

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

FCC/ISED DXX Part 15.225 Test Report

Prepared for: Garmin International Inc.

Address: 1200 E. 151st Street

Olathe, Kansas, 66062, USA

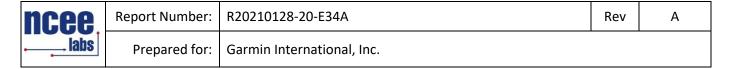
Product: A04111

Test Report No: R20210128-20-E34A

Approved By:

Nic Sohnson, NCE

Technical Manager

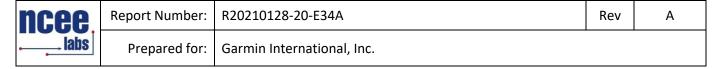

iNARTE Certified EMC Engineer #EMC-003337-NE

DATE: 4 January 2022

Total Pages: 22

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Revision Page


Rev. No.	Date	Description	
0	27 December 2021	Original – Prepared by FLane	
U	27 December 2021	Approved by NJohnson	
۸	4 January 2022	Added Conducted Emissions Section	
A		Updated test setup description - FL	

Report Number: R20210128-20-E34A Rev A Prepared for: Garmin International, Inc.

TABLE OF CONTENTS

1	Sun	ımary of Test Results	4
	1.1	Emissions Test Results	4
2	EUT	Description	5
	2.1 2.2 2.3	Equipment under Test (EUT)	5
3	Test	Results	6
	APPE	Radiated Emissions, Band Width, Output Power and Band edge Frequency Error Conducted AC Mains Emissions NDIX A: SAMPLE CALCULATION NDIX B - MEASUREMENT UNCERTAINTY	12 14 19
R	FPORT	FND	22

1 Summary of Test Results

The EUT was tested for compliance to the following standards and/or regulations;

1.1 Emissions Test Results

The EUT was tested for compliance to:

US CFR Title 47 FCC Part 15.225 RSS-210 Issue 10

Table 1 - Emissions Test Results

Emissions Tests	Test Method and Limits	Result
Radiated Emissions	FCC Part 15.225 (a), (b), (c), (d) RSS-210, Sec 4.3	Complies
Bandedge	FCC Part 15.225 (b) (c)	Complies
Frequency Error	FCC Part 15.225 (e) RSS-210, Annex D	Complies
Conducted Emissions	FCC Part 15.207 RSS-Gen Issue 4, Section 7.2	Complies

Report Number:	R20210128-20-E34A	Rev	А
Prepared for:	Garmin International, Inc.		

2 EUT Description

2.1 Equipment under Test (EUT)

Table 2 – Equipment under Test (EUT)

	rabio 2 = equipment and or root (201)
Model	A04111
EUT Tested	21 December 2021
Serial No.	3378818230
Operating Band	13.56 MHz
Device Type	NFC
Antenna	Trace Antenna
Power Supply	Internal Battery/ 5VDC Charger: Garmin (Phi Hong) MN: PSAI10R-050Q (Representative Power Supply)

2.2 Laboratory Description

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs) 4740 Discovery Drive Lincoln, NE 68521

A2LA Certificate Number: 1953.01 FCC Accredited Test Site Designation No: US1060 Industry Canada Test Site Registration No: 4294A-1 NCC CAB Identification No: US0177

Environmental conditions varied slightly throughout the tests:

Relative humidity of $28 \pm 4\%$ Temperature of $22 \pm 3^{\circ}$ C

2.3 EUT Setup

The EUT was powered by 120 VAC / 60Hz (5 VDC Output) for all tests. Emissions were compared between EUT charging and non-charging, worst case was reported.

EUT was paired with an NFC card reader (MN: ACR122U, SN: RR545-026162) for all testing except Conducted emissions.

For Conducted emissions an EUT test mode was used to keep NFC card reader emissions off of charging cord.

Report Number:	R20210128-20-E34A	Rev	А
Prepared for:	Garmin International, Inc.		

