

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

FCC/ISED Test Report

Prepared for: Garmin International, Inc.

Address:

1200 E. 151st Street Olathe, Kansas, 66062, USA

Product:

A04868

Test Report No:

Approved by:

Lane

Fox Lane EMC Test Engineer

35

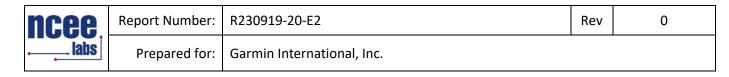
R230919-20-E2

DATE:

December 15, 2023

Total Pages:

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above-named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.


ncee.	Report Number:	R230919-20-E2	Rev	0
labs	Prepared for:	Garmin International, Inc.		

REVISION PAGE

Rev. No. Date		Description		
		Issued by FLane		
0	15 December 2023	Reviewed by KVepuri		
		Prepared by Flane/ESchmidt		

CONTENTS

Revi	sion Pag	је	2
1.0	Sum	mary of test results	4
2.0	EUT	Description	5
	2.1	Equipment under test	5
	2.2	Description of test modes	5
	2.3	Description of support units	5
3.0	Labo	pratory and General Test Description	6
	3.1	Laboratory description	6
	3.2	Test personnel	6
	3.3	Test equipment	7
	3.4	General Test Procedure and Setup for Radio Measuremnts	8
4.0	Res	ults	9
			-
	4.1	Output Power	
			10
	4.1	Output Power	10
	4.1 4.2	Output Power	10 11 12
	4.1 4.2 4.3	Output Power Bandwidth Duty Cycle	10 11 12 13
	4.1 4.2 4.3 4.4	Output Power Bandwidth Duty Cycle Radiated emissions.	10 11 12 13 18
	4.1 4.2 4.3 4.4 4.5	Output Power	10 11 12 13 18 21
Арр	 4.1 4.2 4.3 4.4 4.5 4.6 4.7 	Output Power Bandwidth Duty Cycle Radiated emissions Conducted Spurious Emissions Band edges	10 11 12 13 18 21 23
••	4.1 4.2 4.3 4.4 4.5 4.6 4.7 endix A	Output Power	 10 11 12 13 18 21 23 24
Арр	4.1 4.2 4.3 4.4 4.5 4.6 4.7 endix A endix B	Output Power	 10 11 12 13 18 21 23 24 26

1.0 SUMMARY OF TEST RESULTS

The worst-case measurements were reported in this report. Summary of test results presented in this report correspond to the following section:

FCC Part 15.247

The EUT has been tested according to the following specifications:

- (1) US Code of Federal Regulations, Title 47, Part 15
- (2) ISED RSS-Gen, Issue 5
- (3) ISED RSS-247, Issue 3

APPLIED STANDARDS AND REGULATIONS					
Standard Section	Test Type	Result			
FCC Part 15.35 RSS Gen, Issue 5, Section 6.10	Duty Cycle	Pass			
FCC Part 15.247(b)(3) RSS-247 Issue 3 Section 5.4(d)	Peak output power	Pass			
FCC Part 15.247(a)(2) RSS-247 Issue 3 Section 5.2 (a)	Bandwidth	Pass			
FCC Part 15.209 RSS-Gen Issue 5, Section 7.3	Receiver Radiated Emissions	Pass			
FCC Part 15.209 (restricted bands), 15.247 (unrestricted) RSS-247 Issue 3 Section 5.5, RSS-Gen Issue 5, Section 8.9	Transmitter Radiated Emissions	Pass			
FCC Part 15.247(e) RSS-247 Issue 3 Section 5.2 (b)	Power Spectral Density	Pass			
FCC Part 15.209, 15.247(d) RSS-247 Issue 3 Section 5.5	Band Edge Measurement	Pass			

2.0 EUT DESCRIPTION

2.1 EQUIPMENT UNDER TEST

Summary and Operating Condition:

EUT	A04868
FCC ID	IPH-04868
IC 1792A-04868	
EUT Received	24 October 2023
EUT Tested	24 October 2023 - 11 December 2023
Serial No.	3456804386 (Radiated Measurements) 3456804397 (Conducted Measurements)
Operating Band	2400 – 2483.5 MHz
Device Type	GMSK GFSK BT BR BT EDR 2MB BT EDR 3MB 802.11x
Power Supply / Voltage	12VDC External Battery

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

2.2 DESCRIPTION OF TEST MODES

The operating range of the EUT is dependent on the device type found in section 2.1:

Channel	Frequency
Low	2402 MHz
Mid	2440 MHz
High	2480 MHz

These are the only representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequencies and designations.

