

Test Report Serial Number: Test Report Date: Project Number:

45461934 R1.0 15 May 2024

1652

SAR Test Report - New Application

Applicant:

Garmin International Inc. 1200 East 151 St. Olathe, KS, 66062 USA

FCC ID:

IPH-04854

Product Model Number / HVIN

A04854

Maximum <u>reported</u> SAR									
Body	DTS	0.21							
(1g)	DSS	0.11							
(19)	UNII	1.47							
General Po	op. Limit:	1.60	\A//I.a.						
Extremity	DTS	0.15	W/kg						
(10g)	DSS	<0.1							
(109)	UNII	0.90							
General Po	op. Limit:	4.00							

IC Registration Number

Product Name / PMN A04854

In Accordance With:

FCC 47 CFR §2.1093

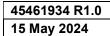
Radiofrequency Radiation Exposure Evaluation: Portable Devices

Approved By:

Ben Hewson, President

Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8 Canada

Industry


Test Lab Certificate: 2470.01

IC Registration 3874A

This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc.

FCC Registration: CA3874

© 2024 Celltech Labs Inc,

Table of Contents

1.0 REVISION HISTORY	4
2.0 CLIENT AND DEVICE INFORMATION	5
3.0 SCOPE OF EVALUATION	6
4.0 NORMATIVE REFERENCES	7
5.0 STATEMENT OF COMPLIANCE	8
6.0 SAR MEASUREMENT SYSTEM	9
7.0 RF CONDUCTED POWER MEASUREMENT	10
Table 7.1 Conducted Power Measurements, WLAN, BT, U-NII	10
8.0 NUMBER OF TEST CHANNELS (Nc)	11
TABLE 8.1 NUMBER OF TEST CHANNELS TABLE 8.2 ANTENNA DISTANCES TABLE 8.3 BODY SAR TEST EXCLUSION WORKCHART TABLE 8.4 EXTREMITY SAR TEST EXCLUSION WORKCHART	12
9.0 ACCESSORIES EVALUATED	14
Table 9.1 Manufacturer's Accessory List	14
10.0 SAR MEASUREMENT SUMMARY	15
Table 10.1: Measured Results – Body 1g	
11.0 SCALING OF MAXIMUM MEASURE SAR	17
TABLE 11.1 SAR SCALING 1G	
12.0 SAR EXPOSURE LIMITS	20
Table 12.1 Exposure Limits	20
13.0 DETAILS OF SAR EVALUATION	21
13.1 DAY LOG	
14.0 MEASUREMENT UNCERTAINTY	26
Table 14.1 Measurement Variablity	
15.0 FLUID DIELECTRIC PARAMETERS	27
TABLE 15.1 FLUID DIELECTRIC PARAMETERS 2450MHz HEAD TSL	27
16.0 SYSTEM VERIFICATION TEST RESULTS	29

Test Report Issue Date: 15 May 2024

45461934 R1.0 15 May 2024

TABLE 16.1 - 2450MHz	29
Table 16.2 - 5250MHz	30
Table 16.3 - 5750MHz	31
17.0 SYSTEM VALIDATION SUMMARY	32
Table 17.1 System Validation Summary	32
18.0 MEASUREMENT SYSTEM SPECIFICATIONS	33
Table 18.0 Measurement System Specifications	33
19.0 TEST EQUIPMENT LIST	35
Table 19.1 Equipment List and Calibration	35
20.0 FLUID COMPOSITION	36
Table 20.1 Fluid Composition 2450MHz HEAD TSL	
Table 20.2 Fluid Composition 5250, 5750MHz HEAD TSL	
END OF REPORT	36
APPENDIX A – SYSTEM VERIFICATION PLOTS	37
APPENDIX B – MEASUREMENT PLOTS OF MAXIMUM MEASURED SAR	43
APPENDIX C - SETUP PHOTOS	51
FIGURE C.1 – SETUP PHOTO, EXTREMITY - BACK TOUCH – FAR	
FIGURE C.2 – SETUP PHOTO, EXTREMITY - BACK TOUCH –CLOSE	
FIGURE C.3 – SETUP PHOTO, EXTREMITY - FRONT - FAR	
FIGURE C.4 – SETUP PHOTO, EXTREMITY - FRONT - CLOSE	
FIGURE C.5 – SETUP PHOTO, EXTREMITY - LEFT EDGE - FAR	
FIGURE C.6 — SETUP PHOTO, EXTREMITY - LEFT EDGE - CLOSE	
FIGURE C.7 – SETUP PHOTO, BODY - BACK - FAK	
APPENDIX E – PROBE CALIBRATION	
APPENDIX F – DIPOLE CALIBRATION	60
APPENDIX G - PHANTOM	61

45461934 R1.0 15 May 2024

1.0 REVISION HISTORY

Revision History												
Samples Tested By:		Ben Hewson/Trevor Whillock	Dat	9,12-13,19 March 2024								
Report Prepared By:		Ben Hewson	Report Reviewed By:		Art Voss							
Report	Report Description of Revision		Revised	Revised	Revision Date							
Revision	Desc	ription of Revision	Section	Ву	itevision bate							
0.1		Draft	n/a	Ben Hewson	10 May 2024							
1.0		Initial Release	n/a	Ben Hewson	15 May 2024							

2.0 CLIENT AND DEVICE INFORMATION

Client Information								
Applicant Name	Garmin International Inc.							
	1200 East 151 St							
Applicant Address	Olathe, KS, 66062							
	USA							
	DUT Information							
Device Identifier(s):	FCC ID: IPH-04854							
Device Model(s) / HVIN:	A04854							
Device Marketing Name / PMN:	A04854							
Test Sample Serial No.:	OTA: 8BV000012 COND: 8BV000010							
Device Type:	Personal Navigation Device							
	PCS Licensed Transmitter (PCB)							
	Digital Transmission System (DTS)							
FCC Equipment Class:	Part 15 Spread Spectrum Transmitter (DSS)							
	Unlicensed National Information Infrastructure (NII)							
	Short Range Devices (SRD)							
	BT (DTS, DSS): 2402-2480MHz							
Transmit Frequency Range:	WiFi (DTS): 2412-2462MHz							
	U-NII-1: 5180 - 5240, U-NII-3: 5745-5825							
	BT BR (DSS): 8.5 dBm							
	BT 2EDR (DTS): 6 dBm							
	BT 3EDR (DTS): 6 dBm							
	BT LE (DTS): 6 dBm							
	802.11b (DTS): 17 dBm							
	802.11g (DTS): 17 dBm							
	802.11n (DTS): 18 dBm							
Manuf. Max. Rated Output Power:	U-NII-1/802.11a20: 17 dBm							
	U-NII-1/802.11n20: 16.5 dBm							
	U-NII-1/802.11n40: 16.5 dBm							
	U-NII-1/802.11ac80: 16.5 dBm							
	U-NII-3/802.11a20: 14 dBm							
	U-NII-3/802.11n20: 14 dBm							
	U-NII-3/802.11n40: 14 dBm							
	U-NII-3/802.11ac80: 14 dBm							
Antenna Type and Gain:	PIFA 2.4GHz 3.5dBi, 5GHz UNII-1: 4.1dBi, UNII-3: 3.7dBi							
	BT BR: GFSK							
	BT 2EDR: π/4-DQPSK							
Modulation:	Bt 3EDR: 8DPSK							
	BLE: GMSK							
	WiFi: CCK, DSSS, OFDM, CCK, MCS							
DUT Power Source:	5V USB, Internal Li-lon Battery							
DUT Dimensions [LxWxH]	L xW xH: 200mm x125mm x16mm							
Deviation(s) from standard/procedure:	None							
Modification of DUT: * Information on antenna gain provided	None							

^{*} Information on antenna gain provided by applicant.

45461934 R1.0 15 May 2024

3.0 SCOPE OF EVALUATION

This Certification Report was prepared on behalf of:

Garmin International Inc.

The A04854 FCC ID: IPH-04854, is a Low Power Digital Transmitter that offers use as a hand-held, transportation mounted or portable configuration, with a Wi-Fi transceiver that is capable of operating in the 2.4GHz WiFi, 5GHz U-NII-1 & 3 frequency bands as well as 2.4Ghz BT/BLE frequency bands. The device has one inter-laced antenna, for the 2.4GHZ and a 5Ghz frequencies. The device is intended for General Population Use. The product operates from an internal proprietary Li-ion rechargeable battery which can be connected to a compliant USB interface port, AC or DC adapter for charging. Test samples provided by the manufacturer were capable of transmitting at select frequencies and modulations preset by the manufacturer. An additional antenna modification was prepared for one sample allowing the ability to connect test equipment for antenna port conducted power analysis.

Application:

This is an application for a new device certification.

Scope:

The scope of this evaluation limited to the evaluation of SAR for intended and non-intended applications. It will include evaluation of the 2.4 GHz WiFi, U-NII transmitters for all required RF exposure configurations including Extremity and certain Body Configuration as the device may be operational while in hand or on person.

The Test Plan developed for this evaluation is based on the required test channels and configurations which produced the highest worst case SAR and where applicable, SAR test reduction and/or SAR test exclusion may be utilized. The DUT was evaluated for SAR at the maximum tune up tolerance and conducted output power level, preset by the manufacturer and in accordance with the procedures described in IEC/IEEE 62209-1528, FCC KDB 447498 and FCC KDB 248227.

45461934 R1.0 15 May 2024

4.0 NORMATIVE REFERENCES

Normative References*										
ANSI / ISO 17025	General Requirements for competence of testing and calibration laboratories									
FCC CFR Title 47 Part 2	Code of Federal Regulations									
Title 47:	Telecommunication									
Part 2.1093:	Radiofrequency Radiation Exposure Evaluation: Portable Devices									
IEC International Standard	/IEEE International Committee on Electromagnetic Safety									
IEC/IEEE 62209-1528	Measurement procudeure for the assessment of sepcific absorption rate of human expoure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1528; Human models, insturmentation, and procedures (Frequency range of 4 MHz to 10 GHz)									
FCC KDB										
KDB 865664 D01v01r04	SAR Measurement Requirements for 100MHz to 6GHz									
FCC KDB										
KDB 447498 D04v01	Interim General RF Exposure Guidance									
FCC KDB										
KDB 248227 D01v02r02	SAR Guidance for IEEE 802.11 (WiFi) Transmitters									
* When the issue number	or issue date is omitted, the latest version is assumed.									

45461934 R1.0 15 May 2024

5.0 STATEMENT OF COMPLIANCE

This measurement report demonstrates that samples of the product model(s) were evaluated for Specific Absorption Rate (SAR) on the date(s) shown, in accordance with the Measurement Procedures cited and were found to comply with the Standard(s) Applied based on the Exposure Limits of the Use Group indicated for which the product is intended to be used.

Applicant:	Model / HVIN:								
Garmin International Inc.	A04854								
Standard(s) Applied:	Measurement Procedure(s):								
FCC 47 CFR §2.1093	FCC KDB 865664, FCC KDB 447498, FC	C KDB 248227							
	IEC/IEEE Standard 62209-1528								
Reason For Issue:	Use Group:	Limits Applied:							
x New Certification	x General Population / Uncontrolled	x 1.6W/kg - 1g Volume							
Class I Permissive Change		8.0W/kg - 1g Volume							
Class II Permissive Change	Occupational / Controlled	x 4.0W/kg - 10g Volume							
Reason for Change:		Date(s) Evaluated:							
		9, 12-13, 19 March 2024							

The results of this investigation are based solely on the test sample(s) provided by the applicant which was not adjusted, modified or altered in any manner whatsoever except as required to carry out specific tests or measurements. A description of the device, operating configuration, detailed summary of the test results, methodologies and procedures used during this evaluation, the equipment used and the various provisions of the rules are included in this test report.

