

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

FCC/ISED Test Report

Prepared for: Garmin International, Inc.

Address:

1200 E. 151st Street Olathe, Kansas, 66062, USA

Product:

A04110

Test Report No:

R20210128-20-E4A

Approved by:

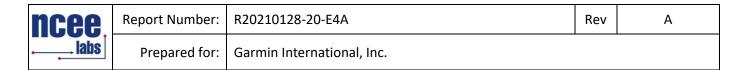
Nic S. Johnson, NCE Technical Manager iNARTE Certified EMC Engineer #EMC-003337-NE

DATE:

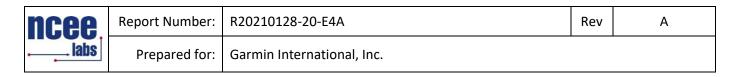
November 24, 2021

58

Total Pages:


The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

ncee.	Report Number:	R20210128-20-E4A	Rev	А
labs	Prepared for:	Garmin International, Inc.		

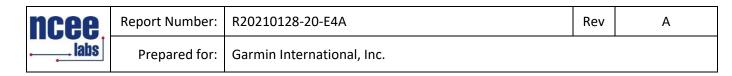

REVISION PAGE

Rev. No.	Date	Description
0	29 October 2021	Original – NJohnson
		Prepared by FLane
А	23 November 2021	Comments on margin for other measurements
		Added conducted spurious emissions - FL

CONTENTS

Revi	sion Pag	де	2
1.0	Sum	imary of test results	4
2.0	EUT	Description	5
	2.1	Equipment under test	5
	2.2	Description of test modes	5
	2.3	Description of support units	5
3.0	Lab	pratory and General Test Description	6
	3.1	Laboratory description	6
	3.2	Test personnel	6
	3.3	Test equipment	7
	3.4	General Test Procedure and Setup for Radio Measuremnts	8
4.0	Ros	ultS	9
	ILC3		2
	4.1	Output Power	
			1
	4.1	Output Power1	.1
	4.1 4.2	Output Power	.1 .2 .3
	4.1 4.2 4.3	Output Power	.1 .2 .3
	4.1 4.2 4.3 4.4	Output Power 1 Bandwidth 1 Duty Cycle 1 Radiated emissions 1	1 2 3 4 7
	4.1 4.2 4.3 4.4 4.5	Output Power 1 Bandwidth 1 Duty Cycle 1 Radiated emissions 1 Band edges 2	1 2 3 4 7 9
	 4.1 4.2 4.3 4.4 4.5 4.6 4.7 	Output Power 1 Bandwidth 1 Duty Cycle 1 Radiated emissions 1 Band edges 2 Power Spectral Density 2	.1 .2 .3 .4 .7 .9
Арр	4.1 4.2 4.3 4.4 4.5 4.6 4.7 endix A	Output Power 1 Bandwidth 1 Duty Cycle 1 Radiated emissions 1 Band edges 2 Power Spectral Density 2 Conducted AC Mains Emissions 3	1 2 3 4 7 9 0 5
Арр Арр	4.1 4.2 4.3 4.4 4.5 4.6 4.7 endix A endix B	Output Power 1 Bandwidth 1 Duty Cycle 1 Radiated emissions 1 Band edges 2 Power Spectral Density 2 Conducted AC Mains Emissions 3 Sample Calculation 3	1 2 3 4 7 9 0 5 7

1.0 SUMMARY OF TEST RESULTS


The worst-case measurements were reported in this report. Summary of test results presented in this report correspond to the following section (Please see the checked box below for the rule part used):

FCC Part 15.247

The EUT has been tested according to the following specifications:

- (1) US Code of Federal Regulations, Title 47, Part 15
- (2) ISED RSS-Gen, Issue 5
- (3) ISED RSS-247, Issue 2

APPLIED STANDARDS AND REGULATIONS						
Standard Section	Test Type	Result				
FCC Part 15.35 RSS Gen, Issue 5, Section 6.10	Duty Cycle	Pass				
FCC Part 15.247(a)(1) RSS-247 Issue 2 Section 5.2	Peak output power	Pass				
FCC Part 15.247(a)(1) RSS-247 Issue 2 Section 5.2	Bandwidth	Pass				
FCC Part 15.209 RSS-Gen Issue 4, Section 7.1	Receiver Radiated Emissions	Pass				
FCC Part 15.209 (restricted bands), 15.247 (unrestricted) RSS-247 Issue 2 Section 5.5, RSS-Gen Issue 4, Section 8.9	Transmitter Radiated Emissions	Pass				
FCC Part 15.247(a)(1) RSS-247 Issue 2 Section 5.2	Power Spectral Density	Pass				
FCC Part 15.209, 15.247(d) RSS-247 Issue 2 Section 5.5	Band Edge Measurement	Pass				
FCC Part 15.207 RSS-Gen Issue 4, Section 7.2	Conducted Emissions	Pass				

2.0 EUT DESCRIPTION

2.1 EQUIPMENT UNDER TEST

Summary and Operating Condition:

EUT	A04110
EUT Received	9 March 2021
EUT Tested	9 March 2021- 6 October 2021
Serial No.	3364573626 (Radiated Measurements) 3365978099 (Conducted Measurements)
Operating Band	2400 – 2483.5 MHz
Device Type	□ GMSK □ GFSK □ BT BR □ BT EDR 2MB □ BT EDR 3MB ⊠ 802.11x
Power Supply / Voltage	Internal Battery/ 5VDC Charger: Garmin (Phi Hong) MN: PSAI10R-050Q (Representative Power Supply)

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

2.2 DESCRIPTION OF TEST MODES

The operating range of the EUT is dependent on the device type found in section 2.1:

For Bluetooth Transmissions:					
Channel	Frequency				
Low	2402 MHz				
Mid	2440/2441 MHz				
High	2480 MHz				

For 802.11x Transmissions:					
Channel	Frequency				
Low	2412 MHz				
Mid	2437 MHz				
High	2462 MHz				

These are the only representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequency and designations.

2.3 DESCRIPTION OF SUPPORT UNITS

None

3.0 LABORATORY AND GENERAL TEST DESCRIPTION

3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs) 4740 Discovery Drive Lincoln, NE 68521

A2LA Certificate Number:	1953.01
FCC Accredited Test Site Designation No:	US1060
Industry Canada Test Site Registration No:	4294A-1
NCC CAB Identification No:	US0177

Environmental conditions varied slightly throughout the tests:

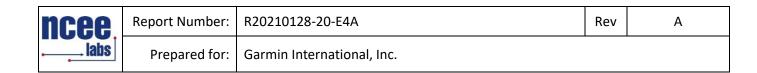
Relative humidity of $35 \pm 4\%$ Temperature of $22 \pm 3^{\circ}$ Celsius

3.2 TEST PERSONNEL

No.	PERSONNEL	TITLE	ROLE
1	Nic Johnson	Technical Manager	Review/editing
2	Fox Lane	Test Engineer	Testing and report
3	Karthik Vepuri	Test Engineer	Testing and report
4	Grace Larsen	Test Technician	Testing
5	Samuel Probst	Test Technician	Testing
6	Matthew Emory	Test Technician	Testing

Notes:

All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel.


3.3 TEST EQUIPMENT

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Keysight MXE Signal Analyzer (44GHz)	N9038A	MY59050109	July 21, 2021	July 21, 2023
Keysight MXE Signal Analyzer (26.5GHz)	N9038A	MY56400083	May 5, 2020	May 5, 2022
Keysight EXA Signal Analyzer	N9010A	MY56070862	July 20, 2021	July 20, 2023
SunAR RF Motion	JB1	A091418	July 27, 2021	July 27, 2022
EMCO Horn Antenna	3115	6415	March 16, 2020	March 16, 2022
Com-Power LISN 50μH / 250μH - 50Ω	LI-220C	20070017	September 22, 2020	September 22, 2022
8447F POT H64 Preamplifier*	8447F POT H64	3113AD4667	February 1, 2021	February 1, 2022
Rohde & Schwarz Preamplifier*	TS-PR18	3545700803	April 14, 2020	April 14, 2022
Trilithic High Pass Filter*	6HC330	23042	April 14, 2020	April 14, 2022
TDK Emissions Lab Software	V11.25	700307	NA	NA
RF Cable (preamplifier to antenna)*	MFR-57500	01-07-002	April 14, 2020	April 14, 2022
RF Cable (antenna to 10m chamber bulkhead)*	FSCM 64639	01E3872	April 14, 2020	April 14, 2022
RF Cable (10m chamber bulkhead to control room bulkhead)*	FSCM 64639	01E3874	April 14, 2020	April 14, 2022
RF Cable (control room bulkhead to test receiver)*	FSCM 64639	01F1206	April 14, 2020	April 14, 2022
N connector bulkhead (10m chamber)*	PE9128	NCEEBH1	April 14, 2020	April 14, 2022
N connector bulkhead (control room)*	PE9128	NCEEBH2	April 14, 2020	April 14, 2022

*Internal Characterization

Notes:

All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities.