2.3 DESCRIPTION OF SUPPORT UNITS

None

3.0 LABORATORY AND GENERAL TEST DESCRIPTION

3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs) 4740 Discovery Drive Lincoln, NE 68521

A2LA Certificate Number:	1953.01
FCC Accredited Test Site Designation No:	US1060
Industry Canada Test Site Registration No:	4294A-1
NCC CAB Identification No:	US0177

Environmental conditions varied slightly throughout the tests:

Relative humidity of $35 \pm 4\%$ Temperature of $22 \pm 3^{\circ}$ Celsius

3.2 TEST PERSONNEL

No.	PERSONNEL	TITLE	ROLE		
1	Fox Lane	Test Engineer	Testing, Review, and Report		
2	Blake Winter	Test Engineer	Testing		
3	Ethan Schmidt	Test Technician	Testing and Report		
4	Karthik Vepuri	Test Engineer	Review/Testing		

Notes:

All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel.

Rev

0

Prepared for: Garmin International, Inc.

3.3 TEST EQUIPMENT	-		-	
DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Keysight MXE Signal Analyzer (44GHz)	N9038A	MY59050109	July 17, 2023	July 17, 2025
Keysight MXE Signal Analyzer (26.5GHz)	N9038A	MY56400083	July 17, 2023	July 17, 2025
Keysight EXA Signal Analyzer	N9010A	MY56070862	July 18, 2023	July 17, 2025
SunAR RF Motion	JB1	A091418	July 27, 2023	July 26, 2024
ETS-Lindgren Red Horn Antenna	3115	218576	July 31, 2023	July 30, 2024
EMCO Horn Antenna	3116	2576	July 31, 2023	July 30, 2024
Com-Power LISN, Single Phase	LI-220C	20070017	July 17, 2023	July 17, 2025
Agilent Preamp*	87405A	3950M00669	June 5, 2023	June 5, 2025
Rohde & Schwarz Preamplifier*	TS-PR18	3545700803	June 5, 2023	June 5, 2025
Trilithic High Pass Filter*	6HC330	23042	June 5, 2023	June 5, 2025
RF Cable (antenna to 10m chamber bulkhead)	FSCM 64639	01E3872	June 5, 2023	June 5, 2025
RF Cable (10m chamber bulkhead to control room bulkhead)	FSCM 64639	01E3874	June 5, 2023	June 5, 2025
RF Cable (control room bulkhead to test receiver)	FSCM 64639	01F1206	June 5, 2023	June 5, 2025
N connector bulkhead (10m chamber)	PE9128	NCEEBH1	June 5, 2023	June 5, 2025
N connector bulkhead (control room)	PE9128	NCEEBH2	June 5, 2023	June 5, 2025
TDK Emissions Lab Software	V11.25	700307	NA	NA
ETS – Lindgren- VSWR on 10m Chamber	10m Semi- anechoic chamber-VSWR	4740 Discovery Drive	July 30, 2020	July 30, 2024
NCEE Labs-NSA on 10m Chamber	10m Semi- anechoic chamber-NSA	NCEE-001	May 25, 2022	May 25, 2025

*Internal Characterization

Notes:

All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities.

3.4 GENERAL TEST PROCEDURE AND SETUP FOR RADIO MEASUREMNTS

Measurement type presented in this report (Please see the checked box below):

Conducted 🛛

The conducted measurements were performed by connecting the output of the transmitter directly into a spectrum analyzer using an impedance matched cable and connector soldered to the EUT in place of the antenna. Information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Figure 1 - Bandwidth Measurements Test Setup

Radiated \boxtimes

All the radiated measurements were taken at a distance of 3m from the EUT. Information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

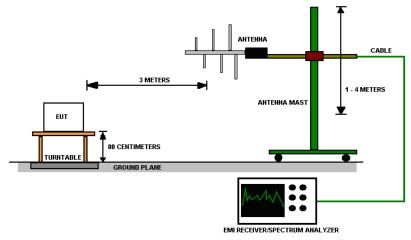


Figure 2 - Radiated Emissions Test Setup

ncee.	Report Number:	R230919-20-E2	Rev	0
labs	Prepared for:	Garmin International, Inc.		