I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.

Ben Hewson Celltech Labs Inc.

> 10 May 2024 Date

6.0 SAR MEASUREMENT SYSTEM

SAR Measurement System

Celltech Labs Inc. SAR measurement facility employs a Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY6 measurement system is comprised of the measurement server, a robot controller, a computer, a near-field probe, a probe alignment sensor, an Elliptical Planar Phantom (ELI) phantom and a specific anthropomorphic mannequin (SAM) phantom for Head and/or Body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller and a teach pendant (Joystick) to control the robot's servo motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical form the DAE to digital electronic signal and transfers data to the DASY6 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gainswitching multiplexer, a fast 16-bit AD-converter, a command decoder and a control logic unit. Transmission to the DASY6 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot utilizes a controller with built in VME-bus computer.

DASY 6 SAR System

DASY 6 Measurement Controller

7.0 RF CONDUCTED POWER MEASUREMENT

Table 7.1 Conducted Power Measurements, WLAN, BT, U-NII

				Co	nducted Powe	er Measur	ements						
						Bit	Measured	Rated	Rated		Duty	Crest	SAR Test
Band	Mode	Bandwidth	Channel	Frequency	Modulation	Rate	Power	Power	Power	Delta	Cycle	Factor	Channel
		(MHz)		(MHz)		(Mbps)	(dBm)	(dBm)	(W)	(dB)	(%)	(1/DC)	(Y/-)
			1	2412	1		16.45	17.00	0.050	-0.55	99.5	1.01	-
	802.11b	20	6	2437	DSSS	1	16.88	17.00	0.050	-0.12	99.5	1.01	-
			11	2462	OFDM		16.90	17.00	0.050	-0.10	99.5	1.01	-
	000.44	00	1	2412			16.28	17.00	0.050	-0.72	97.3	1.03	-
WLAN 2.4G	802.11g	20	6	2437	OFDM	6	16.75	17.00	0.050	-0.25	97.3	1.03	Υ
			11	2462			16.83	17.00	0.050	-0.17	97.3	1.03	-
	000.44	00	1	2412	1400	_	16.70	18.00	0.063	-1.30	97.1	1.03	-
	802.11n	20	6	2437	MCS	0	17.16	18.00	0.063	-0.84	97.1	1.03	-
			11 2	2462 2402			17.18 7.18	18.00 8.50	0.063	-0.82 -1.32	97.1 77.1	1.03	-
	BR	1	41	2402	GFSK	_	8.47	8.50	0.007	-0.03	77.1	1.30	-
	DIX	'	80	2480	GI SIK	_	6.76	8.50	0.007	-1.74	77.1	1.30	-
	2EDR		2	2402			4.29	6.00	0.007	-1.74	77.1	1.30	-
		1	41	2441	Pi/4-DQPSK	_	5.11	6.00	0.004	-0.89	77.1	1.30	_
ВТ			80	2480			4.55	6.00	0.004	-1.45	77.1	1.30	_
		1	2	2402	8DPSK		4.57	6.00	0.004	-1.43	77.1	1.30	-
	3EDR		41	2441		-	5.27	6.00	0.004	-0.73	77.1	1.30	-
			80	2480			4.26	6.00	0.004	-1.74	77.1	1.30	-
	LE	1	37	2402	GFSK	-	6.01	6.00	0.004	0.01	77.1	1.30	-
			39	2480			5.65	6.00	0.004	-0.35	77.1	1.30	-
			36	5180		6	16.57	17.00	0.050	-0.43	97.3	1.03	-
	802.11a	20	40	5200	OFDM		16.87	17.00	0.050	-0.13	97.3	1.03	-
	002	20	44	5220	0.5		16.89	17.00	0.050	-0.11	97.3	1.03	-
			48	5240			16.77	17.00	0.050	-0.23	97.3	1.03	-
11.501.4			36	5180			16.20	16.50	0.045	-0.30	96.8	1.03	-
U-NII-1	802.11n	20	40	5200 5220	MCS	0	16.34	16.50	0.045	-0.16 -0.24	96.8	1.03	- Y
			44 48	5220			16.26	16.50	0.045	-0.24 -0.14	96.8 96.8	1.03 1.03	
			36	5180			16.36 15.87	16.50 16.50	0.045	-0.14	95.6	1.05	-
	802.11n40	40	44	5220	MCS	0	16.04	16.50	0.045	-0.63	95	1.05	-
	802.11ac80	80	36	5180	MCS	0	16.04	16.50	0.045	-0.46	91	1.10	
	002.114000	- 00	149	5745	11100		13.46	14.00	0.025	-0.54	97.3	1.03	-
			153	5765	1		13.38	14.00	0.025	-0.62	97.3	1.03	-
	802.11a	20	157	5785	OFDM	6	13.32	14.00	0.025	-0.68	97.3	1.03	-
			161	5805]		13.46	14.00	0.025	-0.54	97.3	1.03	Υ
U-NII-3			165	5825			13.56	14.00	0.025	-0.44	97.3	1.03	-
	802.11n	20	161	5805	MCS	0		14.00	0.025	-14.00	97.3	1.03	-
	802.11n40	40	151	5755	MCS	0		14.00	0.025	-14.00	95	1.05	-
	802.11n40	40	159	5795	MCS	0		14.00	0.025	-14.00	95	1.05	-
	802.11ac80	80	155	5775	MCS	0		14.00	0.025	-14.00	91	1.10	-

The rated power and tolerance are stated for typical transmission modes and data rates. Some modes and data rates may produce lower than rated conducted power levels. Power measurements taken across the various channels, modes and data rates did not produce levels in excess of the Rated Power plus Tolerance. SAR was evaluated using the power level setting specified by the manufacture to be the max output power and produce the most conservative SAR. SAR was evaluated at the <u>maximum average</u> tune up tolerance. See section 2.0 Client and Device Information for details. The <u>reported</u> SAR was not scaled down.

45461934 R1.0 15 May 2024

8.0 NUMBER OF TEST CHANNELS (Nc)

Table 8.1 Number of Test Channels

The intended use of the device is to be mounted on a vehicle' dashboard; however, the device could transmit while held in hand or on person. As such the device was evaluated for both Body and Extremity use.

Wi-FI SAR Evaluation:

SAR was evaluated in DSSS mode at the maximum duty cycle. The power level setting selected was specified by the manufacturer to be the max output power and produce the most conservative SAR.

As per FCC KDB 248227, the required 802.11 test channels are Ch1, Ch 6 and Ch 11; Channel 6 was selected for the initial SAR evaluation.

SAR test reduction methodology was applied to reduce the total number of required test channels from the SAR test evaluation.

When applicable, SAR test reduction methods may be utilized.

802.11b DSSS SAR test reduction is determined according to the following:

- a) When the <u>reported</u> SAR of the highest measured maximum output power channel is ≤ to 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- b) When the <u>reported</u> SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest output power channel. When any <u>reported</u> SAR is > 1.2 W/Kg, SAR is required for the third channel.

2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

- a) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- b) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. An initial test position was established for Both UNII1 and UNII 3 bands.

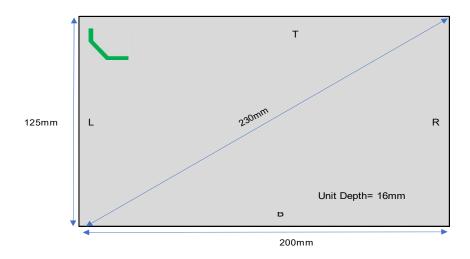
When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until reported SAR is ≤ 1.2 W/kg or all required channels are tested.

Table 8.2 Antenna Distances

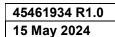
As per KDB 447498 D04V01, Appendix B, Sec B.4 SAR -based Exemption where appropriate SAR test exclusion based on antenna test separation distances may be applied.

The seperation distance is the smallest distance from any part of the antenna or radiating strucuture for all persons, during operation at the applicable ERP. For mobile or portable devices, the seperation distance is from the outer housing of the device where it is closest to the antenna. The SAR-based exemption formula for available time-averaged power or ERP, whichever is greater, of less than or equal to threshold P_{th} (mW) is

$$P_{\text{th}} \text{ (mW)} = ERP_{20 \text{ cm}} \text{ (mW)} = \begin{cases} 2040f & 0.3 \text{ GHz} \le f < 1.5 \text{ GHz} \\ \\ 3060 & 1.5 \text{ GHz} \le f \le 6 \text{ GHz} \end{cases}$$
(B. 1)


$$P_{\text{th}} \text{ (mW)} = \begin{cases} ERP_{20 \text{ cm}} (d/20 \text{ cm})^x & d \le 20 \text{ cm} \\ ERP_{20 \text{ cm}} & 20 \text{ cm} < d \le 40 \text{ cm} \end{cases}$$
(B. 2)

where


$$x = -\log_{10}\left(\frac{60}{ERP_{20 \text{ cm}}\sqrt{f}}\right)$$

and f is in GHz, d is the separation distance (cm), and ERP_{20cm} is per Formula (B.1).

Topographic View Front Facing

Antenna	Top Edge Left Edge (mm)		Bottom Edge (mm)	Right Edge (mm)	Front Depth (mm)	Back Depth (mm)
WLAN/BT/ UNII	15.0	5.0	100.0	195.0	8.0	8.0

Table 8.3 Body SAR test Exclusion Workchart

SAR Test Exclusion Analysis Antenna Separation to DUT Surfaces												
Band												
BODY	Configuration (1g)	2.4GHz	5GHz WLAN	5GHz WLAN	BT/BLE							
		WiFi	U-NII-1	U-NII-3	ANT							
DUT	Frequency (MHz)	2462	5240	5745	2480							
Power	Pow er (mW)	17.00	17.00	14.00	8.50							
	Antenna Gain (dBi)	3.50	4.10	3.70	3.50							
DUT	Antenna Gain (dBd)	1.35	1.95	1.55	1.35							
Position	Total ERP (mW)	23.20	26.63	20.00	11.60							
	Separation Distance (mm)	8.00	8.00	8.00	8.00							
Back Side	Exclusion Threshold (Pth)(mW)	6.69	3.94	3.70	6.65							
	Testing Required	Yes	Yes	Yes	Yes							

- \sim Pth(mW) = ERP $_{\!\!\!\!\!\!20cm}(mW)$ = 2040f for 0.3GHz $_{\leq}$ f < 1.5GHz
- ~ Pth(mW) = ERP $_{20cm}$ (mW) = 3060 for 1.5GHz \leq f \leq 6GHz
- ~ Pth(mW) = ERP $_{20cm}$ (mW) * (d / 20cm) $^{\rm X}$ w here x = -log10(60 / ERP $_{20cm}$ v f) for d \leq 20cm
- ~ Pth(mW) = ERP_{20cm}(mW)) for $20cm < d \le 40cm$
- ~ Total ERP = Pow er + Gain(dBd)
- \sim Gain(dBd) = Gain(dBi) 2.15