3.4 GENERAL TEST PROCEDURE AND SETUP FOR RADIO MEASUREMNTS

Measurement type presented in this report (Please see the checked box below):

Conducted \boxtimes

The conducted measurements were performed by connecting the output of the transmitter directly into a spectrum analyzer using an impedance matched cable and connector soldered to the EUT in place of the antenna. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in the Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

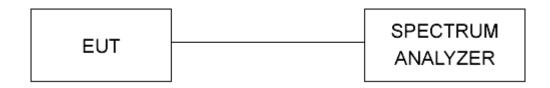


Figure 1 - Bandwidth Measurements Test Setup

Radiated

All the radiated measurements were taken at a distance of 3m from the EUT. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in the Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

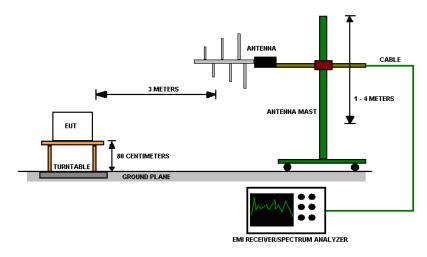


Figure 2 - Radiated Emissions Test Setup

4.0 RESULTS

			DTS Radio Me	asurements			
CHANNEL	Transmitter	Occupied Bandwidth (MHz)	6 dB Bandwidth (MHz)	OUTPUT POWER (dBm)	OUTPUT POWER (mW)	PSD (dBm)	RESULT
Low	802.11 b	14.61	8.38	23.730	236.048	3.955	PASS
Mid	802.11 b	14.62	8.50	21.870	153.815	4.252	PASS
High	802.11 b	14.63	8.75	21.500	141.254	3.242	PASS
Low	802.11 g	16.38	16.50	21.670	146.893	-11.722	PASS
Mid	802.11 g	16.38	16.50	21.080	128.233	-12.144	PASS
High	802.11 g	16.39	16.50	20.520	112.720	-9.891	PASS
Low	802.11 n	17.49	17.56	22.090	161.808	-8.17	PASS
Mid	802.11 n	17.47	17.37	23.120	205.116	-7.764	PASS
High	802.11 n	17.49	17.57	20.970	125.026	-9.548	PASS
Occupied Ba kHz	andwidth = N/A	; 6 dB Bandwidth	Limit =500	Output Power L	imit = 30 dBm	; PSD Limit =	8 dBm
			Unrestricted	Band-Edge			
CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Relative Highest out of band level (dBuV)	Relative Fundamental (dBuV)	Delta (dB)	Min Delta (dB)	Result
Low	802.11 b	2400.00	75.93	114.56	38.63	20.00	PASS
Low	802.11 g	2400.00	74.49	107.71	33.22	20.00	PASS
Low	802.11 n	2400.00	74.64	107.78	33.14	20.00	PASS
High	802.11 b	2483.50	57.06	114.15	57.09	20.00	PASS
High	802.11 g	2483.50	60.56	105.78	45.22	20.00	PASS
High	802.11 n	2483.50	70.49	106.74	36.25	20.00	PASS
Ŭ		F	Peak Restricte	d Band-Edge			
CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Highest out of band level (dBuV/m @ 3m)	Measurement Type	Limit (dBuV/m @ 3m)	Margin	Result
Low	802.11 b	2390.00	58.95	Peak	73.98	15.03	PASS
Low	802.11 g	2390.00	59.70	Peak	73.98	14.28	PASS
Low	802.11 n	2390.00	68.67	Peak	73.98	5.31	PASS
High	802.11 b	2483.50	56.01	Peak	73.98	17.97	PASS
High	802.11 g	2483.50	70.34	Peak	73.98	3.64	PASS
High	802.11 n	2483.50	68.51	Peak	73.98	5.47	PASS
<u> </u>							

ncee.	Report Number:	R20210128-20-E4A	Rev	А
labs	Prepared for:	Garmin International, Inc.		

		Av	erage Restric	ted Band-Edge			
CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Highest out of band level (dBuV/m @ 3m)	Measurement Type	Limit (dBuV/m @ 3m)	Margin	Result
Low	802.11 b	2390.00	48.60	Average	53.98	5.39	PASS
Low	802.11 g	2390.00	46.19	Average	53.98	7.79	PASS
Low	802.11 n	2390.00	53.93	Average	53.98	0.05	PASS
High	802.11 b	2483.50	45.20	Average	53.98	8.78	PASS
High	802.11 g	2483.50	53.09	Average	53.98	0.89	PASS
High	802.11 n	2483.50	52.68	Average	53.98	1.30	PASS
*Limit shown	is the average	e limit taken from F	-CC Part 15.20	9			

4.1 OUTPUT POWER

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of power measurements:

For FCC Part 15.247 Device:

The maximum allowed peak output power is 30 dBm.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the output power plots can be found in the Appendix C.
- 2. All the measurements were found to be compliant.
- 3. The measurements are listed in the tables below.

Garmin International, Inc.

Rev

4.2 BANDWIDTH

Prepared for:

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of bandwidth measurements:

For FCC Part 15.247 Device:

The 99% occupied bandwidth is for informational purpose only. The 6dB bandwidth of the signal must be greater than 500 kHz.

Test procedures:

Details can be found in section 3.4 of this report.

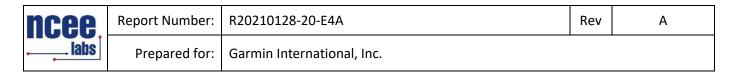
Deviations from test standard:

No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:


Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the bandwidth plots can be found in the Appendix C.
- 2. All the measurements were found to be compliant.

4.3 DUTY CYCLE

Test Method:

Transmitters/modulations shown in this report all had a duty cycle of >98%.

4.4 RADIATED EMISSIONS

Test Method: ANSI C63.10-2013, Section 6.5, 6.6

Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

FREQUENCIES (MHz)	FIELD STRENGTH (μV/m)	MEASUREMENT DISTANCE (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	3
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 * log * Emission level (μ V/m).

3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.

4. The EUT was tested for spurious emissions while running off of battery power and external USB power. The worse-case emissions were produced while running off of USB power, so results from this mode are presented.

Test procedures:

a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semianechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements from 30MHz-1Ghz and 1.5m for measurements from 1GHz and higher.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.

d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.

e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions.

Test setup:

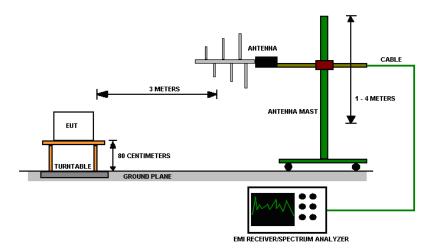
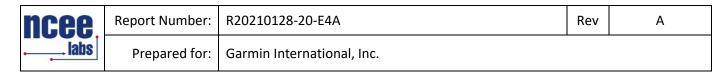


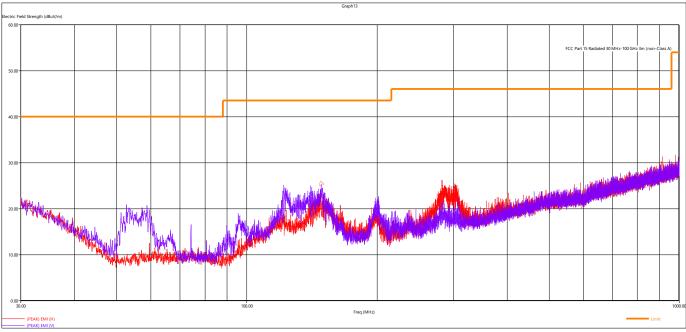
Figure 3 - Radiated Emissions Test Setup

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.


2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

Deviations from test standard:


No deviation.

EUT operating conditions

Details can be found in section 2.1 of this report.