4.0 RESULTS

			DTS Radio Mea	asurements			
CHANNEL	Transmitter	Occupied Bandwidth (kHz)	6 dB Bandwidth (kHz)	Peak OUTPUT POWER (dBm)	Peak OUTPUT POWER (mW)	PSD (dBm)	RESULT
Low	GMSK 1MB	1031.60	698.70	0.473	1.115	-15.445	PASS
Mid	GMSK 1MB	1028.50	701.30	0.979	1.253	-14.614	PASS
High	GMSK 1MB	1028.70	701.90	0.929	1.239	-15.092	PASS
Occupied Ban	dwidth = N/A; 6 dl	B Bandwidth Limit =	500 kHz	Peak Output Powe	r Limit = 30 dBı	m; PSD Limit =	8 dBm
			Unrestricted E	Band-Edge			
CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Relative Highest out of band level (dBuV)	Relative Fundamental (dBuV)	Delta (dB)	Min Delta (dB)	Result
Low	GMSK 1MB	2400.00	48.20	106.22	58.02	20.00	PASS
High	GMSK 1MB	2483.50	41.06	106.37	65.31	20.00	PASS
		1	iated Peak Restr	icted Band-Edge			
CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Highest out of band level (dBuV/m @ 3m)	Measurement Type	Limit (dBuV/m @ 3m)	Margin	Result
Low	GMSK 1MB	2390.00	49.69	Peak	73.98	24.30	PASS
High	GMSK 1MB	2483.50	50.44	Peak	73.98	23.54	PASS
Limit shown is	s the peak limit tal	ken from FCC Part 1	5.209		•	•	
		Radia	ted Average Res	stricted Band-Edge			
CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Highest out of band level (dBuV/m @ 3m)	Measurement Type	Limit (dBuV/m @ 3m)	Margin	Result
Low	GMSK 1MB	2390.00	45.88	Average	53.98	8.10	PASS
High	GMSK 1MB	2483.50	46.63	Average	53.98	7.35	PASS
Average highe	est out of band leve	t taken from FCC Pa el = Peak highest ou ation regarding duty	it of band level - [DCCF(For emissions	3)		

4.1 OUTPUT POWER

Test Method:

Power measurements were performed using ANSI C63.10, Section 11.9.2.2.2.

Limits of power measurements: For FCC Part 15.247 Device:

The maximum allowed output power is 30 dBm.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the output power plots can be found in Appendix C.
- 2. All the measurements were found to be compliant.
- 3. The measurements are listed in the tables in section 4.0.

Rev

0

Prepared for: Garmin International, Inc.

4.2 BANDWIDTH

Test Method:

All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of bandwidth measurements:

For FCC Part 15.247 Device:

The 99% occupied bandwidth is for informational purposes only. The 6dB bandwidth of the signal must be greater than 500 kHz.

Test procedures:

Details can be found in section 3.4 of this report.

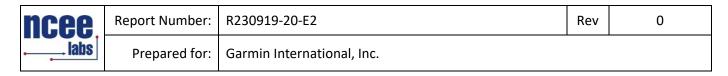
Deviations from test standard:

No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:


Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the bandwidth plots can be found in Appendix C.
- 2. All the measurements were found to be compliant.
- 3. The measurements are listed in the tables in section 4.0.

4.3 DUTY CYCLE

Test Method:

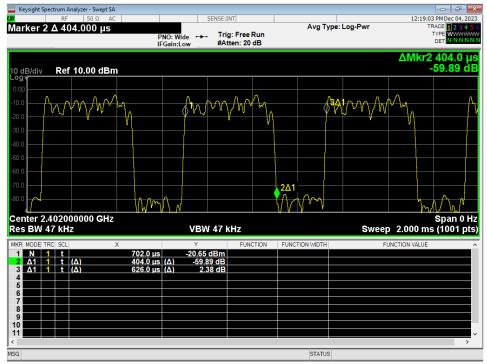


Figure 3 – Duty Cycle, GMSK 1MB

The following duty cycle and duty cycle correction factors (DCCF) were used where applicable.

Duty Cycle = ON Time / Period Duty Cycle correction factor (for emissions) = 20 * log(1 / Duty cycle) Duty Cycle correction factor (for power) = 10*log(1 / Duty Cycle)

Duty cycle for BLE GFSK:0.645Duty cycle correction factor (for emissions) for BLE GFSK:3.81dBDuty Cycle correction factor (for power) for BLE GFSK:1.90dB

4.4 RADIATED EMISSIONS

Test Method:

ANSI C63.10-2013, Section 6.5, 6.6

Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

FREQUENCIES (MHz)	FIELD STRENGTH (μV/m)	MEASUREMENT DISTANCE (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	3
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 * log * Emission level (μ V/m).