Table 8.4 Extremity SAR test Exclusion Workchart

SAR Test Exclusion Analysis Antenna Separation to DUT Surfaces												
		Band										
EXTREMIT	Y Configuration (10g)	2.4GHz WiFi	5GHz WLAN U-NII-1	5GHz WLAN U-NII-3	BT/BLE ANT							
DUT	Frequency (MHz)	2462	5240	5745	2480							
Power	Pow er (mW)	17.00	17.00	14.00	8.50							
	Antenna Gain (dBi)	3.50	4.10	3.70	3.50							
DUT	Antenna Gain (dBd)	1.35	1.95	1.55	1.35							
Position	Total ERP (mW)	23.20	26.63	20.00	11.60							
	Separation Distance (mm)	8.00	8.00	8.00	8.00							
Front Side	Exclusion Threshold (Pth)(mW)	16.71	9.86	9.24	16.63							
	Testing Required	Yes	Yes	Yes	No							
	Separation Distance (mm)	8.00	8.00	8.00	8.00							
Back Side	Exclusion Threshold (Pth)(mW)	16.71	9.86	9.24	16.63							
	Testing Required	Yes	Yes	Yes	No							
	Separation Distance (mm)	100.00	100.00	100.00	100.00							
Bottom Edge	Exclusion Threshold (Pth)(mW)	2045.21	1825.41	1800.31	2042.96							
	Testing Required	No	No	No	No							
	Separation Distance (mm)	15.00	15.00	15.00	15.00							
Top Edge	Exclusion Threshold (Pth)(mW)	55.29	36.15	34.33	55.07							
	Testing Required	No	No	No	No							
	Separation Distance (mm)	5.00	5.00	5.00	5.00							
Left Edge	Exclusion Threshold (Pth)(mW)	6.83	3.73	3.47	6.79							
	Testing Required	Yes	Yes	Yes	Yes							
	Separation Distance (mm)	195.00	195.00	195.00	195.00							
Right Edge	Exclusion Threshold (Pth)(mW)	7290.12	7259.91	7256.24	7289.83							
	Testing Required	No	No	No	No							

- \sim Pth(mW) = ERP_{20cm}(mW) = 2040f for 0.3 GHz \leq f < 1.5 GHz
- \sim Pth(mW) = ERP_{20cm}(mW) = 3060 for 1.5GHz \leq f \leq 6GHz
- ~ Pth(mW) = ERP_{20cm}(mW) * (d / 20cm)^X where x = -log10(60 / ERP_{20cm} \sqrt{f}) for d ≤ 20cm
- ~ Pth(mW) = ERP_{20cm}(mW) for 20cm < d ≤40cm ~ Pth(mW) = ERP_{20cm}(mW) X 2.5 for 10g Extremity ~ Total ERP = Power + Gain(dBd)
- \sim Gain(dBd) = Gain(dBi) 2.15

45461934 R1.0 15 May 2024

9.0 ACCESSORIES EVALUATED

Table 9.1 Manufacturer's Accessory List

There are no manufacturer's accessories available when used in a portable application.

Test Report Issue Date: 15 May 2024

45461934 R1.0

10.0 SAR MEASUREMENT SUMMARY

Table 10.1: Measured Results - Body 1g

	Measured 1g SAR Results - BODY Configuration																
Date	Plot	Test Frequency		DUT Configuration				Accessories	Sp DUT	acing Antenna	Measured SAR	SAR Drift	Delta Power	Crest Factor	Fluid Sensitivity	Duty Factor	reported SAR
Date	ID	(MHz)	Pos	Mode	BW	Mod	BR	Accessories	(mm)	(mm)	(W/kg)	(dB)	(dB)	(n)	(n)	(%)	(W/kg)
2.4G	Hz WLAN 8	& BT															
3/8/2024	B2Z	2437	Back	802.11b-NA	20	DSSS	1		0	0	0.208	0.490	-0.120	1.005	1.000	100.000	0.215
3/9/2024	B9Z	2441	Left	802.15-NA		BT BR			0	0	0.112	0.410	-0.030	1.000	1.000	100.000	0.113
5GHz	z UNII-1 & L	JNII-3															
3/13/2024	BB1	5220	Back	UNII-1-NA	20	OFDM	6		5	5	0.870	0.480	-0.110	1.028	1.000	100.000	0.917
3/13/2024	BB2	5200	Back	UNII-1-NA	20	OFDM	6		5	5	0.817	0.650	-0.130	1.028	1.000	100.000	0.865
3/19/2024	BB3R	5805	Back	UNII-3-NAR	20	OFDM	6		5	5	1.230	-0.020	-0.540	1.028	1.000	100.000	1.438
3/19/2024	BB4R	5825	Back	UNII-3-NAR	20	OFDM	6		5	5	0.730	0.180	-0.440	1.028	1.000	100.000	0.830
3/13/2024	BB1Z	5220	Back	UNII-1-NA	20	OFDM	6		5	5	0.882	0.480	-0.110	1.028	1.000	100.000	0.930
3/13/2024	BB2Z	5200	Back	UNII-1-NA	20	OFDM	6		5	5	0.834	-0.180	-0.130	1.028	1.000	100.000	0.921
3/19/2024	BB3ZR	5805	Back	UNII-3-NAR	20	OFDM	6		5	5	1.260	0.390	-0.540	1.028	1.000	100.000	1.466
3/19/2024	BB4RZ	5825	Back	UNII-3-NAR	20	OFDM	6		5	5	0.687	0.140	-0.440	1.028	1.000	100.000	0.781
	•		Applicable	SAR Limit	•			Use Group Limit				Limit					
FCC	CFR 2.1	093		Health Cana	ada Safet	y Code 6		Gen	eral Po	pulation/U	ser Unaware			•	1.6 W/kg	•	

Test Report Issue Date: 15 May 2024

45461934 R1.0

Table 10.2: Measured Results – Extremity 10g

					Mea	sured 1	0g SAR Re	sults - EXT	REMI	ΓΥ Confi	guration						
		Test			DUT				Sp	acing	Measured	SAR	Delta	Crest	Fluid	Duty	reported
Date	Plot	Frequency		Con	Configuration			Accessories	DUT	DUT Antenna	SAR	Drift	Power	Factor	Sensitivity	Factor	SAR
	ID	(MHz)	Pos	Mode BW Mod BR		BR		(mm)	(mm)	(W/kg)	(dB)	(dB)	(n)	(n)	(%)	(W/kg)	
2.4G	2.4GHz WLAN & BT																
3/8/2024	E1	2437	Front	802.11b-NA	20	DSSS	1		0	0	0.094	0.420	-0.120	1.005	1.000	100.000	0.097
3/8/2024	E2	2437	Back	802.11b-NA	20	DSSS	1		0	0	0.100	0.490	-0.120	1.005	1.000	100.000	0.103
3/9/2024	3/9/2024 E4 2437		Тор	802.11b-NA	20	DSSS	1		0	0	0.041	0.190	-0.120	1.005	1.000	100.000	0.042
3/9/2024	E6	2462	Left	802.11b-NA	20	DSSS	1		0	0	0.154	0.290	-0.100	1.005	1.000	100.000	0.158
3/9/2024	E8	2437	Left	802.11b-NA	20	DSSS	1		0	0	0.167	0.380	-0.120	1.005	1.000	100.000	0.173
3/9/2024	E9	2441	Left	802.15-NA		BT BR			0	0	0.054	0.510	-0.030	1.000	1.000	100.000	0.054
3/9/2024	E8Z	2437	Left	802.11b-NA	20	DSSS	1		0	0	0.143	0.240	-0.120	1.005	1.000	100.000	0.148
3/9/2024	E9Z	2441	Left	802.15-NA		BT BR			0	0	0.047	0.410	-0.030	1.000	1.000	100.000	0.048
5GHz	UNII-1 & U	JNII-3															
3/13/2024	E21	5220	Front	UNII-1-NA	20	OFDM	6		0	0	0.170	0.610	-0.110	1.028	1.000	100.000	0.179
3/13/2024	E22	5220	Back	UNII-1-NA	20	OFDM	6		0	0	0.656	0.970	-0.110	1.028	1.000	100.000	0.691
3/13/2024	E23	5220	Left	UNII-1-NA	20	OFDM	6		0	0	0.624	0.800	-0.110	1.028	1.000	100.000	0.658
3/13/2024	E24	5220	Тор	UNII-1-NA	20	OFDM	6		0	0	0.066	3.050	-0.110	1.028	1.000	100.000	0.069
3/13/2024	E25	5180	Back	UNII-1-NA	20	OFDM	6		0	0	0.603	0.410	-0.430	1.028	1.000	100.000	0.684
3/19/2024	E28	5805	Back	UNII-3-NA	20	OFDM	6		0	0	0.831	0.070	-0.540	1.028	1.000	100.000	0.967
3/13/2024	E22Z	5220	Back	UNII-1-NA	20	OFDM	6		0	0	0.630	0.900	-0.110	1.028	1.000	100.000	0.664
3/13/2024	E26Z	5240	Back	UNII-1-NA	20	OFDM	6		0	0	0.591	3.210	-0.230	1.028	1.000	100.000	0.640
3/19/2024	3/19/2024 E28Z 5805 Back UNII-3-NA 20 OFDM 6								0	0	0.772	0.180	-0.540	1.028	1.000	100.000	0.898
	Applicable SAR Limit							Use Group					Limit				
FCC	FCC CFR 2.1093 Health Canada Safety Code 6						·	Gen	eral Po	pulation/U	ser Unaware				4 W/kg		

11.0 SCALING OF MAXIMUM MEASURE SAR

Table 11.1 SAR Scaling 1g -

	Scaling of M	aximum Meası	red SAR (1g)				
Ma	d Damana dama		Configuration				
IVIE	easured Parameters	Body	Body	Body	Body		
	Plot ID	B2Z	B9Z	BB1Z	BB3ZR		
Maxi	mum Measured SAR _M	0.208	0.112	0.882	1.260		(\
	Frequency	2437	2441	5220	5805		(1
Drift	Power Drift	0.490 (9)	0.410 (12)	0.480 (18)	0.390	(24)	(0
(Conducted Power	16.880	8.470	16.890	13.460		(6
DC T	ransmiter Duty Cycle		(13)				(
DF L	Jse Duty Factor	100.0 (10)	100.0 (14)	100.0 (19)	100.0	(25)	(0
	Fluid	Deviation from	Target				
Δе	Permitivity	-5.98%	-6.05%	-1.08%	-5.65%		
Δσ	Conductivity	5.99%	6.14%	5.56%	7.11%		
Fluid	Sensitivity Calculation	(1g)	IEC/IEEE 622	09-1528 7.8.2			
	Delta SAR = 0	Ce * Δe + Cσ * Δ		(8)			
C	e = (-0.0007854*f ³) + (0.0	09402*f ²) - (0.02)	742*f) - 0.2026	(9)			
	$C\sigma = (0.009804*f^3) - (0.08)$			(10)			
f	Frequency (GHz)	2.437	2.441	5.22	5.805		
	Ce	-0.225	-0.225	-0.201	-0.199		
	Сσ	0.483	0.482	-0.027	-0.045		
	Ce * ∆e	0.013	0.014	0.002	0.011		
	Cσ * Δσ	0.029	0.030	-0.001	-0.003		
	ΔSAR	0.042 (8)	0.043 (11)	0.001 (17)	0.008	(23)	(9
	Manufac	turer's Tuneup	olerance			<u> </u>	
Measu	ured Conducted Power	16.880	8.470	16.890	13.460		(c
Rate	ed Conducted Power	17.000	8.500	17.000	14.000		(c
	ΔΡ	-0.120	-0.030	-0.110	-0.540		(c
	Transmitte	r Duty Cycle [Ci	est Factor]	•		•	
Trans	miter Duty Cycle (DC)	99.5	100.0	97.3	97.3		(%
	CF (1/DC)	1.01	1.00 (13)	1.03	1.03		
		stment for Fluid	Soneitivity	•			
SAI	$R_1 = SAR_M X [\Delta SAR]$	0.208 (8)	0.112 (11)	0.882 (17)	1.260	(23)	(V
		ment for Tuneu		0.002	1.200	()	
S	$AR_2 = SAR_1 + [\Delta P]$	0.214	0.113	0.905	1.427		(V
	SAR	Adjustment for	Drift				`
SA	AR ₃ = SAR ₂ + [Drift]	0.214 (9)	0.113 (12)	0.905 (18)	1.427	(24)	(\
	SAR Adjustment for	Transmitter Dut	/ Cycle [Crest Fa	actorl			
S	AR ₄ = SAR ₃ x [CF]	0.215	0.113 (13)	0.930	1.466		(\
	SAR Adjus	stment for Use D	outy Factor				
S	AR ₅ = SAR ₄ x [DF]	0.215 (10)	_	0.930 (19)	1.466	(25)	(1
		reported 1g SAI	₹				
	reported SAR	0.21	0.11	0.93	1.47		(\