Test results:

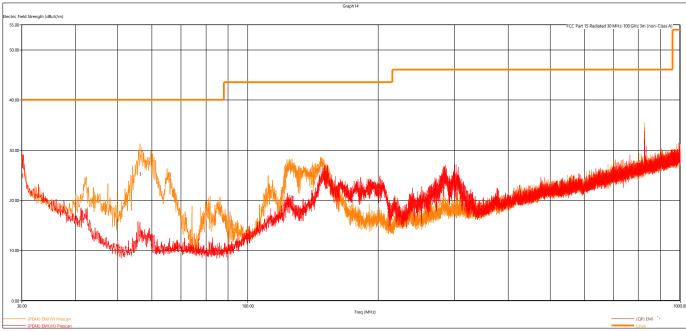
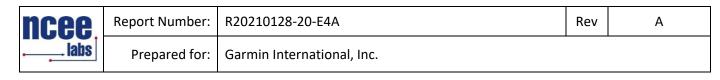
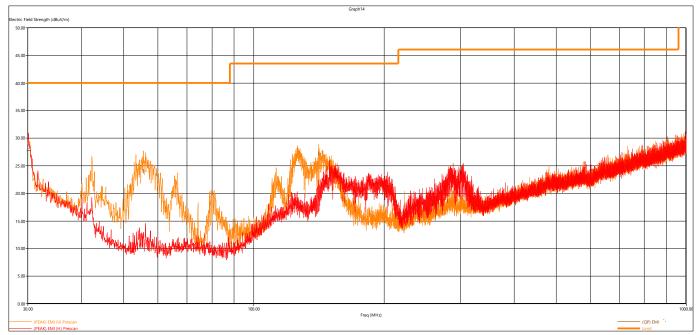




Figure 5 - Radiated Emissions Plot, 802.11b

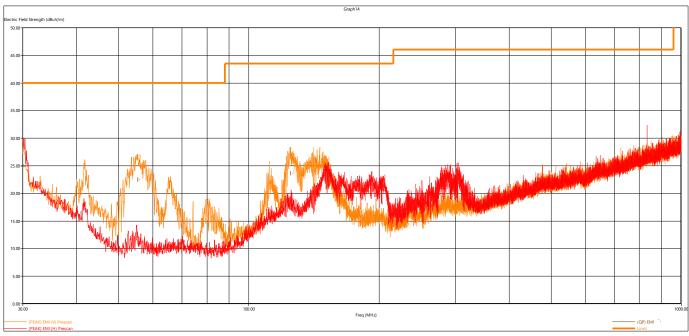


Figure 7 - Radiated Emissions Plot, 802.11n

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 18 of 58

	noo
	IGG.
_	lahe
•	

Report Number:	R20210128-20-E4A	Rev	А
Prepared for:	Garmin International, Inc.		

		Quasi-	Peak Mea	suremen	ts, 802.1	1x		
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation
MHz	dBµV/m	dBµV/m	dB	cm.	deg.			
30.318000	24.82	40.00	15.18	322.00	108.00	V	Low	В
56.202240	25.23	40.00	14.77	168.00	93.00	V	Low	В
827.416560	29.55	46.02	16.47	353.00	177.00	V	Low	В
30.265440	27.64	40.00	12.36	110.00	356.00	Н	Low	G
55.559760	23.97	40.00	16.03	115.00	229.00	V	Low	G
141.198960	27.06	43.52	16.46	104.00	35.00	V	Low	G
30.139328	24.83	40.00	15.17	323.00	203.00	Н	Low	N
55.291200	22.38	40.00	17.62	108.00	197.00	V	Low	N
124.380480	23.57	43.52	19.95	108.00	175.00	V	Low	Ν

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the plot and table above. All other emissions were found to be at least 6 dB Below the limit.

_	
ĥ	roo
	Lake.
	I abs
	-

Report Number:	R20210128-20-E4A	Rev	А
Prepared for:	Garmin International, Inc.		

		Pea	k Measur	ements,	802.11x			
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation
MHz	dBµV/m	dBµV/m	dB	cm.	deg.			
2413.378000	107.23	NA	NA	124	156	Н	Low	802.11b
2438.074000	106.09	NA	NA	120	155	Н	Mid	802.11b
2460.458000	104.84	NA	NA	154	159	Н	High	802.11b
2413.514000	103.02	NA	NA	186	156	Н	Low	802.11g
2436.032000	102.77	NA	NA	132	159	Н	Mid	802.11g
2457.608000	101.42	NA	NA	110	158	Н	High	802.11g
2407.280000	101.05	NA	NA	140	152	Н	Low	802.11n
2436.286000	100.95	NA	NA	164	157	Н	Mid	802.11n
2461.460000	100.19	NA	NA	110	160	Н	High	802.11n

All other emissions >1GHz were found to be at least 6 dB Below the limit.

		Avera	age Meas	urements	s, 802.11	x		
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation
MHz	dBµV/m	dBµV/m	dB	cm.	deg.			
2413.378000	107.23	NA	NA	124	156	Н	Low	802.11b
2438.074000	106.09	NA	NA	120	155	Н	Mid	802.11b
2460.458000	104.84	NA	NA	154	159	Н	High	802.11b
2413.514000	92.49	NA	NA	186	156	Н	Low	802.11g
2436.032000	92.85	NA	NA	132	159	Н	Mid	802.11g
2457.608000	91.14	NA	NA	110	158	н	High	802.11g
2407.280000	89.63	NA	NA	140	152	Н	Low	802.11n
2436.286000	90.84	NA	NA	164	157	Н	Mid	802.11n
2461.460000	89.66	NA	NA	110	160	Н	High	802.11n

All other emissions >1GHz were found to be at least 6 dB Below the limit.

Prepared for: Garmin International, Inc.

Test Method: ANSI C63.10-2013, Section 7.8.8

Limits of spurious emissions:

From FCC Part 15.247:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

Rev

А

Test procedures:

The highest emissions level was measured and recorded. All spurious measurements were evaluated to 20dB below the fundamental. More details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

The highest value measured was 11.906 dBm at the fundamental emissions. All other values were at least 20 dB lower.

А

Rev

			D: Fast 🔾	#Atten::	20 dB						DET P N I
eak Table									M	k <mark>r1 64</mark> 0	
Freq (GHz)	dBm	∆Limit1(dB)	10 dB/di Log	v Ref 1	0.00 dBr	n				-71.8	352 dB
			0.00								
			-10.0								
			-20.0								-20.00
			-30.0								
			(0.0								
			-40.0								
2			-50.0								
			-60.0								
									1		
			-70.0								
·			<mark>ula</mark> t	a de de de	and the stands	ann an	adi pendena ji	half a la l	क स्था संस्था विस्थान क	क (स्टे क्रिस्ट्रेस) हिंद	a for the for the log
			-80.0 <mark>Tri</mark> t	a de de de la cilia.	Ale tage 19	""In day	المكريب يعتبنه	n de de la compañía d			يدالي يدر
					ا است		يە بالى	ا بال م ال	huali	dalama tu	a . 18. s
			Start 0	.0300 GH:					All and the second	Stop 1	.0000 GI

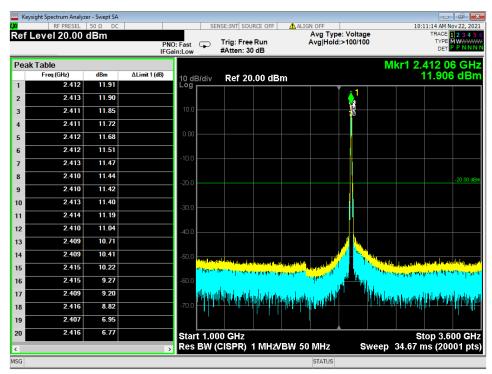
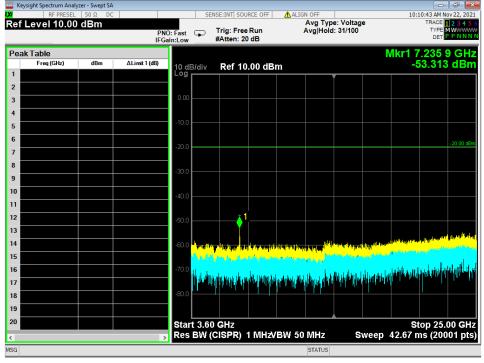