3 Test Results

3.1 Radiated Emissions, Band Width, Output Power and Band edge

Test:	FCC Part 15.225 (a), (b), (c), (d)	
Test Specifications:	Class A	
Test Result:	Complies	

3.1.1 Test Description

Radiated emissions measurements were made from 30MHz to 1GHz at a distance of 3m (Radiated Emissions) and 3m (Bandwidth, Field Strength and Band edges) inside a semi-anechoic chamber. The EUT was rotated 360°, the antenna height varied from 1-4 meters and both the vertical and horizontal antenna polarizations examined. For measurements below 30 MHz, the loop antenna was used to measure in all 3 axis. The results were compared against the limits. Measurements were made by first using a spectrum analyzer to acquire the signal spectrum; individual frequencies were then measured using a CISPR 16.1 compliant receiver with the following bandwidth setting:

30MHz – 1GHz: 120kHz IF bandwidth, 60kHz steps 10MHz – 30MHz: 9kHz RBW, 4.5 kHz steps

Intermodulation products were investigated by measuring spurious emissions with each of the two 2.4 GHz radios running in parallel with the NFC radio. No intermodulation products were found above the labs system sensitivity.

3.1.2 Test Results

No radiated emissions measurements were found in excess of the limits. Test result data can be seen below.

3.1.3 Test Environment

Testing was performed at the NCEE Labs Lincoln facility in the 10m semi-anechoic chamber. Laboratory environmental conditions varied slightly throughout the test:

Relative humidity of $30 \pm 5\%$ Temperature of $23 \pm 2^{\circ}$ C

3.1.4 Test Setup

See Section 2.3 for further details.

Report Number:	R20210128-20-E34A	Rev	Α
Prepared for:	Garmin International, Inc.		

Test Equipment Used 3.1.5

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Keysight MXE Signal Analyzer (26.5GHz)**	N9038A	MY56400083	May 5, 2020	May 5, 2022
SunAR RF Motion	JB1	A091418	July 27, 2021	July 27, 2022
EMCO Loop Antenna***	6512	00024936	February 11, 2019	February 11, 2022
8447F POT H64 Preamplifier***	8447F POT H64	3113AD4667	February 1, 2021	February 1, 2022
TDK Emissions Lab Software	V11.25	700307	NA	NA
RF Cable (preamplifier to antenna)*	MFR-57500	01-07-002	April 14, 2020	April 14, 2022
RF Cable (antenna to 10m chamber bulkhead)*	FSCM 64639	01E3872	April 14, 2020	April 14, 2022
RF Cable (10m chamber bulkhead to control room bulkhead)*	FSCM 64639	01E3874	April 14, 2020	April 14, 2022
RF Cable (control room bulkhead to test receiver)*	FSCM 64639	01F1206	April 14, 2020	April 14, 2022
N connector bulkhead (10m chamber)*	PE9128	NCEEBH1	April 14, 2020	April 14, 2022
N connector bulkhead (control room)*	PE9128	NCEEBH2	April 14, 2020	April 14, 2022
TDK Emissions Lab Software	V11.25	700307	NA	NA

^{*}Internal Characterization
**Two Year Calibration Cycle
***Three Year Calibration Cycle

Report Number: R20210128-20-E34A Rev A

Prepared for: Garmin International, Inc.

3.1.6 Test Pictures and/or Figures

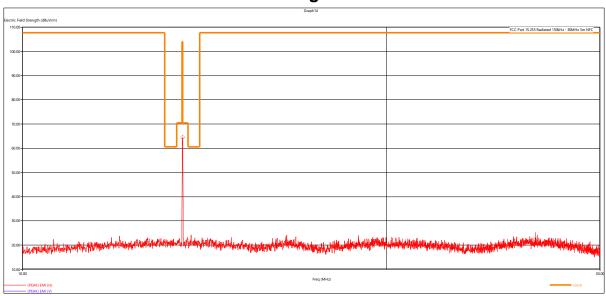


Figure 1 – NFC Radiated Emissions Plot, 10MHz – 30MHz
All emissions found to be at least 6dB below limit line

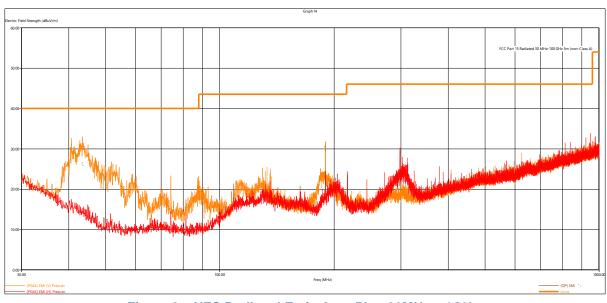


Figure 2 – NFC Radiated Emissions Plot, 30MHz – 1GHz
All emissions found to be at least 6dB below limit line

Quasi-Peak Measurements						
Frequency	Level	Limit	Margin	Height	Angle	Pol
MHz	dBµV/m	dΒμV/m	dB	cm.	deg.	
43.501680	26.10	40.00	13.90	125.00	230.00	V
189.852000	30.13	43.52	13.39	236.00	60.00	V

Report Number: R20210128-20-E34A Rev A

Prepared for: Garmin International, Inc.