45461934 R1.0 15 May 2024

Table 11.2 SAR Scaling 10g

	Scaling of Ma	ximum Measu	red SAR (10g)				
NA.	easured Parameters		Configuration				
IVI	easured Parameters	Extremity	Extremity	Extremity	Extremity		
	Plot ID	E8Z	E9Z	E22Z	E28Z		
Maxi	mum Measured SAR _M	0.143	0.047	0.630	0.772		(W/k
	Frequency	2437	2441	5220	5805		(MH
Drift	Power Drift	0.240 (2)	0.410 (5)	0.900 (15)	0.180 (21)		(dB)
	Conducted Power	16.880	8.470	16.890	13.460		(dBı
DC T	Transmiter Duty Cycle		(6)				(%)
DF I	Jse Duty Factor	100.0 (3)	100.0 (7)	100.0 (16)	100.0 (22)		(%)
		Deviation from	Target				
Δe	Permitivity	-5.98%	-6.05%	-1.08%	-5.65%		
Δσ	Conductivity	5.99%	6.14%	5.56%	7.11%		_
Fluid	Sensitivity Calculation	(1g)	IEC/IEEE 622	09-1528 7.8.2			
		Ce * Δe + Cσ * Δe		(8)			
	$Ce = (0.003456*f^3) - (0.03456*f^3)$			(11)			
	$C\sigma = (0.004479*f^3) - (0.0$			(12)			
f	Frequency (GHz)	2.437	2.441	5.22	5.805		
	Ce	-0.159	-0.159	-0.256	-0.254		1
	Сσ	0.262	0.261	-0.053	-0.031		
	Ce * ∆e	0.009	0.010	0.003	0.014		1
	Cσ * Δσ	0.016	0.016	-0.003	-0.002		
	ΔSAR	0.025 (1)	0.026 (4)	0.000	0.012 (20)		(%)
	Manufac	turer's Tuneup 1	Tolerance		<u> </u>		ĺ
Meas	ured Conducted Power	16.880	8.470	16.890	13.460		(dBi
Rat	ed Conducted Power	17.000	8.500	17.000	14.000		(dBı
	ΔΡ	-0.120	-0.030	-0.110	-0.540		(dB)
	Transmitte	er Duty Cycle [Cr	est Factor]				
Trans	smiter Duty Cycle (DC)	99.5	100.0	97.3	97.3		(%)
	CF (1/DC)	1.01	1.00 (6)	1.03	1.03		
	SAR Adjus	stment for Fluid	Sensitivity		·		
SA	R ₁ = SAR _M X [ΔSAR]	0.143 (1)	0.047 (4)	0.630	0.772 (20)		(W/k
	SAR Adjust	tment for Tuneu	p Tolerance				
S	$SAR_2 = SAR_1 + [\Delta P]$	0.147	0.048	0.646	0.874		(W/k
	SAR	Adjustment for	Drift				
S	$AR_3 = SAR_2 + [Drift]$	0.147 (2)	0.048 (5)	0.646 (15)	0.874 (21)		(W/I
	SAR Adjustment for	Transmitter Duty	Cycle [Crest Fa	ector]			
S	SAR ₄ = SAR ₃ x [CF]	0.148	0.048 (6)	0.664	0.898		(W/I
		stment for Use D	outy Factor				
S	SAR ₅ = SAR ₄ x [DF]	0.148 (3)	0.048 (7)	0.664 (16)	0.898 (22)		(W/I
		reported 1g SAF	2				
	<u>reported</u> SAR	0.15	0.05	0.66	0.90		(W/I
					• -	•	

45461934 R1.0 15 May 2024

NOTES to Table

Scaling of the Maximum Measured SAR is based on the highest Face, Body, Extremity and/or Head SAR measured of ALL test channels. configurations and accessories used during THIS evaluation. The Measured Fluid Deviation parameters, Drift, Conducted Power, Duty Cycle [Crest] and Use Duty Factor apply only to those test frequencies and configurations producing the highest SAR. The reported SAR is the accumulation of all SAR Adjustments from the applicable steps above. The Plot ID is for identification of the SAR Measurement Plot(s) in the Annexes of this report

NOTE: The above adjustments have been applied to ALL Measured SAR values. In some cases, the highest Measure SAR may not have produced the highest reported SAR after all adjustments have been made.

NOTE: Some of the above adjustments may not be applicable to each configuration. They are identified by grayed fields.

SAR₁

Per IEC/IEEE 62209-1528, FCC KDB 865664, ISED RSS-102 and ISED Notice 2012-DRS0529, SAR adjustment is applied when the calculated ΔSAR, resulting from the equations indicated, is negative (-).

ΔSAR is given as a percentage (%). The SAR is MULTIPLIED by this scaling factor only when the scaling factor is negative (-).

SAR₂

Per IEC/IEEE 62209-1528, FCC KDB 865664 and ISED RSS-102, adjustment is required only when the difference (ΔP) between the Measured Conducted Power and the Manufacturer's Rated Conducted Power is (-) Negative.

 ΔP is given in dB. The absolute value of ΔP is ADDED (logarithmically) to the SAR when ΔP is negative (-).

SAR₃

Per IEC/IEEE 62209-1528, FCC KDB 865664 and ISED RSS-102, adjustment is required only when Measured Drift is negative (-). The absolute value of Measured Drift is ADDED (logarithmically) to the SAR.

Drift is given in dB. The absolute value of Drift is ADDED (logarithmically) to the SAR when Drift is negative (-).

SAR₄

Per IEC/IEEE 62209-1528, FCC KDB 865664 and ISED RSS-102, when the transmit Duty Cyle (DC) is less than 100%, the reported SAR must be scaled to 100% by the Crest Factor (CF). CF = 1/DC where DC is in decimal.

CF is given as a decimal. The SAR is MULTIPLIED by this scaling factor only when the scaling factor is greater than 1.

SAR₅

Use Duty Factor applies to Push-To-Talk (PTT) transceivers or other devices whereby the user has some control of the transmitter on-off period Per IEC/IEEE 62209-1528, FCC KDB 447498, FCC KDB 643646 and ISED RSS-102, a Duty Factor (DF) of 50% may be applied. In cases where Voice Activated transmit is employed, a DF of 75% may be applied.

DF is given as a percentage (5). The SAR is MULTIPLIED by this scaling factor only when the scaling factor is less than 100%.

reported SAR

The <u>reported</u> SAR is the Maximum SAR after all applicable adjustments have been made and is indicated on the cover page of this report.

- Note (1): Delta SAR is Positive, SAR Adjustment for Fluid Sensitivity is not Required, in accordance with ISED Notice 2012-DRS0529
- Note (2): Power Drift is Positive, Drift Adjustment not Required.

 Note (3): Use Duty Factor is 100%. No Duty Factor Correction applied
- Note (4): Delta SAR is Positive, SAR Adjustment for Fluid Sensitivity is not Required, in accordance with ISED Notice 2012-DRS0529 Note (5): Power Drift is Positive, Drift Adjustment not Required.

 Note (6): Crest Factor = 1 (100% Duty Cycle), Crest Factor Adjustment not Required.

- Note (7): Use Duty Factor is 100%. No Duty Factor Correction applied.

 Note (8): Delta SAR is Positive, SAR Adjustment for Fluid Sensitivity is not Required, in accordance with ISED Notice 2012-DRS0529

 Note (9): Power Drift is Positive, Drift Adjustment not Required.

- Note (10): Use Duty Factor is 100%. No Duty Factor Correction applied.

 Note (11): Delta SAR is Positive, SAR Adjustment for Fluid Sensitivity is not Required, in accordance with ISED Notice 2012-DRS0529

 Note (12): Power Drift is Positive, Drift Adjustment not Required.
- Note (13): Crest Factor = 1 (100% Duty Cycle), Crest Factor Adjustment not Required.
 Note (14): Use Duty Factor is 100%. No Duty Factor Correction applied.
 Note (15): Power Drift is Positive, Drift Adjustment not Required.

- Note (16): Use Duty Factor is 100%. No Duty Factor Correction applied
- Note (17): Delta SAR is Positive, SAR Adjustment for Fluid Sensitivity is not Required, in accordance with ISED Notice 2012-DRS0529 Note (18): Power Drift is Positive, Drift Adjustment not Required.
- Note (19): Use Duty Factor is 100%, No Duty Factor Correction applied.
- Note (20): Delta SAR is Positive, SAR Adjustment for Fluid Sensitivity is not Required, in accordance with ISED Notice 2012-DRS0529 Note (21): Power Drift is Positive, Drift Adjustment not Required.

 Note (22): Use Duty Factor is 100%. No Duty Factor Correction applied.

- Note (23): Delta SAR is Positive, SAR Adjustment for Fluid Sensitivity is not Required, in accordance with ISED Notice 2012-DRS0529 Note (24): Power Drift is Positive, Drift Adjustment not Required.

 Note (25): Use Duty Factor is 100%. No Duty Factor Correction applied.