Figure 9 - Radiated Emissions Plot, WIFI 802.11b, 1G - 3.6G

А

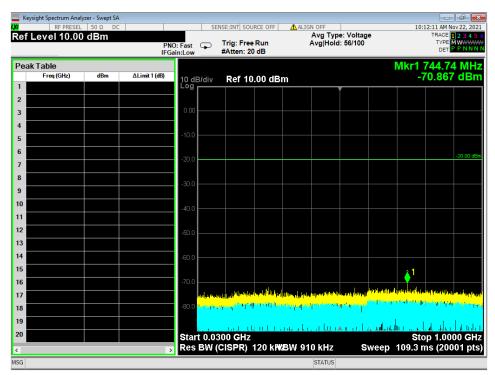


Figure 11 - Radiated Emissions Plot, WIFI 802.11g, 30M – 1G

Rev

А

lef L	evel 20.00			D:Fast Cain:Low	-	SE:INT SOURCE Trig: Free R #Atten: 30 d	un		OFF Avg Type Avg Hold:			10:	TYPE	0v 22, 202 1 2 3 4 5 M W W M M P P N N N
Peak	Table										М	kr1 2.	412 8	4 GH
	Freq (GHz)	dBm	ΔLimit 1 (dB)	10 dB/	div	Ref 20.0	0 dBm						6.981	
1	2.413	6.98		Log						/				
2	2.414	6.41								* 1				
3	2.410	6.10		10.0						- <u></u> _'-				
4	2.406	6.10								Ĩ				
5	2.409	6.10		0.00										
6	2.410	6.07												
7	2.408	6.02		-10.0										
8	2.415	5.88												-20.00 df
9	2.413	5.84		-20.0										
10	2.413	5.72		20.0										
11	2.412	5.67		-30.0										
12	2.415	5.64		-40.0										
13	2.408	5.61		-40.0										
14	2.411	5.60		-50.0										
15	2.409	5.52			anadili i Na sat	Control de provid-Off	al driven but	d diale	and the second		Participation of	المراقات المراس	and bible	all his days of
16	2.409	5.50		-60.0			and the second se	1.1	en en ser en	ر پکار	- Ph-	and the line.	d line in the	d mind of
17	2.411	5.43		D)	llaru ku so	aitian inidiale.	dian of the	umul	11	1 11	li Harri	1.1	. տեսես	illu alt
18	2.417	5.41		-70.0	1011	the leaf and the first	n i la ibite a per	n Millinge	NW.			n in the state of	ille hele	T'MAY
19	2.411	5.37					In I							
20	2.407	5.35			1 00								ton 2-6	
						0 GHz CISPR) 1 I	MHX/B	N 50	MHz	s	ween		top 3.6 ns (200	
G			>	1					STATUS	`	moop			تناكم

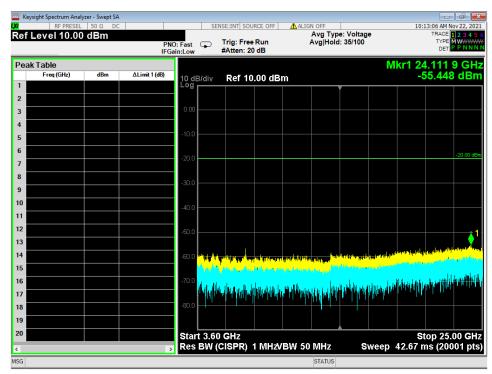


Figure 13 - Radiated Emissions Plot, WIFI 802.11g, 3.6G - 25G

А

Rev

			D:Fast 🕞 ain:Low	Trig: Fre #Atten: 3			Avg Hold				DET	PPNN
eak Table											629.6	
Freq (GHz)	dBm	ΔLimit1(dB)	10 dB/di Log	v Ref 1	0.00 dBi	m				-	71.204	l dB
			0.00									
			-10.0									
			-20.0									-20.00 (
			-30.0									
			-40.0									
			-40.0									
2			-50.0									
3												
+			-60.0									
5									<u>^ 1</u>			
			-70.0							a da la		
·			<mark>м</mark> ы	a full (provide the first operation)	e all the leaf	un halended	at he when the	yundu di	and a state	all an early t	deline kallen	
			-80.0	an-their gene	A second second second	in the second	(en el liniverat	than this to be		andr 190	a na an	and a
					1		u douti4		հայու մ	ا بانته	ա հետուս։	mand
			Start 0	.0300 GH				1 21			op 1.00	

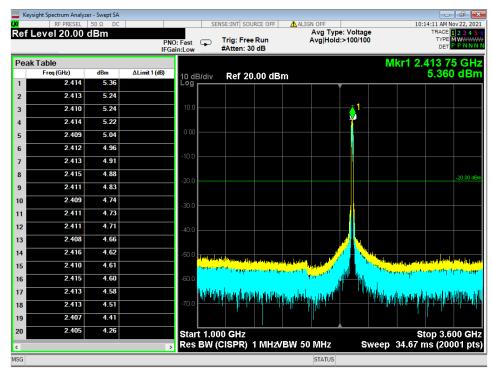


Figure 15 - Radiated Emissions Plot, WIFI 802.11n, 1G – 3.6G

of Level 10.0	1 50 Ω DC 0 dBm	PNC): Fast 😱	Trig: Free Run #Atten: 20 dB	ALIGN OFF	Type: Voltage Iold: 53/100	TF	AM Nov 22, 20 RACE 1 2 3 4 TYPE M WWW DET P P N N
eak Table		ii Ga					Mkr1 22.2	64 0 GH
Freq (GHz)	dBm	∆Limit1(dB)	10 dB/div	Ref 10.00 dB	m		-55.	134 dB
			0.00					
			-10.0					
			-20.0					-20.00 c
			-30.0					
			-40.0					
2			-50.0					<u></u> 1
3								. has at all the
			-60.0	a an	and the state of the second	Martin States	ang kanang Kanang Kana	and the second state
5			<u>^</u> γ√	Children and a state	a part and a second	and the state dense for	Area and a second	
5			-70.0	Account of the state	1.11.1.1.1.1.1	de la latant et da dat	الأريادة فتراده الطعامين فر	a drah Neber Li
/					W M M W	harde false of short a	all i de la consta	. I. I
3			-80.0					
			Start 3.6	0 GHz			Stop	25.00 GI
		>	Res BW	(CISPR) 1 MHzV	/BW 50 MH	z Swee	Stop p 42.67 ms	(20001 pt
ì					STAT			

Figure 16 - Radiated Emissions Plot, WIFI 802.11n, 3.6G – 25G

А

Rev

Prepared for: Garmin International, Inc.

4.5 BAND EDGES

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of band-edge measurements:

For FCC Part 15.247 Device:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c))

Test procedures:

The highest emissions level beyond the band-edge was measured and recorded. All band edge measurements were evaluated to the general limits in Part 15.209. More details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Garmin International, Inc.

Rev

Test results:

Prepared for:

Pass

Comments:

1. All the band edge plots can be found in the Appendix C.

- 2. If the device falls under FCC Part 15.247 (Details can be found in summary of test results), compliance is shown in the unrestricted band edges by showing minimum delta of 20 dB between peak and the band edge.
- 3. If the device falls under FCC Part 15.249 (Details can be found in summary of test results), compliance is shown in the unrestricted band edges by showing minimum delta of 50 dB between peak and the band edge.
- 4. The restricted band edge compliance is shown by comparing to the general limit defined in Part 15.209. The limit shown in the graph accounts for the antenna gain of the device.

4.6 POWER SPECTRAL DENSITY

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of power measurements:

For FCC Part 15.247 Device: The maximum PSD allowed is 8 dBm.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 4. All the Power Spectral Density (PSD) plots can be found in the Appendix C.
- 5. All the measurements were found to be compliant.
- 6. The measurements are reported on the graph.

4.7 CONDUCTED AC MAINS EMISSIONS

Test Method: ANSI C63.10-2013, Section(s) 6.2

Limits for conducted emissions measurements:

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56	56 to 46	
0.5-5	56	46	
5-30	60	50	

Notes:

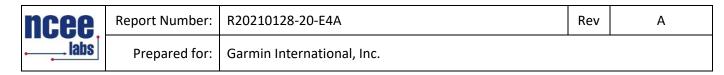
1. The lower limit shall apply at the transition frequencies.

The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz
 All emanations from a class A/B digital device or system, including any network of conductors

and apparatus connected thereto, shall not exceed the level of field strengths specified above.

Test Procedures:

- a. The EUT was placed 0.8m above a ground reference plane and 0.4 meters from the conducting wall of a shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). The LISN provides 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference as well as the ground.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits are not reported.
- d. Results were compared to the 15.207 limits.


Deviation from the test standard:

No deviation

EUT operating conditions:

Details can be found in section 2.1 of this report.