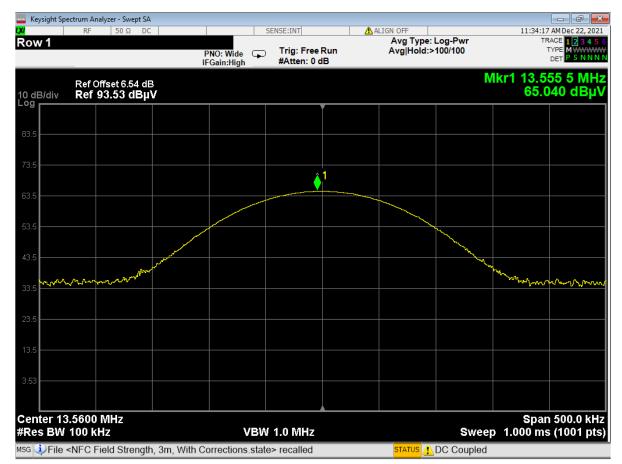
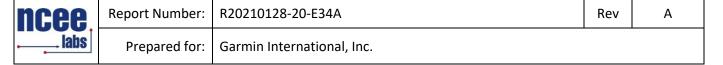



Figure 3 – NFC Field Strength Plot Corrections included in reference offset

NFC Field Strength					
Field Strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result		
65.04	104.00	38.96	PASS		

Page 9 of 22

Band Edge Measurements:

Band edge /Measurement Frequency (MHz)	Corrected band level dBµV/m @ 3m	Limit* (dBuV)	Margin	Result
13.553	49.869	70.47	20.601	PASS
13.567	53.788	70.47	16.682	PASS

*Limit extrapolated to 3m test distance

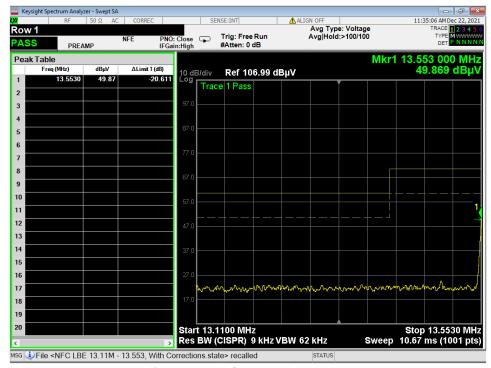


Figure 4 – NFC Lower Bandedge

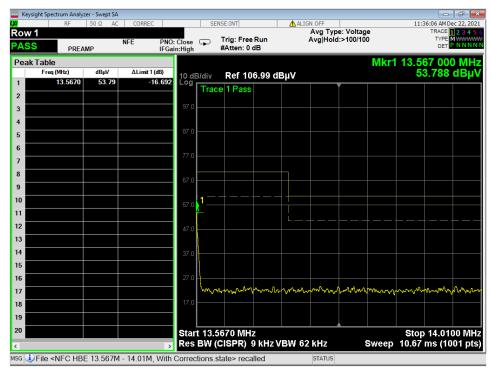


Figure 5 – NFC Higher Bandedge

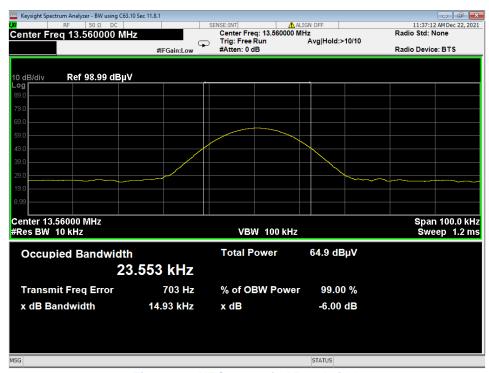


Figure 6 - NFC Occupied Bandwidth

Report Number: R20210128-20-E34A		Rev	Α
Prepared for:	Garmin International, Inc.		

