

Test Report Serial Number:
Test Report Date:
Project Number:

45461930 R1.0 31 May 2024 1655

EMC Test Report - New Certification

Applicant:

Garmin International Inc. 1200 East 151 St Olathe, KS, 66062 USA

FCC ID:

IPH-04805

Product Model Number / HVIN

Product Marketing Name / PMN

A04805

A04805

In Accordance With:

CFR Title 47, Part 15 Subpart C, (§15.225), Part 15 Subpart B

Part 15 Low Power Communication Device Transmitter (DXX)

Approved By:

Ben Hewson, President

Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8 Canada

Canaua

Industry Canada

IC Registration 3874A

This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc.

45461930 R1.0 31 May 2024

Table of Contents

1.0 DOCUMENT CONTROL	4
2.0 CLIENT AND DUT INFORMATION	5
3.0 SCOPE	
4.0 TEST RESULT SUMMARY	7
5.0 NORMATIVE REFERENCES	
6.0 FACILITIES AND ACCREDITATIONS	
7.0 OCCUPIED BANDWIDTH	
8.0 NFC FIELD STRENGTH / EMISSIONS MASK	
9.0 RADIATED SPURIOUS EMISSIONS – RESTRICTED BANDS	
10.0 RADIATED RX SPURIOUS EMISSIONS	
11.0 POWER LINE CONDUCTED EMISSIONS	
12.0 FREQUENCY STABILITY (NFC)	
APPENDIX A – TEST SETUP DRAWINGS AND EQUIPMENT	
APPENDIX B – EQUIPMENT LIST AND CALIBRATION	
APPENDIX C – MEASUREMENT INSTRUMENT UNCERTAINTY	
END OF REPORT	
APPENDIX I- RADIATED TX EMISSIONS MEASUREMENT PLOTS	
APPENDIX J- RADIATED RX MEASUREMENT PLOTS	
Table (FRI)	
Table of Plots	
Plot 7.1 – Occupied Bandwidth, NFC	11
Plot 8.1 – Field Strength, NFC, Front	11
Plot 8.2 – Field Strength, NFC, Side	
Plot 8.3 – Emissions Mask, NFC, Side	
Plot 8.4 – Emissions Mask, NFC, Side	17
Plot 11.1 – Power Line Conducted Emissions, Line 1	
Plot 11 2 – Power Line Conducted Emissions Line 2	26

45461930 R1.0 31 May 2024

Table of Tables

Table 7.1 - Summary of Occupied Bandwidth Measurements (NFC) Table 8.1 - Summary of Field Strength Measurements (NFC) Table 8.1 - Summary of Field Strength Measurements (NFC) - Cont Table 9.1 - Summary of Radiated Tx Emissions Table 10.1 - Summary of Radiated Rx Emissions Table 11.1 - Summary of Power Line Conducted Emissions - L1. Table 11.2 - Summary of Power Line Conducted Emissions - L2. Table 12.1 - Summary of Frequency Stability Measurements - FCC. Table A.1 - Setup - Conducted Measurements Equipment List Table A.2 - Setup - Radiated Emissions Equipment List	
Table A.3 – Power Line Conducted Measurement Equipment	
Table A.4 – Setup – Frequency Stability Equipment List	
Table of Figures	
Figure A.1 – Test Setup Conducted Measurements	31
Figure A.2 – Test Setup Radiated Emissions Measurements Below 30MHz	
Figure A.3 – Test Setup Radiated Emissions Measurements 30 – 1000MHz	
Figure A.4 – Test Setup Radiated Emissions Measurements 30 – 1000MHz Signal Substitution	34
Figure A.5 – Test Setup Radiated Emissions Measurements 1 – 18GHz	34
Figure A.6 – Test Setup Radiated Emissions Measurements Above 18 GHz	
Figure A.7 – Test Setup Power Line Conducted Measurements	
Figure A.8 – Frequency Stability	37

45461930 R1.0 31 May 2024

1.0 DOCUMENT CONTROL

Revision History									
San	nples Tested By:	Art Voss, P.Eng.	Dat	e(s) of Evaluation:	12 March - 6 April, 2024				
Rep	Report Prepared By: Art Voss, P.Eng. Report Reviewed By:		Report Reviewed By: Ben Hewson						
Report	l Description of Revision		Revised	Revised	Revision Date				
Revision			Section	Ву	Revision Date				
0.1	Draft		Draft		n/a	Art Voss	17 May 2024		
1.0	Initial Release		n/a	Art Voss	31 May 2024				