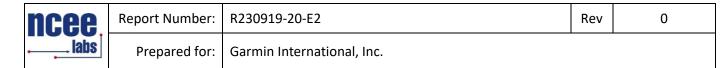
3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.

4. The EUT was tested for spurious emissions while running off of battery power and external USB power. The worst-case emissions were produced while running off of USB power, so results from this mode are presented.

Test procedures:

a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semianechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements from 30MHz-1Ghz and 1.5m for measurements from 1GHz and higher.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.


c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.

d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.

e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise, the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions.

Test setup:

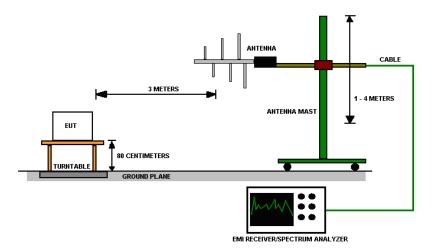


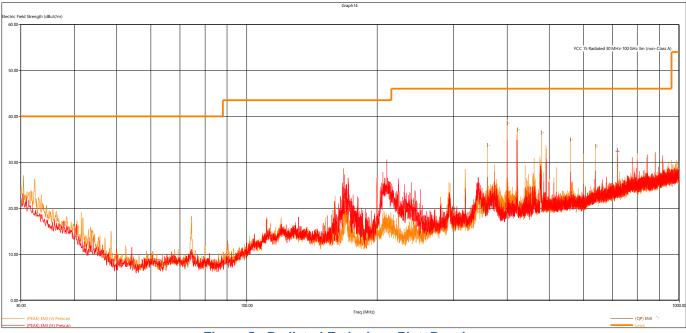
Figure 4 - Radiated Emissions Test Setup

NOTE:

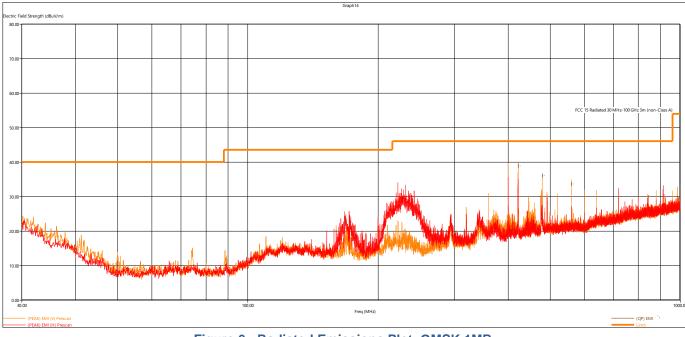
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.

2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

Deviations from test standard:


No deviation.

EUT operating conditions


Details can be found in section 2.1 of this report.

ncee.	Report Number:	R230919-20-E2	Rev	0
	Prepared for:	Garmin International, Inc.		

Test results:

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 16 of 35

ncee,	Report Number:	R230919-20-E2	Rev	0
labs	Prepared for:	Garmin International, Inc.		

Quasi-Peak Measurements, 802.11x										
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation		
MHz	dBµV/m	dBµV/m	dB	cm.	deg.					
421.783440	38.70	46.02	7.32	134.83	360.25	۷	Low	GMSK 1MB		
479.991600	35.99	46.02	10.03	105.58	197.75	V	Low	GMSK 1MB		
560.023440	33.59	46.02	12.43	105.28	159.50	V	Low GMSK 1ME			
719.986080	32.33	46.02	13.69	103.91	135.25	Н	Receive			
360.000480	33.68	46.02	12.34	124.02	173.25	V	Receive			
399.989040	38.45	46.02	7.57	124.44	180.25	V	I	Receive		
421.745040	37.01	46.02	9.01	119.01	0.00	V	I	Receive		
479.984160	36.39	46.02	9.63	108.14	187.00	V	Receive			
560.016000	34.91	46.02	11.11	104.32	156.75	V	Receive			
639.988800	33.54	46.02	12.48	156.62	192.25	V	ŀ	Receive		

The EUT was maximized on all 3 orthogonal axes. The worst-case is shown in the plot(s) and table above. All other measurements were found to be at least 6 dB Below the limit.