Rev

Test Results:

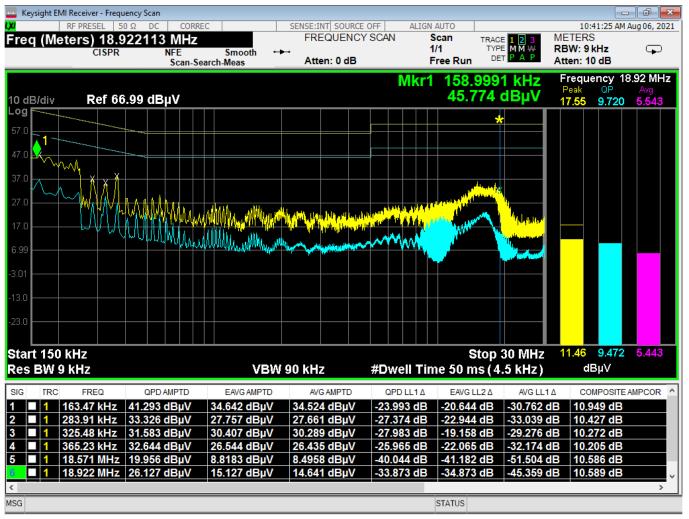
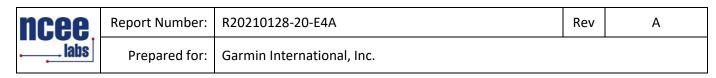
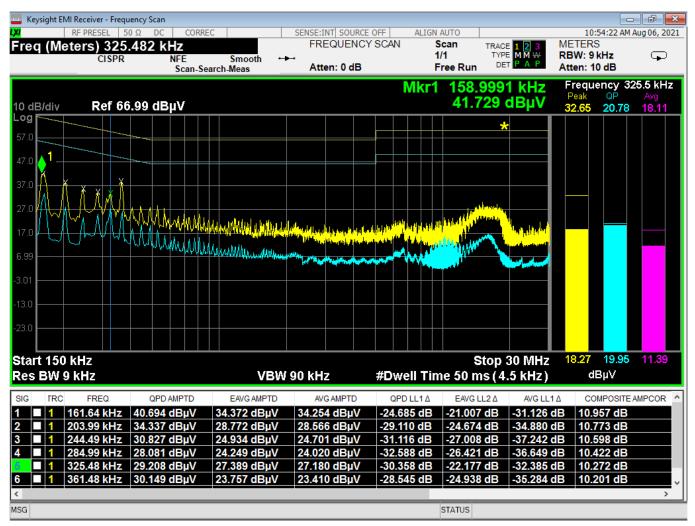
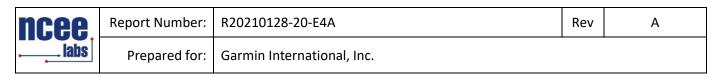





Figure 17 - Conducted Emissions Plot, Line, TX

Figure 18 -	Conducted	Emissions	Plot,	Neutral,	ТΧ
-------------	-----------	------------------	-------	----------	----

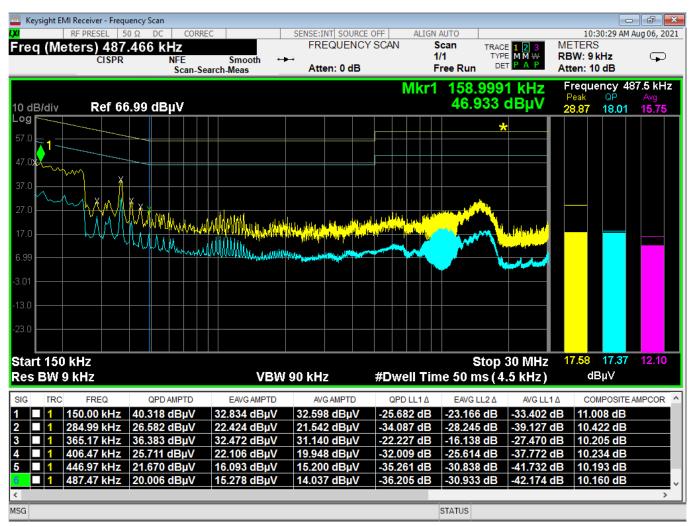
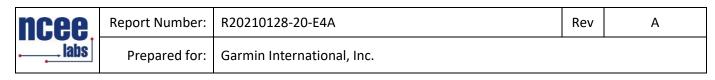
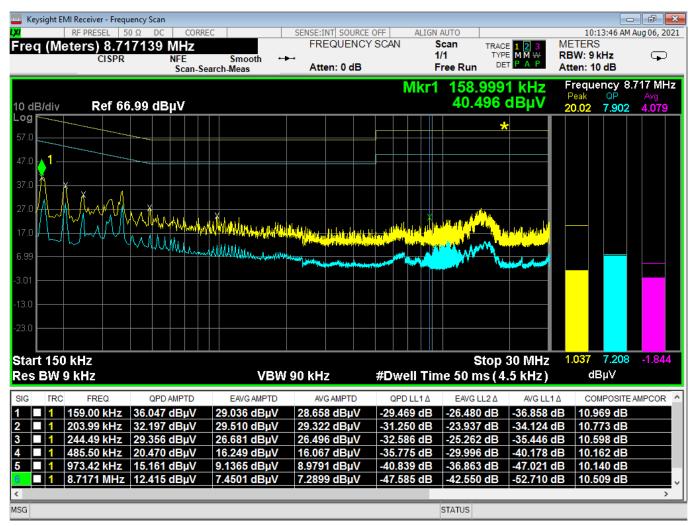




Figure 19 - Conducted Emissions Plot, Line, IDLE

ICCCC.	Report Number:	R20210128-20-E4A	Rev	А
	Prepared for:	Garmin International, Inc.		

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows: FS = RA + AF - (-CF + AG) + AV

where FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor CF = Cable Attenuation Factor AG = Amplifier Gain AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB μ V/m.

 $FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \text{ dB}\mu\text{V/m}$

The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20]= 254.1 μ V/m

AV is calculated by the taking the $20^{100}(T_{on}/100)$ where T_{on} is the maximum transmission time in any 100ms window.

ncee,	Report Number:	R20210128-20-E4A	Rev	А
labs	Prepared for:	Garmin International, Inc.		

EIRP Calculations

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)]² / 30

Power (watts) = $10^{Power} (dBm)/10] / 1000$

Voltage ($dB\mu V$) = Power (dBm) + 107 (for 50 Ω measurement systems)

Field Strength (V/m) = 10^{Field} Strength (dB μ V/m) / 20] / 10^{6}

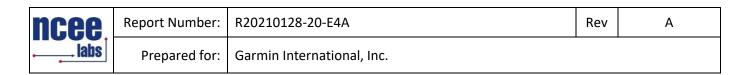
Gain = 1 (numeric gain for isotropic radiator)

Conversion from 3m field strength to EIRP (d=3):

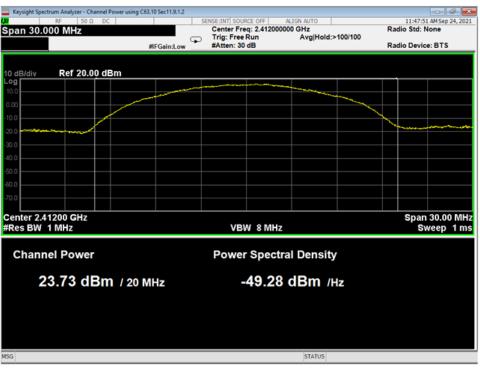
 $EIRP = [FS(V/m) \times d^2]/30 = FS[0.3]$ for d = 3

 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$

10log(10^9) is the conversion from micro to milli

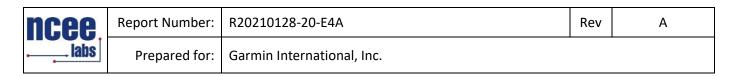


APPENDIX B - MEASUREMENT UNCERTAINTY


Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

Test	Frequency Range	Uncertainty Value (dB)
Radiated Emissions, 3m	30MHz - 1GHz	3.82
Radiated Emissions, 3m	1GHz - 18GHz	4.44
Emissions limits, conducted	30MHz – 18GHz	±3.30 dB

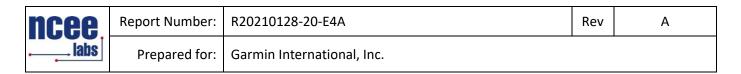
Expanded uncertainty values are calculated to a confidence level of 95%.