12.0 SAR EXPOSURE LIMITS

Table 12.1 Exposure Limits

	SAR RF EXP	OSURE LIMITS			
FCC 47 CFR§2.1093	Health Canada Safety Code 6	General Population /	Occupational /		
100 47 OH(g2.1033	Thealth Gallada Gallety Gode 0	Uncontrolled Exposure (4)	Controlled Exposure ⁽⁵⁾		
Spa	tial Average ⁽¹⁾	0.08 W/kg	0.4 W/kg		
(averaged	over the whole body)	0.00 W/kg	0.+ W/Kg		
Sp	oatial Peak ⁽²⁾	1.6 W/kg	8.0 W/kg		
(Head and Trunk av	eraged over any 1 g of tissue)	1.0 W/kg	5.5 VV /Ng		
Sp	oatial Peak ⁽³⁾	4.0 W/kg	20.0 W/kg		
(Hands/Wrists/Fee	t/Ankles averaged over 10 g)	4.0 W/kg	20.0 W/kg		

- (1) The Spatial Average value of the SAR averaged over the whole body.
- (2) The Spatial Peak value of the SAR averaged over any 1 gram of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.
- (3) The Spatial Peak value of the SAR averaged over any 10 grams of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.
- (4) Uncontrolled environments are defined as locations where there is potential exposure to individuals who have no knowledge or control of their potential exposure.
- (5) Controlled environments are defined as locations where there is potential exposure to individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Celltech
Testing and Engineering Services Lab

45461934 R1.0 15 May 2024

13.0 DETAILS OF SAR EVALUATION

13.1 Day Log

	D	AY LOG			lectric			
Date	Ambient Temp	Fluid Temp	Relative Humidity	Barometric Pressure	Fluid Diel	SPC	est	
	(°C)	(°C)	(%)	(kPa)	Ē	SF	<u> </u>	Task
8-Mar-2024	25.9	22.2	20%	102.2	Х	Х	Х	2450H Fluids, SPC & SAR Testing
9-Mar-2024	23.0	22.0	20%	100.7			X	2450H SAR Testing
12 Mar 2024	25.9	23.0	24%	101.1	Х	Х	X	5250H Fluids, SPC & SAR Testing
13 Mar 2024	24.2	23.0	23%	102.6			Х	5250H SAR Testing
19 Mar 2024	25.9	23.6	27%	101.1	Х	Х	Х	5750H Fluids, SPC & SAR Testing

45461934 R1.0 15 May 2024

13.2 DUT Setup and Configuration

	DUT Setup and Configuration
1	The device was evaluated for Extremity at a 0mm distance, for Body at a 5mm distance, from a flat phantom filled with head tissue-equivalent medium. The DUT was evaluated for SAR in accordance with the procedures as described in FCC KDB 447498, 248227, 865664 and IEC/IEEE.
2	2.4GHz 802.11g/n OFDM SAR Test Exclusion As Per KDB 248227 D01v02r02 - 5.2.2, b) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2W/kg When applying this formula to 10-g, the threshold should be multiplied by 2.5, i.e. when 10-g extremity SAR s considered the threshold adjusted SAR is ≤ 3.0W/kg Maximum 802.11g/n OFDM specified power(POFDM)= 17dBm (50mW) Maximum 802.11b DSSS specified power (PDSSS)= 17 dBm (50mW) Ratio OFDM/DSSS power = 100% Highest reported SAR (SARMAX)= 1.47W/kg POFDM/PDSSS X SARMAX = 1.47 W/kg ≤ 3.0 W/kg (Extremity) and ≤ 1.5 W/kg (Body) and SAR test exclusion applies. UNII-1 rated power is the same or lower in higher order modulations as a result the UNII-1 802.11A OFDM6 SAR value would not be higher, further testing is not required in UNII-1. UNIII-3 rated power is the same or lower in higher order modulations as a result the UNII-3 802.11A OFDM6 SAR value would not be higher,
3	further testing is not required in UNII-3. The Device was capable of transmitting at various modulations, data rates and duty cycles. The Conducted Power was measured at the lowest modulation and largest bandwidth and with the Duty cycle noted. The DUT was evaluated for SAR at the maximum conducted output power
	level, preset by the manufacturer, and adjusted crest factor for 100% duty cycle. Bluetooth was evaluated for SAR in BT BR (GFSK) mode with a transmit duty cycle of noted and with a crest factor adjustment to 100% duty
4	cycle if required, in the worst-case configuration from the WiFi test evaluation. The Duty cycle could not be altered in test mode or by the user. The DUT was evaluated for SAR at the maximum conducted output power level, preset by the manufacturer.
5	Each SAR evaluation was performed with the device battery fully charged.

13.3 DUT Positioning

DUT Positioning

Positioning

The DUT Positioner was securely fastened to the Phantom Platform. Registration marks were placed on the DUT and the Positioner to ensure consistent positioning of the DUT for each test evaluation.

FACE Configuration

Head SAR - (held- to-face). Devices that are designed to be near extremity and may operate with in a mode for voice communication, with the device positioned next to the mouth. When next-to-mouth SAR evaluation is required, the device is positioned at 10mm from a flat phantom filled with head tissue-equivalent medium.

BODY Configuration

Devices that are designed to be worn on the Body or on person are positioned on the device holder with a body worn accessory in place against the surface of the phantom, or with-out an accessory at 5mm from the bottom of the phantom in the Body configuration.

HEAD Configuration

This device is not intended to be held to the ear and was not tested in the HEAD configuration.

Extremity Configuration

Devices that are designed to be near extremity, or hand-held are positioned with the back side directly against the phantom surface.

45461934 R1.0 15 May 2024

13.4 General Procedures and Report

General Procedures and Reporting

General Procedures

The fluid dielectric parameters of the Active Tissue Simulating Liquid (TSL) were measured as described in this Section, recorded and entered into the DASY Measurement Server. Active meaning the TSL used during the SAR evaluation of the DUT. The temperature of the Active TSL was measured and recorded prior to performing a System Performance Check (SPC). An SPC was performed with the Active TSL prior to the start of the test series. The temperature of the Active TSL was measured throughout the day and the Active TSL temperature was maintained to $\pm 0.5^{\circ}$ C. The Active TSL temperature was maintained to within $\pm 2.0^{\circ}$ C throughout the test series. The liquid parameters shall be measured within 24 hours before the start of a test series and if it takes longer than 48 hours, the liquid parameters shall also be measured at the end of the test series.

An Area Scan exceeding the length and width of the DUT projection was performed and the locations of all maximas within 2dB of the Peak SAR recorded. A Zoom Scan centered over the Peak SAR location(s) was performed and the 1g and 10g SAR values recorded. The resolutions of the Area Scan and Zoom Scan are described in the Scan Resolution table(s) in this Section. A Power Reference Measurement was taken at the phantom reference point immediately prior to the Area Scan. A Power Drift measurement was taken at the phantom reference point immediately following the Zoom Scan to determine the power drift. A Z-Scan from the <u>Maximum Distance to Phantom Surface</u> to the fluid surface was performed following the power drift measurement.

Reporting

The 1g SAR, 10g SAR and power drift measurements are recorded in the SAR Measurement Summary tables in the SAR Measurement Summary Section of this report. The SAR values shown in the SAR column are the SAR values reported by the SAR Measurement Server with the DUT operating at maximum transmit duty cycle. These tables also include other information such as transmit channel and frequency, modulation, accessories tested and DUT-phantom separation distance.

In the Scaling of Maximum Measured SAR Section of this report, the highest measured SAR in the BODY configuration, within the entire scope of this assessment, are, when applicable, scaled for Fluid Sensitivity, Manufacturer's Tune-Up Tolerance, Simultaneous Transmission and Drift. With the exception of Duty Cycle correction/compensation, SAR values are ONLY scaled up, not down. The final results of this scaling is the reported SAR which appears on the Cover Page of this report.

45461934 R1.0 15 May 2024

13.5 Fluid Dielectric and Systems Performance Check

Fluid Dielectric and Systems Performance Check

Fluid Dielectric Measurement Procedure

The fluid dielectric parameters of the Tissue Simulating Liquid (TSL) are measured using the Open-Ended Coax Method connected to an Agilent 8753ET Network Analyzer connected to a measurement server running Aprel Dielectric Property Measurement System. A frequency range of ± 100MHz for frequencies > 300MHz and ± 50MHz for frequencies ≤ 300MHz with frequency step size of 10MHz is used. The center frequency is centered around the SAR measurement probe's calibration point for that TSL frequency range. A calibration of the setup is performed using a short-open-deionized water (at 23°C in a 300ml beaker) method. A sample of the TSL is placed in a 300ml beaker and the open-ended coax is submerged approximately 8mm below the fluid surface in the approximate center of the beaker. A check of the setup is made to ensure no air is trapped under the open-ended coax. The sample of TSL is measured and compared to the FCC KDB 865664 targets for HEAD or BODY for the entire fluid measurement range. Fluid adjustment are made if the dielectric parameters are > 5% in range that the DUT is to be tested. If the adjustments fail to bring the parameters to ≤ 5% but are < 10%, the SAR Fluid Sensitivity as per IEC 62201-1 and FCC KDB 865664 are applied to the highest measured SAR. A TSL with dielectric parameters > 10% in the DUT test frequency range are not used.

Systems Performance Check

The fluid dielectric parameters of the Active TSL are entered into the DASY Measurement Server at each of the 10MHz step size intervals. Active meaning the TSL used during the SAR evaluation of the DUT. The DASY Measurement System will automatically interpolate the dielectric parameters for DUT test frequencies that fall between the 10MHz step intervals.

A Systems Performance Check (SPC) is performed in accordance with IEEE 1528 "System Check" and FCC KDB 865664 "System Verification". A validation source, dipole or Confined Loop Antenna (CLA), is placed under the geometric center of the phantom and separated from the phantom in accordance to the validation source's Calibration Certificate data. A CW signal set to the frequency of the validate source's and SAR measurement probe's calibration frequency with a forward power set to the validation source's Calibration Certificate data power setting is applied to the validation source. An Area Scan is centered over the projection of the validation source's feed point and an Area Scan is taken. A Zoom Scan centered over the Peak SAR measurement of the Area Scan and the 1g and 10g SAR is measured. The measured 1g and 10g SAR is compared to the 1g and 10g SAR measurements from the validation source's Calibration Certificate. When required, the measured SAR is normalized to 1.0W and compared to the normalized SAR indicated on the validation source's Calibration Certificate. The SPC is considered valid when the measured and normalized SAR is 5 10% of the measured and normalize SAR of the validation source's Calibration Certificate.

The fluid dielectric parameters of the Active TSL and SPC are repeated when the Active TSL has been in use for greater than 84 hours or if the Active TSL temperature has exceed ± 1°C of the initial fluid analysis.

13.6 Scan Resolution 100MHz to 2GHz

Scan Resolution 100MHz to 2GHz	
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm
(Geometric Center of Probe Center)	4 = 1 mm
Maximum probe angle normal to phantom surface.	5° ± 1°
(Flat Section ELI Phantom)	9. 1.
Area Scan Spatial Resolution ΔX, ΔΥ	15 mm
Zoom Scan Spatial Resolution ΔX , ΔY	7.5 mm
Zoom Scan Spatial Resolution ∆Z	5 mm
(Uniform Grid)	3 111111
Zoom Scan Volume X, Y, Z	30 mm
Fluid Depth	150 ± 5 mm

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

45461934 R1.0 15 May 2024

13.7 Scan Resolution 2GHz to 3GHz

Scan Resolution 2GHz to 3GHz									
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm								
(Geometric Center of Probe Center)	41111111								
Maximum probe angle normal to phantom surface.	5° ± 1°								
(Flat Section ELI Phantom)	5° ± 1°								
Area Scan Spatial Resolution ΔX, ΔΥ	12 mm								
Zoom Scan Spatial Resolution ΔX , ΔY	5 mm								
Zoom Scan Spatial Resolution ∆Z	5 mm								
(Uniform Grid)	5 111111								
Zoom Scan Volume X, Y, Z	30 mm								
Fluid Depth	150 ± 5 mm								

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

13.8 Scan Resolution 5GHz to 6GHz

Scan Resolution 5GHz to 6GHz									
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm								
(Geometric Center of Probe Center)	4 1 1 111111								
Maximum probe angle normal to phantom surface.	5° ± 1°								
(Flat Section ELI Phantom)	5 I 1								
Area Scan Spatial Resolution ΔX, ΔΥ	10 mm								
Zoom Scan Spatial Resolution ΔX , ΔY	4 mm								
Zoom Scan Spatial Resolution ∆Z	2 mm								
(Uniform Grid)	2 111111								
Zoom Scan Volume X, Y, Z	22 mm								
Fluid Depth	100 ± 5 mm								

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

45461934 R1.0 15 May 2024

14.0 MEASUREMENT UNCERTAINTY

Table 14.1 Measurement Variablity

Per FCC KDB Publication 865664, SAR measurement variability is not required to be assessed for each frequency band where all measured SAR values are <0.8 W/kg for 1g and < 2.0 W/kg for 10g.