Rev

0

4.5 CONDUCTED SPURIOUS EMISSIONS

Test Method:

ANSI C63.10-2013, Section 6.7

Limits of spurious emissions: From FCC Part 15.247:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

Test procedures:

The highest emissions level was measured and recorded. All spurious measurements were evaluated to 30dB below the fundamental. More details can be found in section 3.4 of this report. The line shown in the plots is a reference line placed at -20dBm.

Deviations from test standard:

None.

Test setup:

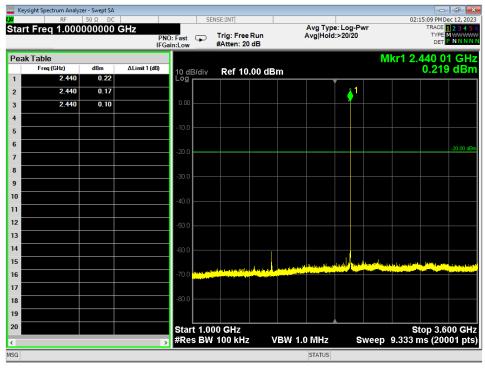
Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Data rates and channels were investigated, and worst case was reported. no emissions exceeded the limits.


Rev

0

Prepared for: Garmin International, Inc.

Keysight Spectrum Anal	yzer - Swept SA 50 Ω DC		12	ENSE:INT				02:17:	
start Freq 30.0		PNC	D:Fast 🖵	Trig: Free Run #Atten: 20 dB		Avg Type: Avg Hold:>	Log-Pwr 100/100		TYPE MWWWW DET P S N N N
Peak Table									0.68 MH
Freq (GHz)	dBm	ΔLimit 1 (dB)	10 dB/div	Ref 10.00 (dBm			-67	.705 dBn
2						Ť			
			0.00						
3									
			-10.0						
5									
7			-20.0						-20.00 dE
8									
9			-30.0						
10									
11			-40.0						
12									
12			-50.0						
14									
15			-60.0						<u>^</u> 1
16			-70.0	an a		1	1.1	والمتعادية والمتعادية والمتعاد	a a state to be a state of the
17			and the second s	an a	and the second states of the		engeneration in page of a	a share and	and the second second
18			-80.0						
19									
20								0.1	1 0000 84
			Start 0.0 #Res BM	300 GHZ / 100 kHz	VBW 1.	0 MHz	Sween	5top 4.000 ms	1.0000 GH
sg		>	artes Dr.	100 1112		STATUS	өмсср	1.000 1115	(Ecolori pia
0						51A105			

Keysight Spectrum Analyzer - Swept SA

Peak Table

Eren (GHz

Start Freq 3.600000000 GHz

0

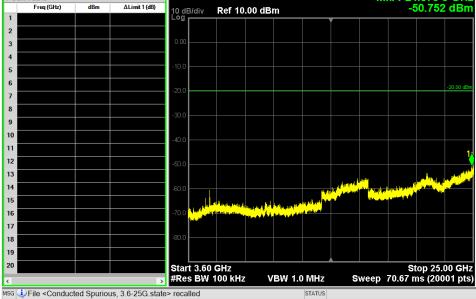


Figure 9 - Radiated Emissions Plot, GMSK 1MB, 3.6G – 25G, Mid Channel

Rev

0

Prepared for: Garmin International, Inc.

4.6 BAND EDGES

Test Method:

All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of band-edge measurements:

For FCC Part 15.247 Device:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

Test procedures:

The highest emissions level beyond the band-edge was measured and recorded. All band edge measurements were evaluated to the general limits in Part 15.209. More details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the band edge plots can be found in Appendix C.
- 2. If the device falls under FCC Part 15.247 (Details can be found in summary of test results), compliance is shown in the unrestricted band edges by showing minimum delta of 20 dB between peak and the band edge.
- 3. The restricted band edge compliance is shown by comparing it to the general limit defined in Part 15.209. The limit shown in the graph accounts for the antenna gain of the device.

4.7 **POWER SPECTRAL DENSITY**

Test Method:

All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of power measurements:

For FCC Part 15.247 Device:

The maximum PSD allowed is 8 dBm.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the Power Spectral Density (PSD) plots can be found in Appendix C.
- 2. All the measurements were found to be compliant.
- 3. The measurements are listed in the tables in section 4.0.

ncee.	Report Number:	R230919-20-E2	Rev	0
labs	Prepared for:	Garmin International, Inc.		