APPENDIX C – GRAPHS AND TABLES

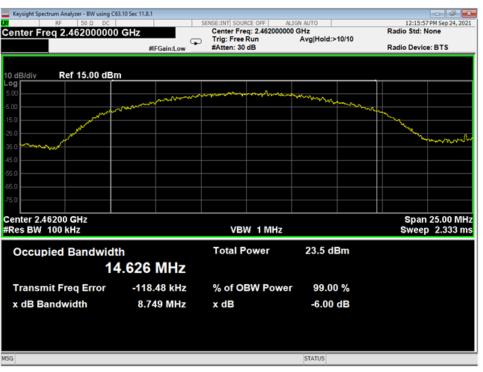


01 Pwr, Low, Wifi B

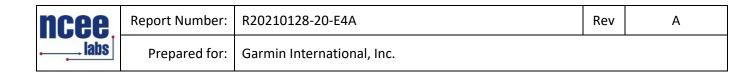
keysight Spectrum Analyzer - Channel Power RF 50 Ω DC nter Freq 2.4370000000	GHz	Center Freq: 2.43700000	LIGN AUTO 00 GHz Avg Hold:>100/100	12:03 Radio Std	244 PM Sep 24, 202 None
	#FGain:Low	Trig: Free Run #Atten: 30 dB	Avginoid:>100/100	Radio Dev	vice: BTS
dB/div Ref 20.00 dBm					
·					
nter 2.43700 GHz					an 30.00 MH
es BW 1 MHz		VBW 8 MHz			Sweep 1 m
Channel Power		Power Spectra	al Density		
21.87 dBm /	20 MHz	-51.14	dBm /Hz		

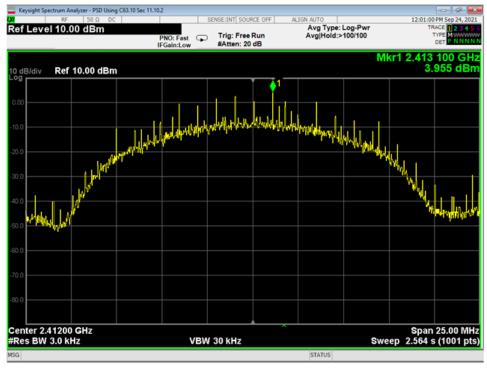


03 Pwr, High, Wifi B

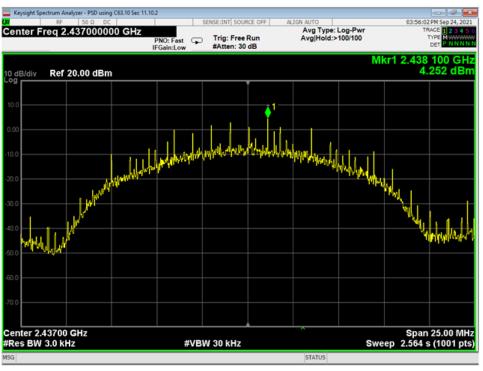


04 OBW-6dB, Low, Wifi B

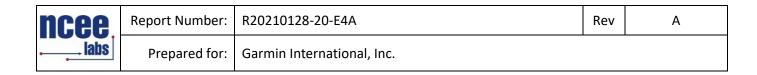


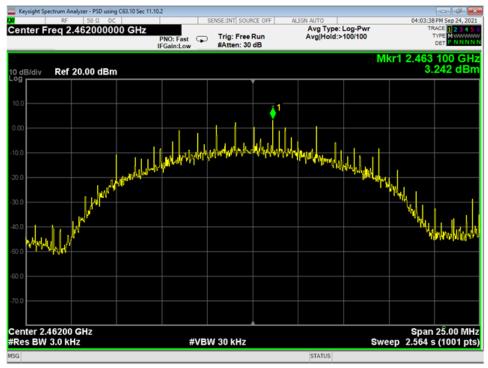


05 OBW-6dB, Mid, Wifi B

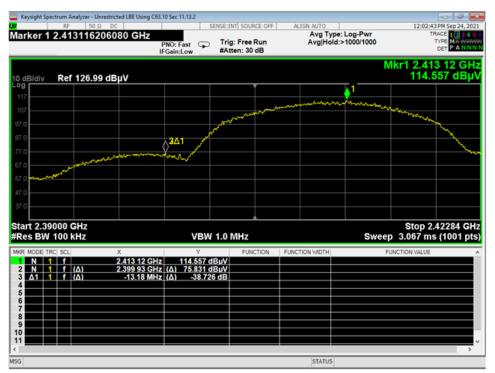


06 OBW-6dB, High, Wifi B



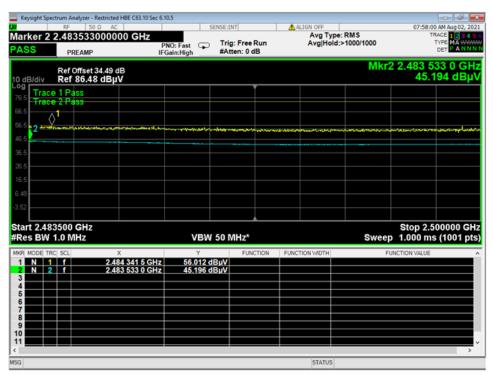


07 PSD, Low, Wifi B



08 PSD, Mid, Wifi B

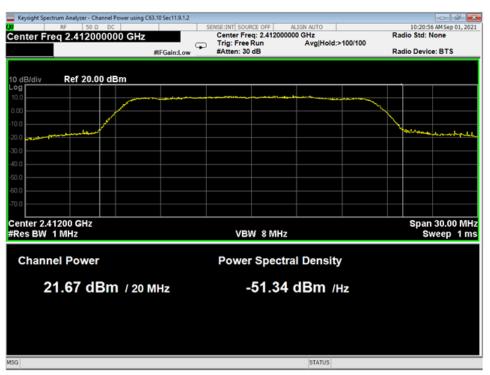
09 PSD, High, Wifi B



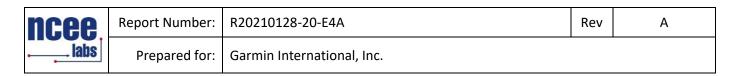
10 LBE, Unrestricted, Wifi B

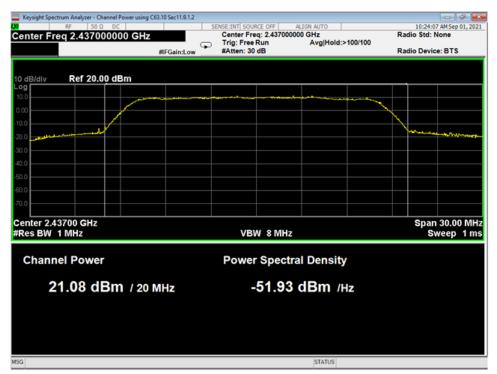
ncee.	Report Number:	R20210128-20-E4A	Rev	А
labs	Prepared for:	Garmin International, Inc.		

11 HBE, Unrestricted, Wifi B

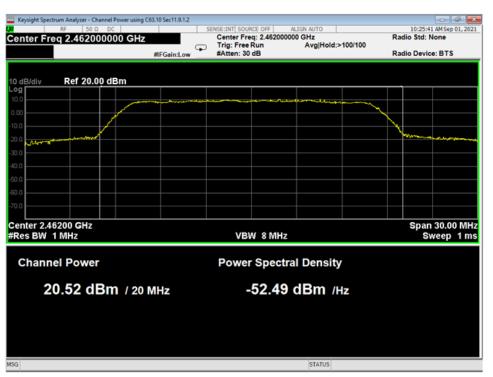


12 HBE Restricted Wifi B, 11MBps

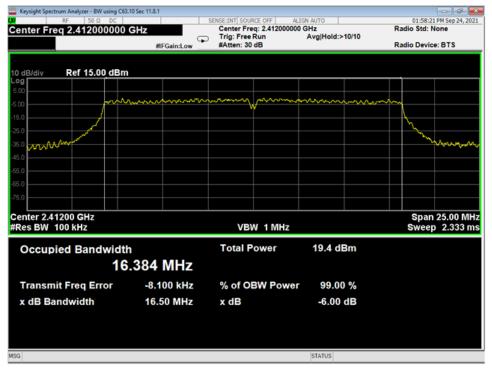

ncee.	Report Number:	R20210128-20-E4A	Rev	А
labs	Prepared for:	Garmin International, Inc.		