Table 14.2 Measurement Uncertainty

Per FCC KDB 865664 when the highest measured SAR is <1.5 W/kg for 1 g and < 3.75 W/kg for 10g all frequency bands, the extensive SAR measurement uncertainty analysis tables described in IEEE std 1528-2013 are not required.

15.0 FLUID DIELECTRIC PARAMETERS

Table 15.1 Fluid Dielectric Parameters 2450MHz HEAD TSL

33			FL	UID DIE	LECTRIC F	PARAMET	ERS		Fluid Sensitivity Calculation IEC/IEEE 62209-1528 7.8.2					
Date:	ate: 8-Mar-202		Fluid Te	mp: 22.2	Frequency:	2450MHz	Tissue:	Head	ΔSAR	ΔSAR	SAR Co	rrection		
	Freq		Test &	Test σ	Target ε	Target σ	Deviation	Deviation	додіх	додіх	Facto	or (1)		
((MHz)		Test c	(S/m)	rarget &	(S/m)	Permittivity	Conductivity	1g	10g	1g	10g		
2410	0.0000		37.0800	1.8400	39.2700	1.76	-5.58%	4.55%	0.035	0.021	1.000	1.000		
2412	2.0000	*	37.0480	1.8460	39.2660	1.76	-5.65%	4.77%	0.036	0.022	1.000	1.000		
2420	0.0000		36.9200	1.8700	39.2500	1.77	-5.94%	5.65%	0.041	0.024	1.000	1.000		
2430	0.0000		36.9800	1.8800	39.2400	1.78	-5.76%	5.62%	0.040	0.024	1.000	1.000		
2437	7.0000	*	36.8820	1.8940	39.2260	1.79	-5.98%	5.99%	0.042	0.025	1.000	1.000		
2440	0.0000		36.8400	1.9000	39.2200	1.79	-6.07%	6.15%	0.043	0.026	1.000	1.000		
244	1.0000	*	36.8440	1.9010	39.2180	1.79	-6.05%	6.14%	0.043	0.026	1.000	1.000		
2450	0.0000		36.8800	1.9100	39.2000	1.80	-5.92%	6.11%	0.043	0.025	1.000	1.000		
2460	0.0000		36.7000	1.9200	39.1900	1.81	-6.35%	6.08%	0.043	0.026	1.000	1.000		
2462	2.0000	*	36.7000	1.9260	39.1860	1.81	-6.34%	6.29%	0.044	0.026	1.000	1.000		
2470	0.0000		36.7000	1.9500	39.1700	1.82	-6.31%	7.14%	0.048	0.028	1.000	1.000		
2472	2.0000	*	36.6920	1.9460	39.1680	1.82	-6.32%	6.81%	0.047	0.027	1.000	1.000		
2480	0.0000		36.6600	1.9300	39.1600	1.83	-6.38%	5.46%	0.040	0.024	1.000	1.000		

^{*}Channel Frequency Tested

Table 15.2 Fluid Dielectric Parameters 5250MHz HEAD TSL

28			FI	LUID DIE		Fluid Sensitivity Calculation IEC/IEEE 62209-1528 7.8.2						
Date:	oate: 12-Mar-202		Fluid Te	mp: 23	Frequency:	5250MHz	Tissue:	Head	ΔSAR	ΔSAR	SAR Correction Factor (1)	
	Freq (MHz)		Took 6	Test σ	Taumat C	Target σ	Deviation	Deviation	ΔSAR	DOAR		
(Test &	(S/m)	Target &	(S/m)	Permittivity	Conductivity	1g	10g	1g	10g
5170	0.0000		35.7400	4.7700	36.0200	4.62	-0.78%	3.25%	0.001	0.000	1.000	1.000
5180	0.0000	*	34.9700	4.7400	36.0100	4.63	-2.89%	2.38%	0.005	0.006	1.000	1.000
5190	0.0000		34.5400	4.7700	36.0000	4.64	-4.06%	2.80%	0.007	0.009	1.000	1.000
5200	0.0000	*	34.4500	4.8300	35.9900	4.65	-4.28%	3.87%	0.008	0.009	1.000	1.000
5210	0.0000		34.7700	4.9200	35.9700	4.67	-3.34%	5.35%	0.005	0.006	1.000	1.000
5230	0.0000		35.5900	4.9400	35.9500	4.69	-1.00%	5.33%	0.001	0.000	1.000	1.000
5240	0.0000	*	35.8400	4.7200	35.9400	4.70	-0.28%	0.43%	0.000	0.000	1.000	1.000
5250	0.0000		35.1700	5.0000	35.9300	4.71	-2.12%	6.16%	0.002	0.002	1.000	1.000

^{*}Channel Frequency Tested

45461934 R1.0 15 May 2024

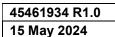
Table 15.3 Fluid Dielectric Parameters 5750MHz HEAD TSL

31		F	Fluid Sensitivity Calculation IEC/IEEE 62209-1528 7.8.2								
Date: 19-M	Date: 19-Mar-2024		emp: 23.6	Frequency:	5750MHz	Tissue:	Head	ΔSAR	ΔSAR	SAR Correction	
Freq		Took 6	Test σ	Townst C	Target σ	Deviation	Deviation	додіх	додіх	Facto	or (1)
(MHz)		Test &	(S/m)	Target &	(S/m)	Permittivity	Conductivity	1g	10g	1g	10g
5740.0000		33.5800	5.5700	35.3700	5.21	-5.06%	6.91%	0.007	0.010	1.000	1.000
5745.0000	*	33.5150	5.5600	35.3650	5.22	-5.23%	6.62%	0.007	0.011	1.000	1.000
5750.0000		33.4500	5.5500	35.3600	5.22	-5.40%	6.32%	0.008	0.012	1.000	1.000
5780.0000		33.4200	5.6000	35.3200	5.25	-5.38%	6.67%	0.008	0.011	1.000	1.000
5785.0000	*	33.4950	5.5950	35.3150	5.26	-5.15%	6.47%	0.007	0.011	1.000	1.000
5790.0000		33.5700	5.5900	35.3100	5.26	-4.93%	6.27%	0.007	0.011	1.000	1.000
5820.0000		33.3100	5.6800	35.2800	5.29	-5.58%	7.37%	0.008	0.012	1.000	1.000
5825.0000	*	33.4100	5.6750	35.2750	5.30	-5.29%	7.18%	0.007	0.011	1.000	1.000
5830.0000		33.5100	5.6700	35.2700	5.30	-4.99%	6.98%	0.007	0.011	1.000	1.000

^{*}Channel Frequency Tested

16.0 SYSTEM VERIFICATION TEST RESULTS

Table 16.1 - 2450MHz


System Verification Test Results							
D.	-4-	Frequency	Validation Source				
Date		(MHz)	P/N		S/N		
8-Mar-2024		2450	D2450V2		825		
	Fluid	Ambient	Ambient	Forward	Source		
Fluid Type	Temp	Temp	Humidity	Power	Spacing		
	°C	°C	(%)	(mW)	(mm)		
Head	22.2	26	20%	250	10		
Fluid Parameters							
Permittivity			Conductivity				
Measured	Target	Deviation	Measured Target Deviation				
36.88	39.20	-5.92%	1.91	1.80	6.11%		
	Measured SAR						
	1 gram			10 gram			
Measured	Target	Deviation	Measured Target Deviation				
14.10	13.18	6.98%	6.33	6.01	5.41%		
	Measured SAR Normalized to 1.0W						
	1 gram 10 gram						
Normalized	Target	Deviation	Normalized	Target	Deviation		
56.40	52.72	6.98%	25.32	24.02	5.43%		
	-	-	-	•			

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEC/IEEE 62209-1528 and FCC KDB 846224,

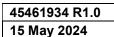
The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.

Celtech
Testing and Engineering Services Lab

Table 16.2 - 5250MHz


System Verification Test Results							
Date		Frequency	Validation Source				
Da	ate	(MHz)	P/N		S/N		
12 Ma	r 2024	5250	D5GHzV2		1031		
Fluid Type	Fluid Temp	Ambient Temp	Ambient Humidity	Forward Power	Source Spacing		
Fluid Type	°C	°C	(%)	(mW)	(mm)		
Head	23.0	26	24%	50	10		
Fluid Parameters							
Permittivity			Conductivity				
Measured	Target	Deviation	Measured Target Deviation				
35.17	35.93	-2.12%	5.00	4.71	6.16%		
	Measured SAR						
	1 gram 10 gram						
Measured	Target	Deviation	Measured	Target	Deviation		
4.01	3.97	0.92%	1.15	1.15	0.39%		
	Measured SAR Normalized to 1.0W						
	1 gram 10 gram						
Normalized	Target	Deviation	Normalized	Target	Deviation		
80.20	79.47	0.92%	23.00	22.91	0.39%		

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEC/IEEE 62209-1528 and FCC KDB 846224.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.

Celltech
Testing and Engineering Services Lab

Table 16.3 - 5750MHz

System Verification Test Results							
Dete		Frequency	Validation Source				
Date		(MHz)	P/N		S/N		
19 Ma	r 2024	5750	D5GHzV2		1031		
Fluid Type	Fluid Temp °C	Ambient Temp °C	Ambient Forward Humidity Power (%) (mW)		Source Spacing (mm)		
Head	23.6	26	27%	50	10		
Fluid Parameters							
Permittivity			Conductivity				
Measured	Target	Deviation	Measured Target Deviation				
33.09	35.36	-6.42%	5.48	5.22	4.98%		
	Measured SAR						
	1 gram 10 gram						
Measured	Target	Deviation	Measured	Target	Deviation		
3.53	3.78	-6.54%	1.01	1.10	-8.22%		
Measured SAR Normalized to 1.0W							
	1 gram 10 gram						
Normalized	Target	Deviation	Normalized	Target	Deviation		
70.60	75.54	-6.54%	20.20	22.01	-8.22%		

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEC/IEEE 62209-1528 and FCC KDB 846224,

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.