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor, Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows: FS = RA + AF - (-CF + AG) + AV

Where FS = Field Strength

RA = Receiver Amplitude

- AF = Antenna Factor
- CF = Cable Attenuation Factor
- AG = Amplifier Gain
- AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB μ V/m.

 $FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \text{ dB}\mu\text{V/m}$

The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20]= 254.1 μ V/m

AV is calculated by taking the $20*\log(T_{on}/100)$ where T_{on} is the maximum transmission time in any 100ms window.

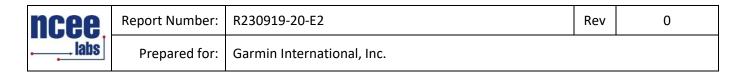
ncee.	Report Number:	R230919-20-E2	Rev	0
labs	Prepared for:	Garmin International, Inc.		

EIRP Calculations

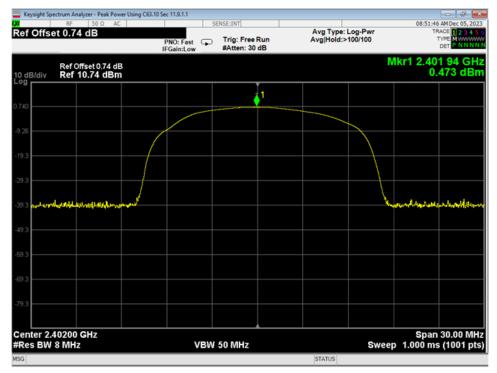
In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)]² / 30 Power (watts) = $10^{Power} (dBm)/10$] / 1000Voltage (dB μ V) = Power (dBm) + 107 (for 50Ω measurement systems) Field Strength (V/m) = 10^{Field} Strength (dB μ V/m) / 20] / 10^{6} Gain = 1 (numeric gain for isotropic radiator) Conversion from 3m field strength to EIRP (d=3):

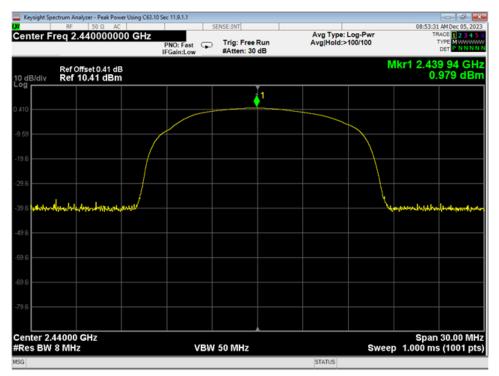
 $EIRP = [FS(V/m) \times d^2]/30 = FS [0.3]$ for d = 3 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$ $10log(10^9)$ is the conversion from micro to milli



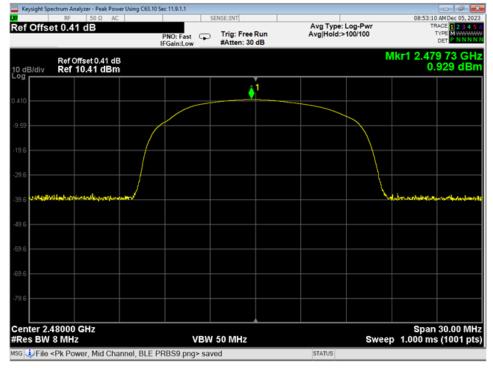
APPENDIX B - MEASUREMENT UNCERTAINTY


Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

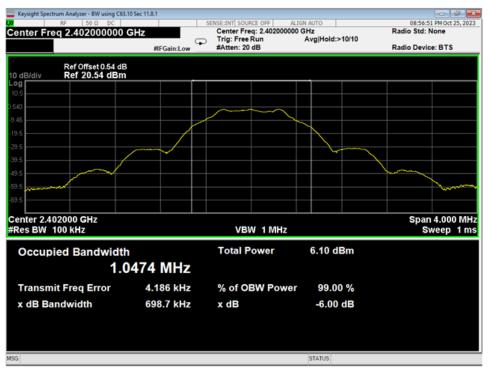
Test	Frequency Range	Uncertainty Value (dB)
Radiated Emissions, 3m	30MHz - 1GHz	±4.31
Radiated Emissions, 3m	1GHz - 18GHz	±5.08
Emissions limits, conducted	30MHz – 18GHz	±3.03


Expanded uncertainty values are calculated to a confidence level of 95%.