	n Analyzer - Restricted LBE using (ν 50 Ω AC	C63.10 Sec 6.10.5	NT	ALIGN OFF		07-54-04	👝 🕼 🔜
	PREAMP	2 PNO: Fast 🕞 Trig	g: Free Run iten: 0 dB	Avg Type: Avg Hold:>		TR	AM ADG 02, 2021 ACE 12345 YPE MA ******* DET PANNN
	ef Offset 34.35 dB ef 86.34 dBµV				M	kr2 2.388 48.5	8 67 GHz 89 dBµV
76.3 Trace 1 66.3	Pass Pass						1
46.3					Quella administration of	~~~~~ ² ~	
26.3 16.3							
-3.66							
Start 2.38000 #Res BW 1.0		#VBW 50	MHz*		Sweep	Stop 2.39 1.000 ms	00000 GHz (1001 pts
MKR MODE TRC SQ 1 N 1 1 1 2 N 2 1 1 3	2.389 28		FUNCTION	FUNCTION WIDTH	FU	NCTION VALUE	
5							
6 7 8 9							

13 LBE Restricted Wifi B, 11MBps



14 Pwr, Low, Wifi G

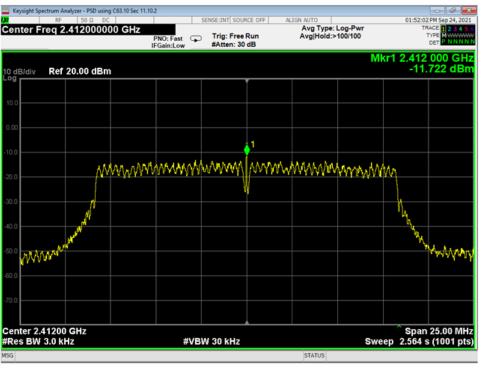


15 Pwr, Mid, Wifi G

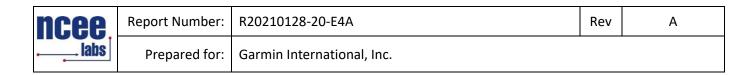


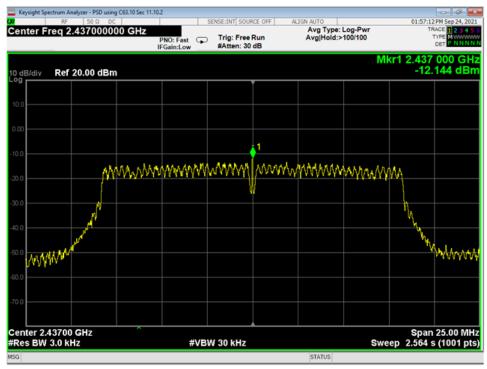
16 Pwr, High, Wifi G

17 OBW-6dB, Low, Wifi G

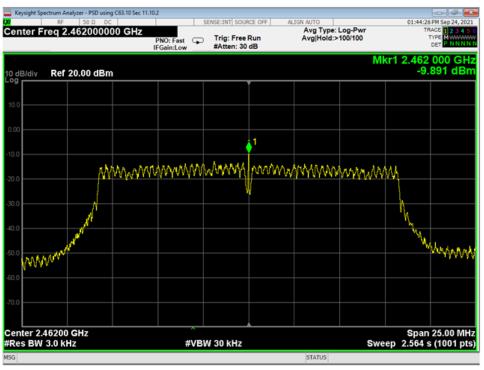


18 OBW-6dB, Mid, Wifi G

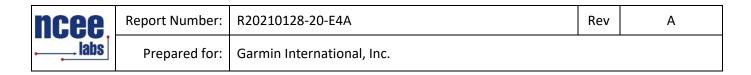




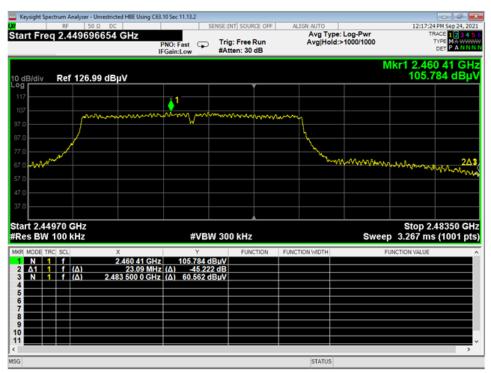
19 OBW-6dB, High, Wifi G



20 PSD, Low, Wifi G



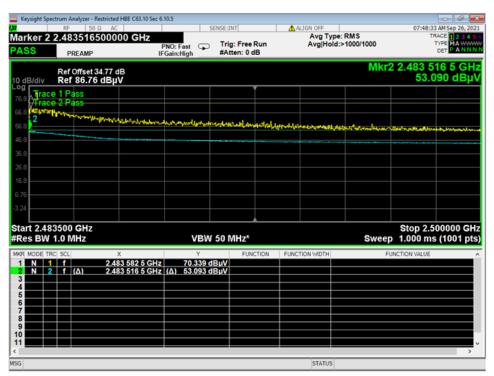
21 PSD, Mid, Wifi G



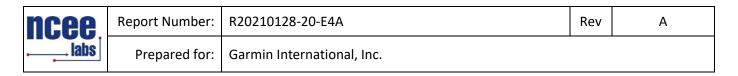
22 PSD, High, Wifi G

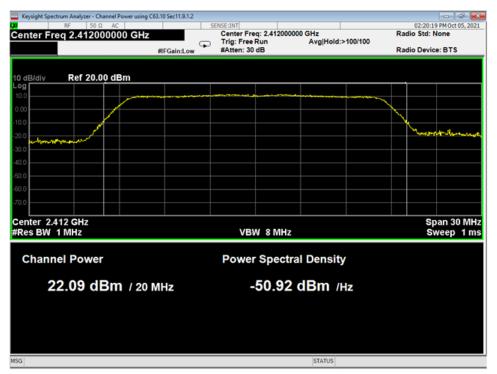
	NO Sec 11.13.2 SENSE:INT SOURCE OFF PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	ALISN AUTO AVG Type: Log-Pwr Avg Hold:>1000/1000	01:45:51 PM Sep 24, 2021 TRACE 2 34 5 6 TYPE MANNEN DET P A NNN
10 dB/div Ref 126.99 dBµV		Mk	r1 2.411 68 GHz 107.705 dBµV
117		Jun Martine	
87.0 77.0	201 WWW-		
67.0 57.0 47.0			
37.0 Start 2.39000 GHz			Stop 2.42241 GHz
#Res BW 100 kHz	VBW 1.0 MHz	· · · · · ·	3.000 ms (1001 pts)
MKR MODE TRC SCI X 1 N 1 f 2.411 68 GH; 2 N 1 f 2.411 68 GH; 3 Δ1 1 f 2.998 81 GH; 5 6 6 7 7	z 107.705 dBµV z 74.485 dBµV	UNCTION WIDTH FUNC	TION VALUE
8 9 9 10 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1		STATUS	~ ~

23 LBE, Unrestricted, Wifi G

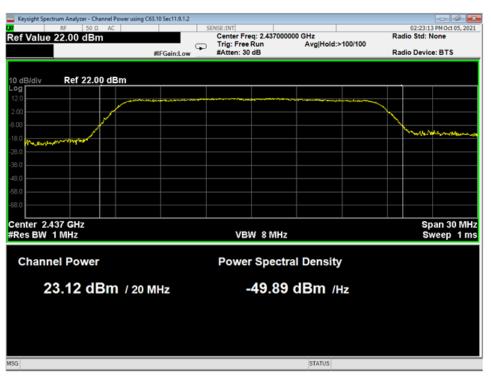


24 HBE, Unrestricted, Wifi G

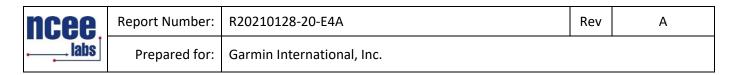

ncee.	Report Number:	R20210128-20-E4A	Rev	А
labs	Prepared for:	Garmin International, Inc.		