Test Report Issue Date: 15 May 2024

45461934 R1.0

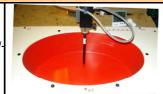
17.0 SYSTEM VALIDATION SUMMARY

Table 17.1 System Validation Summary

SAR Validation Summary Chart							
Validation Probe Probe Validation Frequency			Frequency	Validation Results			
Date	Model	S/N	Source	(MHz)	Linearity	Isotropy	Extrapolation
✓ = Complete				✓ = Not Required			
21-Jun-23	EX3DV4	7826	D2450V2	2450	Pass	Pass	Pass
28-Jun-23	EX3DV4	7826	D5GHzV2	5250	Pass	Pass	Pass
30-Jun-23	EX3DV4	7826	D5GHzV2	5750	Pass	Pass	Pass

18.0 MEASUREMENT SYSTEM SPECIFICATIONS

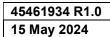
Table 18.0 Measurement System Specifications


Measurement System Specification					
Specifications					
Positioner	Stäubli Unimation Corp. Robot Model: TX90XL				
Repeatability	+/- 0.035 mm				
No. of axis	6.0				
Data Acquisition Electronic (DA	AE) System				
Cell Controller					
Processor	Intel(R) Core(TM) i7-7700				
Clock Speed	3.60 GHz				
Operating System	Windows 10 Professional				
Data Converter					
Features	Signal Amplifier, multiplexer, A/D converter, and control logic				
Coffee	Measurement Software: DASY6, V 6.4.0.12171 / DASY52 V10.2(1504)				
Software	Postprocessing Software: SEMCAD X, V14.6.12(7470)				
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock				
DASY Measurement Server					
Function	Real-time data evaluation for field measurements and surface detection				
Hardware	Intel ULV Celeron CPU 400 MHz; 128 MB chip disk; 128 MB RAM				
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface				
E-Field Probe	•				
Model	EX3DV4				
Serial No.	7826				
Construction	Triangular core fiber optic detection system				
Frequency	10 MHz to 6 GHz				
Linearity	±0.2 dB (30 MHz to 3 GHz)				
Phantom	·				
Туре	ELI Elliptical Planar Phantom				
Shell Material	Fiberglass				
Thickness	2mm +/2mm				
Volume	> 30 Liter				
Phantom					
Туре	Twin SAM Phantom				
Shell Material	Fiberglass				
Thickness	2mm +/2mm				
Volume	< 25 Liter				
Phantom					
Туре	Modular Flat Phantom				
Shell Material	Fiberglass				
Thickness	2mm +/2mm				
Volume	< 9 Liter				

Probe Specification angular core; atic charges esistant to organic solvents, glycol)	
atic charges esistant to organic solvents, glycol)	
·	
ty: ± 0.2 dB (30 MHz to 3 GHz)	
, ,	
earity: ± 0.2 dB	
and clear liquids over diffuse reflecting surfaces	
diameter: 6.8 mm	
GHz; Compliance tests of mobile phone	EX3DV4 E-Field Probe
	frequencies of 900 MHz frequencies freque

Phantom Specification

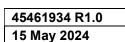
The ELI V5.0 phantom is an elliptical planar fiberglass shell phantom with a shell thickness of 2.0mm +/-.2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEC/IEEE 62209-1528, IEC 62209-1 and IEC 62209-2.


ELI Phantom

Device Positioner Specification

The DASY device positioner has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Positioner



19.0 TEST EQUIPMENT LIST

Table 19.1 Equipment List and Calibration

Т	est Equipm	ent List			
DESCRIPTION	ASSET NO.	SERIAL NO.	DATE CALIBRATED	CALIBRATION DUE	
Schmid & Partner DASY 6 System	-	-	-	-	
-DASY Measurement Server	00158	1078	CNR	CNR	
-Robot	00046	599396-01	CNR	CNR	
-DAE4	00019	353	16-Apr-23	16-May-24	
-EX3DV4 E-Field Probe	00357	7826	16-May-23	16-May-24	
-D2450V2 Validation Dipole	00219	825	24-Apr-21	24-Apr-24	
ELI Phantom	00247	1234	CNR	CNR	
SAM Phantom	00154	1033	CNR	CNR	
MFP Phantom	00355	1177/2	CNR	CNR	
HP 85070C Dielectric Probe Kit	00033	none	CNR	CNR	
Gigatronics 8652A Power Meter	00007	1835801	10-May-22	10-May-25	
Gigatronics 80701A Power Sensor	00186	1837002	COU	COU	
Gigatronics 80334A Power Sensor	00237	1837001	10-May-22	10-May-25	
HP 8753ET Network Analyzer	00134	US39170292	6-Jan-24	6-Jan-27	
Rohde & Schwarz SMR20 Signal Generator	00006	100104	COU	COU	
Amplifier Research 10W1000C Power Amplifier	00041	27887	CNR	CNR	
Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR	
Narda Directional Coupler 3020A	00064	-	CNR	CNR	
Bipolar Power Supply 6299A	00086	1144A02155	CNR	CNR	
DC-18G 10W 30db Attenuator	00102	-	COU	COU	
R&S FSP40 Spectrum Analyzer	00241	100500	9-Aug-21	9-Aug-24	
HP 8566B Spectrum Analyzer	00051	2747A055100	6-Jul-24	6-Jul-27	
RF Cable-SMA	00311	-	CNR	CNR	
HP Calibration Kit	00145	-	CNR	CNR	

CNR = Calibration Not Required SB=Stand By COU = Calibrate on Use

20.0 FLUID COMPOSITION

Table 20.1 Fluid Composition 2450MHz HEAD TSL

Tissue Simula	2450MHz Body				
Component by Percent Weight					
Water	Glycol	Salt ⁽¹⁾	HEC ⁽²⁾	Bacteriacide ⁽³⁾	
69.98	30.0	0.02	0.0	0.0	

- (1) Non-lodinized
- (2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g
- (3) Dow Chemical Dowicil 75 Antimicrobial Perservative

Table 20.2 Fluid Composition 5250, 5750MHz HEAD TSL

The 5GHz Head TSL is a SPEAG proprietary broad band fluid:

Type: **HBBL3500-5500V2**Batch number: **131210-2**P/N: **SL AAH 502 AC**

END OF REPORT

45461934 R1.0 15 May 2024

APPENDIX A - SYSTEM VERIFICATION PLOTS

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:825

Procedure Name: SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg 3 2 2 2

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.91$ S/m; $\epsilon_r = 36.88$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Date/Time: 3/8/2024 5:51:31 PM

DASY5 Configuration:

Probe: EX3DV4 - SN7826; ConvF(7.91, 7.42, 7.62) @ 2450 MHz; Calibrated: 5/16/2023

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn353; Calibrated: 4/18/2023

Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234

Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

SPC/SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg 3 2 2 2/Area Scan (81x31x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Reference Value = 86.16 V/m; Power Drift = 0.14 dB

Fast SAR: SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.45 W/kg

Maximum value of SAR (interpolated) = 17.2 W/kg

SPC/SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg 3 2 2 2/Area Scan (9x4x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 14.4 W/kg

SPC/SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg 3 2 2 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

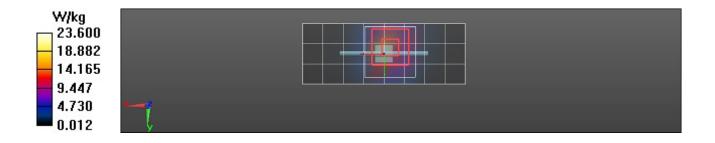
Reference Value = 86.16 V/m; Power Drift = 0.14 dB

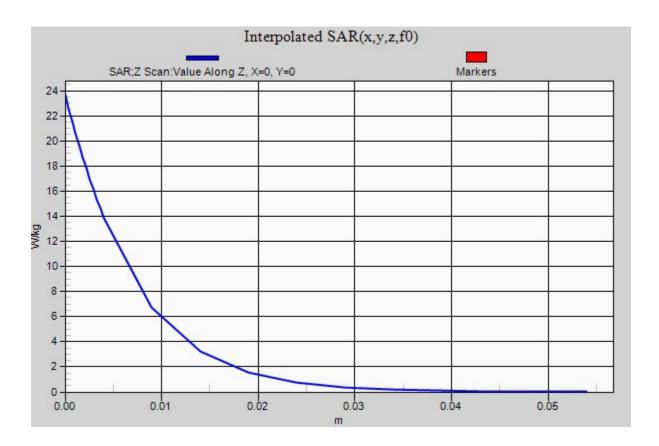
Peak SAR (extrapolated) = 30.6 W/kg

SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.33 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm

Ratio of SAR at M2 to SAR at M1 = 46.9%


Maximum value of SAR (measured) = 15.9 W/kg


SPC/SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg 3 2 2 2/Z Scan (1x1x22): Measurement grid: dx=20mm,

dy=20mm, dz=5mm

Penetration depth = 6.931 (6.846, 6.941) [mm] Maximum value of SAR (interpolated) = 23.6 W/kg

45461934 R1.0 15 May 2024

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1031

Procedure Name: SPC 5250H Input=50 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw 2

Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; $\sigma = 5$ S/m; $\epsilon_r = 35.17$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Date/Time: 3/12/2024 7:59:58 PM

DASY5 Configuration:

- Probe: EX3DV4 SN7826; ConvF(5.59, 5.24, 5.42) @ 5250 MHz; Calibrated: 5/16/2023
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/18/2023
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

SPC/SPC 5250H Input=50 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw 2/Area Scan (61x31x1): Interpolated grid:

dx=1.000 mm, dy=1.000 mm

Reference Value = 26.27 V/m; Power Drift = 0.20 dB

Fast SAR: SAR(1 g) = 3.76 W/kg; SAR(10 g) = 1.09 W/kg

Maximum value of SAR (interpolated) = 4.48 W/kg

SPC/SPC 5250H Input=50 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw 2/Area Scan (7x4x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 4.14 W/kg

SPC/SPC 5250H Input=50 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw 2/Zoom Scan (9x9x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 26.27 V/m; Power Drift = 0.20 dB

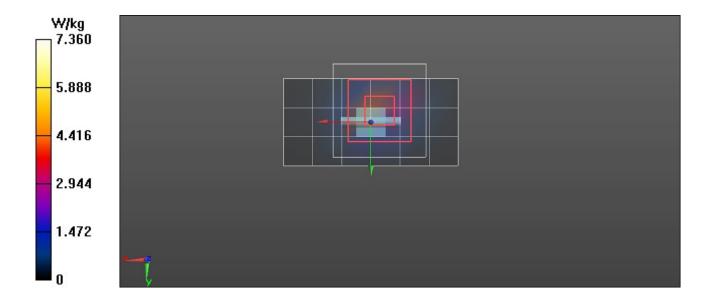
Peak SAR (extrapolated) = 16.7 W/kg

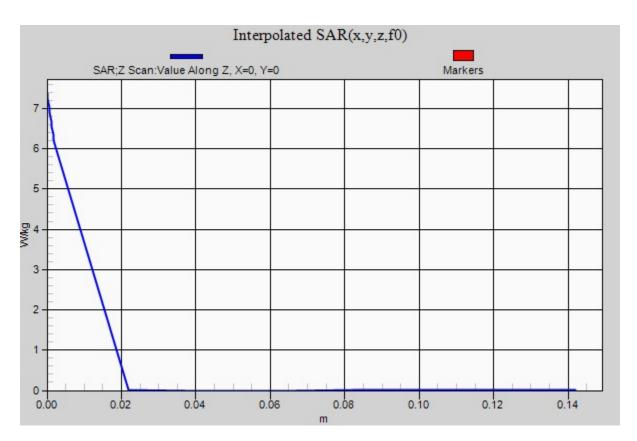
SAR(1 g) = 4.01 W/kg; SAR(10 g) = 1.15 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 53.7%

Maximum value of SAR (measured) = 8.46 W/kg


SPC/SPC 5250H Input=50 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw 2/Z Scan (1x1x19): Measurement grid:


dx=20mm, dy=20mm, dz=20mm

Penetration depth = n/a (n/a, 2.793) [mm]

Maximum value of SAR (interpolated) = 7.36 W/kg

45461934 R1.0 15 May 2024

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:xxx

Procedure Name: SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000 mw 2 2 2

Communication System: UID 0, CW (0); Frequency: 5750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5750 MHz; $\sigma = 5.55$ S/m; $\epsilon_r = 33.45$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Date/Time: 3/19/2024 6:26:24 PM

DASY5 Configuration:

- Probe: EX3DV4 SN7826; ConvF(5.14, 4.73, 4.93) @ 5750 MHz; Calibrated: 5/16/2023
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353: Calibrated: 4/18/2023
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

SPC/SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000 mw 2 2 2/Area Scan (31x61x1): Interpolated

grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 24.31 V/m; Power Drift = 0.30 dB