3.2 Frequency Error

Test:	FCC Part 15.225 (e)
Test Result:	Complies

3.2.1 Test Description

Frequency error was determined using the built-in frequency error function of the spectrum analyzer. The analyzer finds the occupied bandwidth, calculates the center of the given band then returns the deviation with respect to the given transmit frequency. The temperature was varied from -20°C to 50°C.

Limit: 100 PPM

3.2.2 Test Results

No results were found to be in excess of the limits. A table of the results can be seen below.

3.2.3 Test Environment

Testing was performed at the NCEE Labs Lincoln facility. Laboratory environmental conditions varied slightly throughout the test: Relative humidity of $30 \pm 5\%$ Temperature of $23 \pm 2^{\circ}$ C

3.2.4 Test Setup

See Section 2.3 for further details.

3.2.5 Test Equipment Used

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Keysight MXE Signal Analyzer (44GHz)	N9038A	MY59050109	July 21, 2021	July 21, 2023*
EMCO Loop Antenna	6512	00024936	February 11, 2019	February 11, 2022**
Thermotron, Temp Chamber	SE1000-5-5	31373	NA	NA
Omega, Temp. Humidity Meter	iTHX-SD	ID # 2130155	April 23, 2021	April 23, 2023*

^{*2} Year Calibration Cycle

^{**3} Year Calibration Cycle

Report Number:	R20210128-20-E34A	Rev	А
Prepared for:	Garmin International, Inc.		

3.2.6 Test results

A04111	
Temperature (°C)	Channel (MHz)
remperature (C)	13.56000 Nom.
-20°C	717
-10°C	702
0°C	653
10°C	606
20°C	548
30°C	492
40°C	461
50°C	37

A04111		
Temperature (°C)	Voltage	Channel (MHz)
. ,	(VDC)	13.56
20°C	3.2	667
20°C	3.9	575
20°C	4.75	548

Voltage ranges provided by the manufacturer

Limit: 100 PPM = 0.01% = 0.01 x 13.5.6 kHz = 1356 Hz Values shown in Hz. Uncertainty = ± 500 Hz

Report Number:	R20210128-20-E34A	Rev	Α
Prepared for:	Garmin International, Inc.		

3.3 Conducted AC Mains Emissions

Test Method: ANSI C63.10-2013, Section(s) 6.2

Limits for conducted emissions measurements:

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)	
	Quasi-peak	Average
0.15-0.5	66 to 56	56 to 46
0.5-5	56	46
5-30	60	50

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 $\,\mathrm{MHz}$
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

Test Procedures:

- a. The EUT was placed 0.8m above a ground reference plane and 0.4 meters from the conducting wall of a shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). The LISN provides 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference as well as the ground.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits are not reported.
- d. Results were compared to the 15.207 limits.

Deviation from the test standard:

No deviation

EUT operating conditions:

Details can be found in section 2.1 of this report.

•

Report Number: R20210128-20-E34A Rev A

Prepared for: Garmin International, Inc.

Test Results:

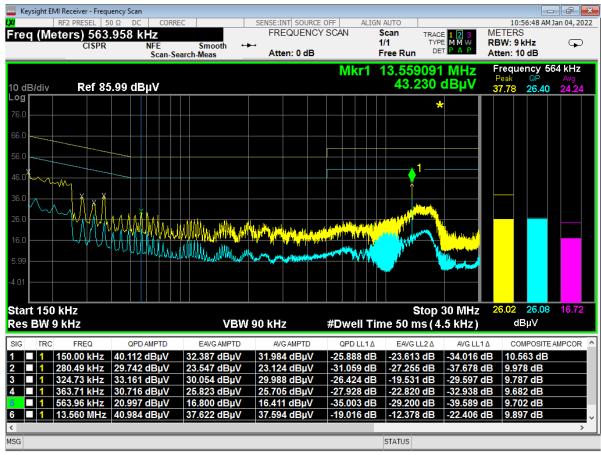


Figure 7 - Conducted Emissions Plot, Line, NFC

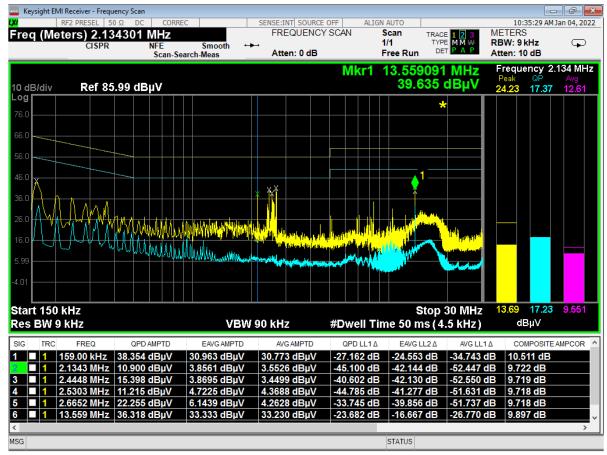


Figure 8 - Conducted Emissions Plot, Neutral, NFC

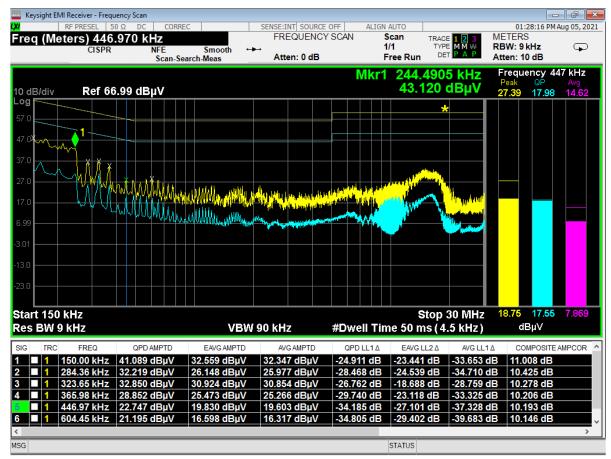


Figure 9 - Conducted Emissions Plot, Line, Idle

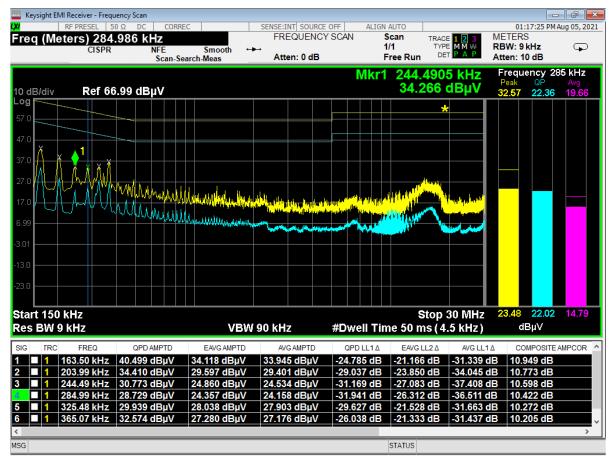


Figure 10 - Conducted Emissions Plot, Neutral, Idle

cee	Report Number:	R20210128-20-E34A	Rev	А	
labs	Prepared for:	Garmin International, Inc.			

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF - (-CF + AG) + AV$$

where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB_µV is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dBμV/m.

$$FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \, dB\mu V/m$$

The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20]= 254.1 μ V/m

AV is calculated by the taking the 20*log(T_{on}/100) where T_{on} is the maximum transmission time in any 100ms window.

Page 19 of 22

Report Number: R20210128-20-E34A		Rev	A
Prepared for:	Prepared for: Garmin International, Inc.		

EIRP Calculations

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)]² / 30 Power (watts) = $10^{\text{Power}} (dBm)/10] / 1000$ Voltage (dBμV) = Power (dBm) + 107 (for 50Ω measurement systems) Field Strength (V/m) = 10^{Field} Strength (dBμV/m) / 20] / 10^{A} Gain = 1 (numeric gain for isotropic radiator) Conversion from 3m field strength to EIRP (d=3):

 $EIRP = [FS(V/m) \times d^2]/30 = FS[0.3]$ for d = 3

 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$

10log(10^9) is the conversion from micro to milli

Report Number:	R20210128-20-E34A	Rev	Α
Prepared for:	Garmin International, Inc.		

APPENDIX B - MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

Test	Frequency Range	Uncertainty Value (dB)
Radiated Emissions, 3m	30MHz - 1GHz	3.82
Radiated Emissions, 3m	1GHz - 18GHz	4.44
Emissions limits, conducted	30MHz – 18GHz	±3.30 dB

Expanded uncertainty values are calculated to a confidence level of 95%.

	Report Number:	R20210128-20-E34A	Rev	Α
	Prepared for:	Garmin International, Inc.		

REPORT END