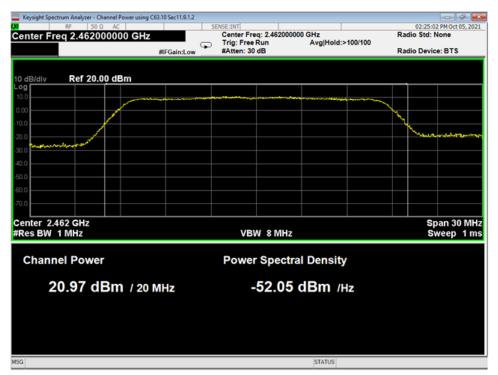

	r - Restricted LBE using C63.10 50 Ω AC	Sec 6.10.5	C-INT	ALIGN OFF		07:51:18 AM Sep 26,	
Marker 2 2.38992 PASS PREAM	0000000 GHz	PNO: Fast 🕠 T	rig: Free Run Atten: 0 dB	Avg Type: RN Avg Hold:>10		TRACE 2 3 TYPE MAW DET PAN	456
	et34.61 dB 60 dBµV				Mk	r2 2.389 92 G 46.189 dB	
76.6 Trace 1 Pass 66.6							
45.6	antapatamentananana	9,09,-9,000,00,009,009,000,004,00		ngan dinakat dinaka kata kata kata kata kata kata kata	nan algere Handhil		2
26.6							
3.40	7					Stop 2.390000 (GHZ
#Res BW 1.0 MHz		#VBW 5	0 MHz*		Sweep	1.000 ms (1001	
MKR MODE TRC SCL 1 N 1 1 2 N 2 Γ (Δ) 3 4 5 5 6	X 2,389,39 GHz 2,389 92 GHz	Υ 59,696 dBμ (Δ) 46,188 dBμ		FUNCTION WDTH	FUN	CTION VALUE	
7 8 9 10 11							>
ISG				STATUS			

25 LBE Restricted Wifi G

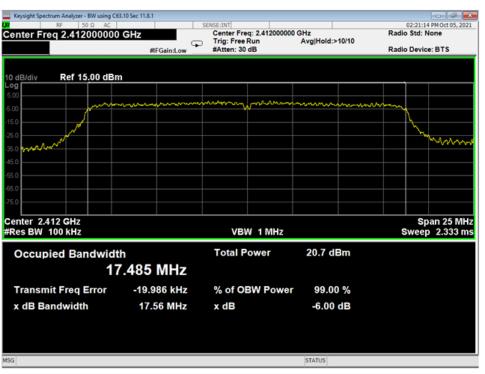


26 HBE Restricted Wifi G

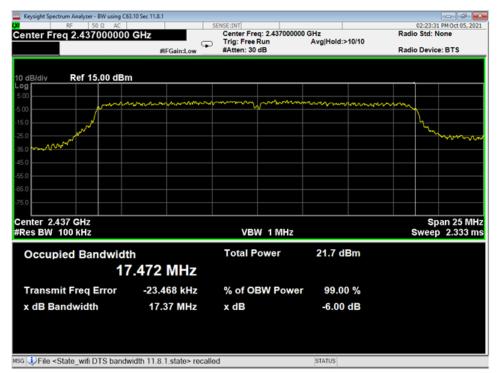




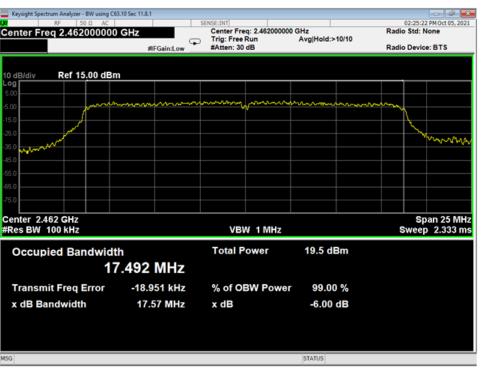
27 Power, Low, Wifi N



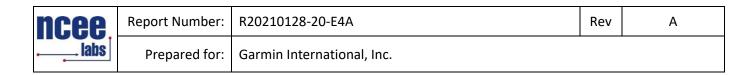
28 Power, Mid, Wifi N

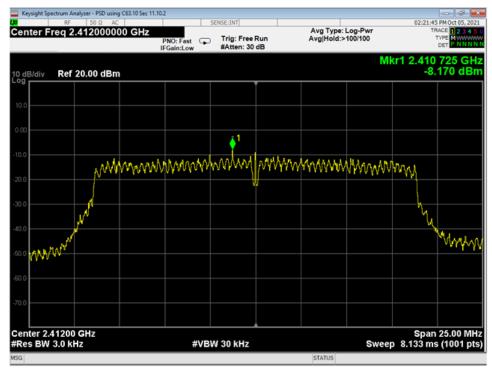


29 Power, High, Wifi N

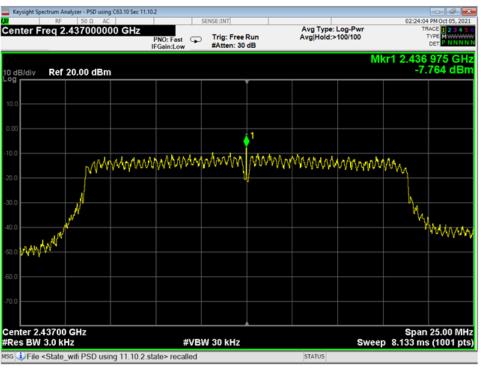


30 OBW-6dB, Low, Wifi N

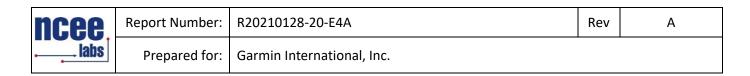


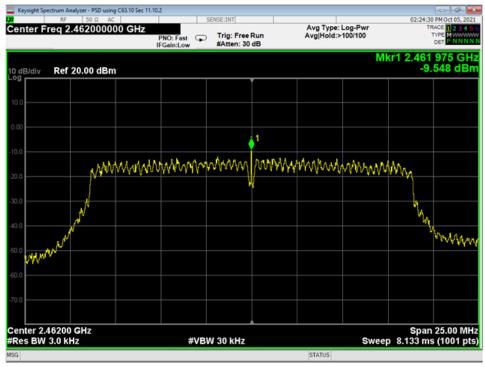


31 OBW-6dB, Mid, Wifi N



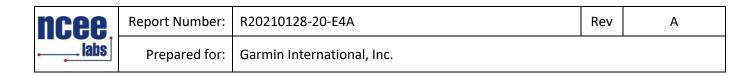
32 OBW-6dB, High, Wifi N



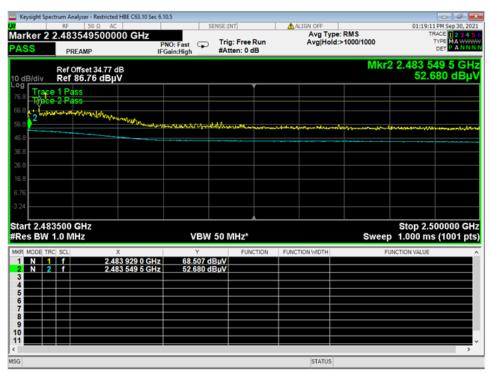


33 PSD, Low, Wifi N

34 PSD, Mid, Wifi N



35 PSD, High, Wifi N



36 Lower Band Edge, Unrestricted, Wifi N

37 Higher Band Edge, Unrestricted, Wifi N

38 Higher Band Edge, Restricted, Wifi N

ncee.	Report Number:	R20210128-20-E4A	Rev	А
labs	Prepared for:	Garmin International, Inc.		

Keysight Spectrum Analyzer - Restric				- 8 💌
RF 50 Ω Marker 2 2.390000000 PREAMP	000 GHz	SENSE:INT Trig: Free Run #Atten: 0 dB	ALIGN OFF Avg Type: RMS Avg Hold:>1000/1000	01:16:57 PM Sep 30, 2021 TRACE 2 3 4 5 6 TYPE MA ****** DET PANNNN
Ref Offset 34.61				Mkr2 2.390 00 GHz 53.927 dBµV
76.6 Trace 1 Pass 66.6 Trace 2 Pass		and and the second states of t	Margan Margan Margan	the second se
46.6				
26.6 16.6 6.60				
^{-3.40} Start 2.380000 GHz #Res BW 1.0 MHz		/BW 50 MHz*		Stop 2.390000 GHz /eep 1.000 ms (1001 pts)
MKR MODE TRC SCL	#*		FUNCTION WIDTH	FUNCTION VALUE
MAR MODE HC SCL 1 N 1 f 2 N 2 f 3 4 5 5 6 7	2.389 46 GHz 68.6	73 dBµV 26 dBµV	FUNCTION WIDTH	FUNCTION VALUE
7 8 9 10 11 <				v >
MSG			STATUS	

39 Lower Band Edge, Restricted, Wifi N

ncee.	Report Number:	R20210128-20-E4A	Rev	А
labs	Prepared for:	Garmin International, Inc.		

REPORT END