APPENDIX C – GRAPHS AND TABLES



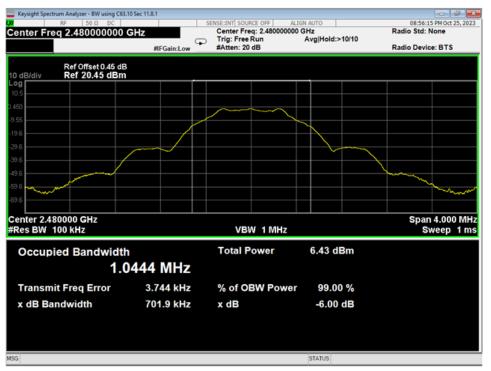
01 Pk Power, Low Channel, BLE PRBS9



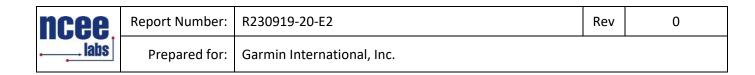
02 Pk Power, Mid Channel, BLE PRBS9

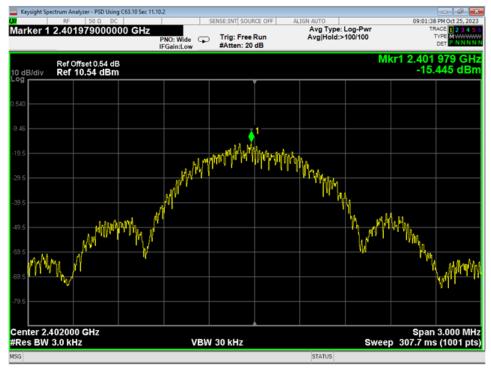
ncee.	Report Number:	R230919-20-E2	Rev	0
labs	Prepared for:	Garmin International, Inc.		

