

SAR(1 g) = 0.187 mW/g; SAR(10 g) = 0.063 mW/g


Info: Interpolated medium parameters used for SAR evaluation!


Maximum value of SAR (measured) = 0.242 mW/g

Plot B4

Date/Time: 16/03/2017 11:16:23 AM

Test Laboratory: Celltech Labs

DUT: Fenix 5/5s; Type: Sports Watch; Program Name: 2450MHz Body

Communication System: CW; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.86 \text{ mho/m}$; $\varepsilon_r = 49.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016

- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx

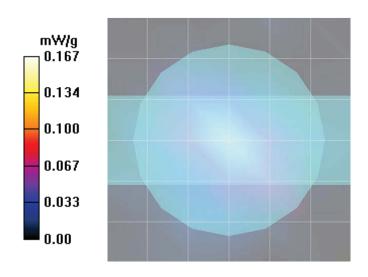
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145

B4 Fenix 5 2412 MHz Body, metal band/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.167 mW/g

B4 Fenix 5 2412 MHz Body,metal band/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 10.1 V/m; Power Drift = -0.190 dB

Peak SAR (extrapolated) = 0.245 W/kg

SAR(1 g) = 0.097 mW/g; SAR(10 g) = 0.034 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.142 mW/g

45461376-R1.1 17 March 2017

Plot B5

Date/Time: 16/03/2017 9:08:22 AM

Test Laboratory: Celltech Labs

DUT: Fenix 5/5s; Type: Sports Watch; Program Name: 2450MHz Body

Communication System: CW; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.95 \text{ mho/m}$; $\varepsilon_r = 49.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016

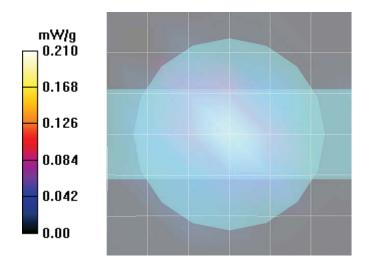
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145

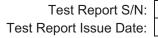
B5 Fenix 5 2437 MHz Body,metal band/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

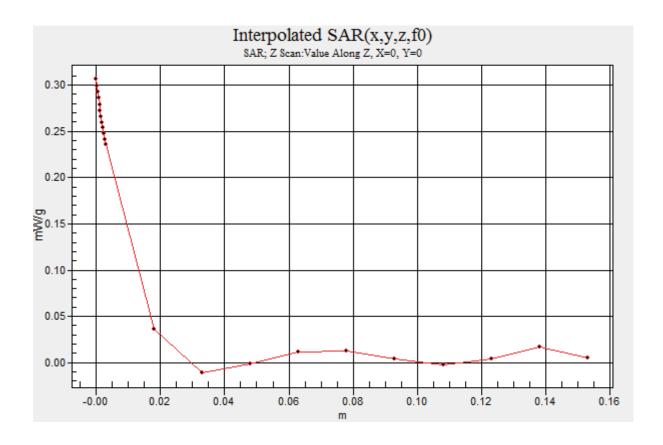
Info: Interpolated medium parameters used for SAR evaluation!

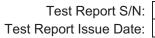
Maximum value of SAR (measured) = 0.210 mW/g

B5 Fenix 5 2437 MHz Body,metal band/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 11.2 V/m; Power Drift = -0.080 dB


Peak SAR (extrapolated) = 0.531 W/kg


SAR(1 g) = 0.148 mW/g; SAR(10 g) = 0.051 mW/g


Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.191 mW/g

Plot B6

Date/Time: 16/03/2017 12:58:47 PM

Test Laboratory: Celltech Labs

DUT: Fenix 5/5s; Type: Sports Watch; Program Name: 2450MHz Body

Communication System: CW; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; σ = 1.96 mho/m; ϵ_r = 49.3; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

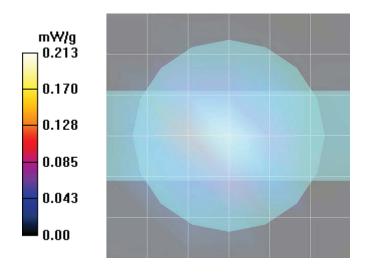
- Probe: EX3DV4 SN3600 2016; ConvF(6.55, 6.55, 6.55); Calibrated: 27/04/2016
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145

B6 Fenix 5 2462 MHz Body, metal band 2/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.213 mW/g

B6 Fenix 5 2462 MHz Body,metal band 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 11.0 V/m; Power Drift = -0.251 dB

Peak SAR (extrapolated) = 0.367 W/kg

SAR(1 g) = 0.146 mW/g; SAR(10 g) = 0.052 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.194 mW/g