Fast SAR: SAR(1 g) = 3.37 W/kg; SAR(10 g) = 0.941 W/kg

Maximum value of SAR (interpolated) = 7.80 W/kg

SPC/SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000 mw 2 2 2/Area Scan (4x7x1): Measurement

grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 6.77 W/kg

SPC/SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000 mw 2 2 2/Zoom Scan (7x7x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 24.31 V/m; Power Drift = 0.30 dB

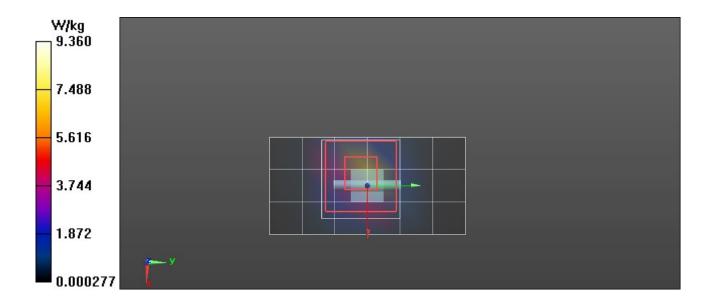
Peak SAR (extrapolated) = 15.7 W/kg

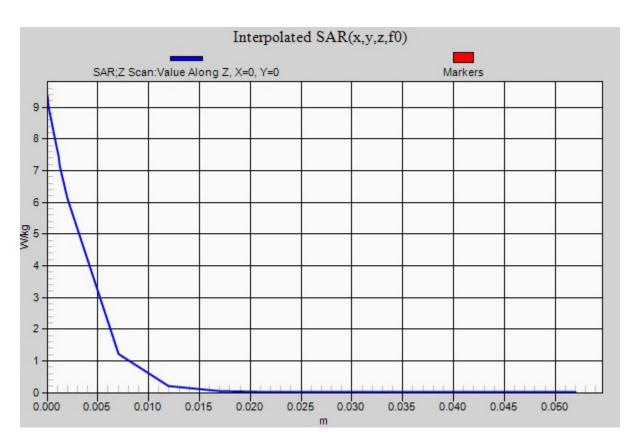
SAR(1 g) = 3.53 W/kg; SAR(10 g) = 1.01 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm

Ratio of SAR at M2 to SAR at M1 = 51.5%

Maximum value of SAR (measured) = 7.26 W/kg


SPC/SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000 mw 2 2 2/Z Scan (1x1x22): Measurement grid:


dx=20mm, dy=20mm, dz=5mm

Penetration depth = 2.899 (3.080, 2.693) [mm]

Maximum value of SAR (interpolated) = 9.36 W/kg

45461934 R1.0 15 May 2024

APPENDIX B – MEASUREMENT PLOTS OF MAXIMUM MEASURED SAR

BB3RZ

DUT: A04854; Type: Transmitter; Serial: Sample Proto-Type

Procedure Name: BB3RZ -A04854, Back Side 5mm, 5805MHz OFDM 6mb WIFI

Communication System: UID 0, CW (0); Frequency: 5805 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5805 MHz; $\sigma = 5.65 \text{ S/m}$; $\epsilon_r = 33.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Date/Time: 3/19/2024 11:52:01 AM

DASY5 Configuration:

Probe: EX3DV4 - SN7826; ConvF(5.14, 4.73, 4.93) @ 5805 MHz; Calibrated: 5/16/2023

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/18/2023
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

5750H/BB3RZ -A04854, Back Side 5mm, 5805MHz OFDM 6mb WIFI/Area Scan 2 (8x8x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.23 W/kg

5750H/BB3RZ -A04854, Back Side 5mm, 5805MHz OFDM 6mb WIFI/Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2mm

Reference Value = 9.415 V/m; Power Drift = 0.39 dB

Peak SAR (extrapolated) = 5.69 W/kg

SAR(1 g) = 1.26 W/kg; SAR(10 g) = 0.371 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

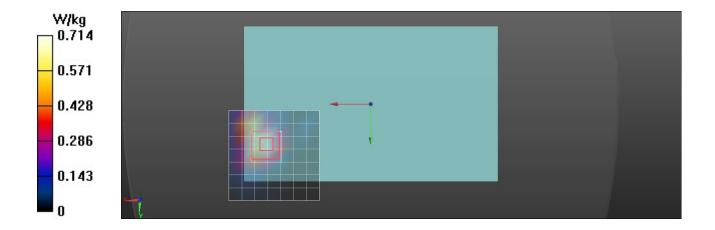
Ratio of SAR at M2 to SAR at M1 = 51.5%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.63 W/kg

5750H/BB3RZ -A04854, Back Side 5mm, 5805MHz OFDM 6mb WIFI/Z Scan (1x1x19): Measurement grid: dx=20mm, dy=20mm, dz=20mm

Info: Interpolated medium parameters used for SAR evaluation.


Penetration depth = n/a (n/a, 0) [mm]

Maximum value of SAR (interpolated) = 0.714 W/kg

45461934 R1.0 e Date: 15 May 2024

45461934 R1.0 15 May 2024

E28Z

DUT: A04854; Type: Transmitter; Serial: Sample Proto-Type Procedure Name: E28Z-A04854, Back Side, 5805MHz OFDM 6mb WIFI

Communication System: UID 0, CW (0); Frequency: 5805 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5805 MHz; $\sigma = 5.65 \text{ S/m}$; $\epsilon_r = 33.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Date/Time: 3/19/2024 5:12:46 PM

DASY5 Configuration:

Probe: EX3DV4 - SN7826; ConvF(5.14, 4.73, 4.93) @ 5805 MHz; Calibrated: 5/16/2023

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/18/2023
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

5750H/E28Z-A04854, Back Side, 5805MHz OFDM 6mb WIFI/Area Scan 2 (8x8x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.07 W/kg

5750H/E28Z-A04854, Back Side, 5805MHz OFDM 6mb WIFI/Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=2mm

Reference Value = 14.45 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 12.0 W/kg

SAR(1 g) = 2.62 W/kg; SAR(10 g) = 0.772 W/kg

Smallest distance from peaks to all points 3 dB below = 6.8 mm

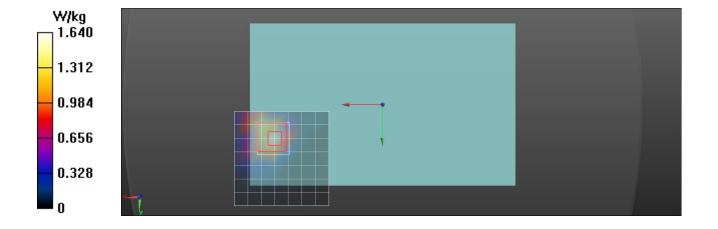
Ratio of SAR at M2 to SAR at M1 = 51.1%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 5.62 W/kg

5750H/E28Z-A04854, Back Side, 5805MHz OFDM 6mb WIFI/Z Scan (1x1x19): Measurement grid: dx=20mm, dy=20mm, dz=20mm

Info: Interpolated medium parameters used for SAR evaluation.


Penetration depth = n/a (n/a, 0) [mm]

Maximum value of SAR (interpolated) = 1.64 W/kg

45461934 R1.0 15 May 2024

45461934 R1.0 15 May 2024

E8Z

DUT: A04854; Type: Transmitter; Serial: Sample Proto-Type Procedure Name: E8Z-A04854, Left Edge, 2437MHz 1mb WIFI

Communication System: UID 0, CW (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.894$ S/m; $\epsilon_r = 36.882$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Date/Time: 3/9/2024 2:10:41 PM

DASY5 Configuration:

Probe: EX3DV4 - SN7826; ConvF(7.91, 7.42, 7.62) @ 2437 MHz; Calibrated: 5/16/2023

Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn353; Calibrated: 4/18/2023

Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234

Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

2450H/E8Z-A04854, Left Edge, 2437MHz 1mb WIFI/Area Scan (9x6x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.429 W/kg

2450H/E8Z-A04854, Left Edge, 2437MHz 1mb WIFI/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.19 V/m; Power Drift = 0.24 dB

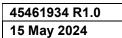
Peak SAR (extrapolated) = 0.778 W/kg

SAR(1 g) = 0.337 W/kg; SAR(10 g) = 0.143 W/kg

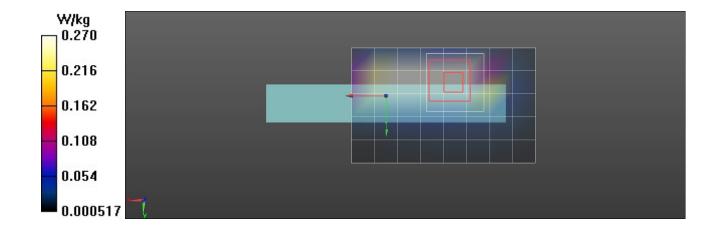
Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 43.3%

Info: Interpolated medium parameters used for SAR evaluation.


Maximum value of SAR (measured) = 0.609 W/kg

2450H/E8Z-A04854, Left Edge, 2437MHz 1mb WIFI/Z Scan (1x1x19): Measurement grid: dx=20mm, dy=20mm, dz=20mm


Info: Interpolated medium parameters used for SAR evaluation.

Penetration depth = n/a (n/a, 7.129) [mm]

Maximum value of SAR (interpolated) = 0.270 W/kg

45461934 R1.0 15 May 2024

B9Z

DUT: A04854; Type: Transmitter; Serial: Sample Proto-Type Procedure Name: B9Z-A04854, Left Edge, 2441MHz BT BR

Communication System: UID 0, CW (0); Frequency: 2441 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2441 MHz; σ = 1.901 S/m; ϵ_r = 36.844; ρ = 1000 kg/m³

Phantom section: Flat Section

Date/Time: 3/9/2024 2:52:53 PM

DASY5 Configuration:

Probe: EX3DV4 - SN7826; ConvF(7.91, 7.42, 7.62) @ 2441 MHz; Calibrated: 5/16/2023

Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn353; Calibrated: 4/18/2023

Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234

Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

2450H/B9Z-A04854, Left Edge, 2441MHz BT BR/Area Scan (9x6x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.134 W/kg

2450H/B9Z-A04854, Left Edge, 2441MHz BT BR/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.016 V/m; Power Drift = 0.41 dB

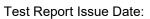
Peak SAR (extrapolated) = 0.266 W/kg

SAR(1 g) = 0.112 W/kg; SAR(10 g) = 0.047 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

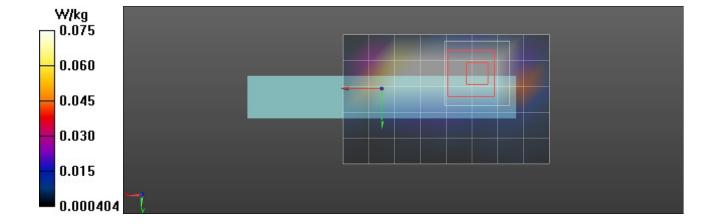
Ratio of SAR at M2 to SAR at M1 = 41.3%

Info: Interpolated medium parameters used for SAR evaluation.


Maximum value of SAR (measured) = 0.206 W/kg

2450H/B9Z-A04854, Left Edge, 2441MHz BT BR/Z Scan (1x1x19): Measurement grid: dx=20mm, dy=20mm, dz=20mm

Info: Interpolated medium parameters used for SAR evaluation.


Penetration depth = n/a (n/a, 6.293) [mm]

Maximum value of SAR (interpolated) = 0.0751 W/kg

Celitech
Testing and Engineering Services Lab
Test Repo

45461934 R1.0 15 May 2024