03 Pk Power, High Channel, BLE PRBS9

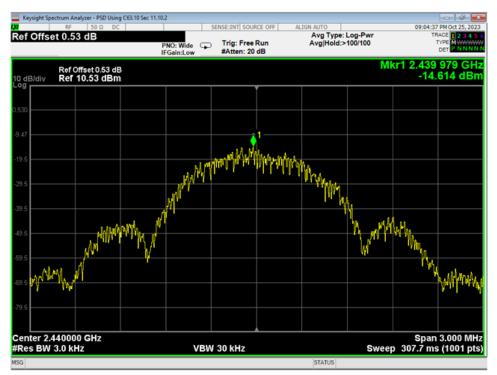


04 6dB Bandwidth, Low Channel, BLE PRBS9

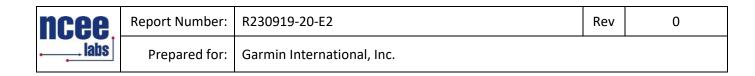


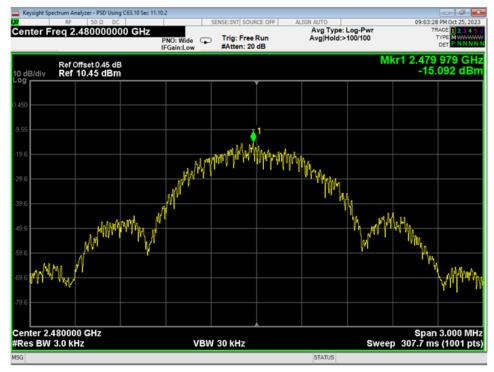


05 6dB Bandwidth, Mid Channel, BLE PRBS9

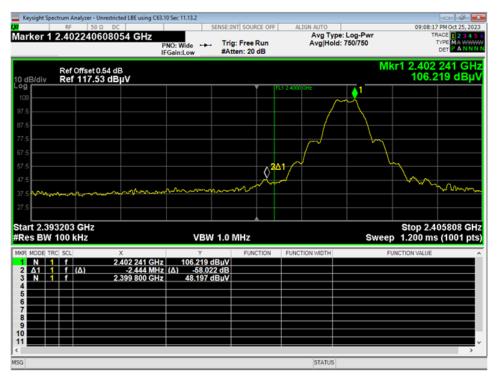


06 6dB Bandwidth, High Channel, BLE PRBS9

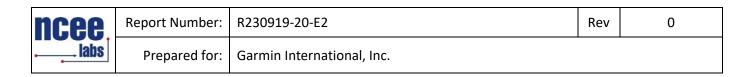


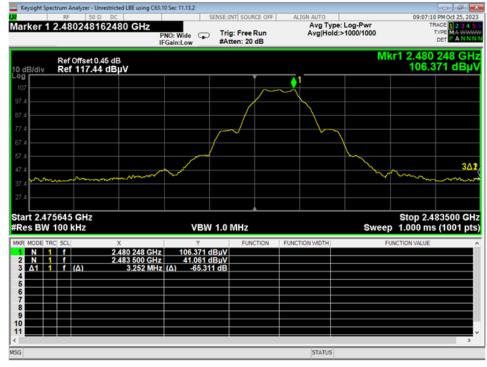


⁰⁷ PSD, Low Channel, BLE PRBS9

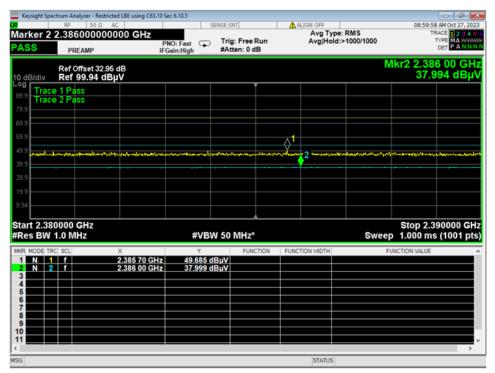


08 PSD, Mid Channel, BLE PRBS9

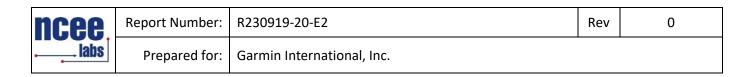


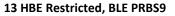


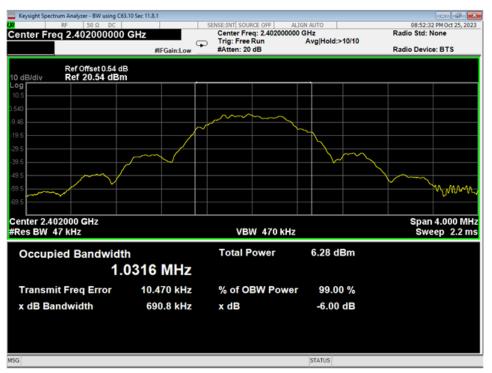
09 PSD, High Channel, BLE PRBS9



10 LBE Unrestricted, BLE PRBS9

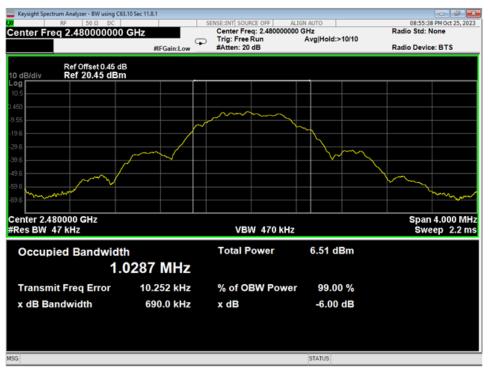



11 HBE Unrestricted, BLE PRBS9



12 LBE Restricted, BLE PRBS9

Keysight Spec	trum Analyzer - Restricte								-
	RF 50 Ω A		S	ENSE:INT	<u>∧</u> µ	ALIGN OFF Avg Type:	DMS		AM Oct 27, 2023
PASS	2.483500000	Р	NO: Fast 😱 Gain:High	Trig: Free R #Atten: 0 dB		Avg Hold:>			DET PANNN
10 dB/div	Ref Offset 33.4 d Ref 100.39 dE						Mkr	2 2.483 6 38.8	81 5 GHz 99 dBµV
	e 1 Pass e 2 Pass								
70.4									
50.4	والمراجع المراجع المراجع ومراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع			der ditus d'anna dage t	-2dta-/14			and a second	an an the the second
30.4									
10.4									
Start 2.48 #Res BW			VBW	50 MHz*			Sweep	Stop 2.5 1.000 ms	00000 GHz (1001 pts)
MKR MODE TR		X	Y	FUNCT	ION FUNC	TION WIDTH	FL	INCTION VALUE	^
1 N 1 2 N 2 3		.479 760 GHz 83 681 5 GHz	d 38.897 d	IBμV IBμV					
4 5 6									
7 8 9									
11									>
MSG						STATUS			



14 Occupied Bandwidth, Low Channel, BLE PRBS9

15 Occupied Bandwidth, Mid Channel, BLE PRBS9

16 Occupied Bandwidth, High Channel, BLE PRBS9

ncee.	Report Number:	R230919-20-E2	Rev	0
labs	Prepared for:	Garmin International, Inc.		

REPORT END