45461930 R1.0 31 May 2024

2.0 CLIENT AND DUT INFORMATION

Client Information							
Applicant Name	Garmin International Inc.						
	1200 East 151 St						
Applicant Address	Olathe, KS, 66062						
	USA						
	DUT Information						
Device Identifier(s):	FCC ID: IPH-04805						
Device Model(s) / HVIN:	A04805						
Device Marketing Name / PMN:	A04805						
Test Sample Serial No.:	3469058597 - Conducted, 3469058595 - OTA						
Device Type:	Portable Transceiver						
	Digital Transmission Systems (DTS)						
	Spread Spectrum Transmitter (DSS)						
Equipment Class:	Low Power Communication Device (DTS)						
	Global Navigation Satellite System (GNSS) Receivers						
	NFC - Low Power Communication Device Transmitter (DXX)						
	WiFi (DTS): 2412-2472MHz						
Transmit Frequency Range:	BT/BLE/ANT: 2402-2480MHz						
	NFC: 13.56MHz						
	WiFi - Digital Transmission System (DTS): 11.3dBm EIRP						
Name of Many Body of October Books	BlueTooth - Spread Spectrum Transmitter (DSS): 6.2dBm EIRP						
Manuf. Max. Rated Output Power:	BLE/ANT - Low Power Communication Device Transmitter (DTS): -1.8dBm EIRP						
	NFC - Low Power Communication Device Transmitter (DXX): 42.95dBuV/m						
Antenna Type and Gain:	-5dBi Max Slot Antenna						
	WiFi: DSSS, OFDM, CCK, MCS0-7						
	BT BR: GFSK						
Market Atama	BT EDR: Pi/4-DQPSK, 8DPSK						
Modulation:	BLE: GMSK						
	ANT: GFSK						
	NFC: ASK						
DUT Power Source:	4.5VDC Rechargeable Li-lon						
DUT Dimensions [LxWxH]	H x W x D: 43mm dia x 4.5mm						
Deviation(s) from standard/procedure:	None						
Modification of DUT:	None						

45461930 R1.0 31 May 2024

3.0 SCOPE

Preface:

This Certification Report was prepared on behalf of:

Garmin International Inc.

,(the 'Applicant"), in accordance with the applicable Federal Communications Commission (FCC) CFR 47 and Innovation, Scientific and Economic Development (ISED) Canada rules parts and regulations (the 'Rules'). The scope of this investigation was limited to only the equipment, devices and accessories (the 'Equipment') supplied by the Applicant. The tests and measurements performed on this Equipment were only those set forth in the applicable Rules and/or the Test and Measurement Standards they reference. The Rules applied and the Test and Measurement Standards used during this evaluation appear in the Normative References section of this report. The limits set forth in the technical requirements of the applicable Rules were applied to the measurement results obtained during this evaluation and ,unless otherwise noted, these limits were used as the Pass/Fail criteria. The Pass/Fail statements made in this report apply to only the tests and measurements performed on only the Equipment tested during this evaluation. Where applicable and permissible, information including test and measurement data and/or results from previous evaluations of same or similar equipment, devices and/or accessories may be cited in this report.

Device:

The Garmin Model/HVIN: A04805 is a portable transceiver device consisting of a WiFi, BlueTooth (BT), BlueTooth Low Energy (BLE), Adaptive Network Topology (ANT) and Near Field Communication (NFC) transceivers. The WiFi and BT/BLE/ANT transceivers share the same antenna and cannot simultaneously transmit.

Requirement:

The transceivers of this *equipment* are subject to emissions evaluation in accordance with FCC: 47 CFR 2, 15C. As per FCC 47 CFR §2.1093, an RF Exposure (SAR) evaluation is required for this *Equipment* and the results of the RF Exposure (SAR) evaluation appear in a separate report.

Application:

This is an application for a New Certification.

Scope:

The scope of this investigation is limited to the evaluation and reporting of the wanted and spurious emissions in accordance with the rule parts cited in Normative References section of this report.

45461930 R1.0

31 May 2024

4.0 TEST RESULT SUMMARY

	TEST SUMMARY								
Section	Description of Test	Procedure	Applicable Rule	Test	Result				
		Reference	Part(s) FCC	Date					
7.0	Occupied Bandwidth	ANSI C63.10-2013	§2.1049	2-3 April	Pass				
7.0	Occupied Baridw Idiri	KDB 558074 D01v05	92.1049	2024	rass				
8.0	NFC Field Strength, Mask	ANSI C63.10-2013	§15.225(a)(c)	2-3 April	Pass				
0.0	NI C Field Strength, Mask	KDB 558074 D01v05	§15.225(a)(c)	2024	газз				
9.0	Radiated Tx Emission	ANSI C63.10-2013	§15.249(d)(e)	2-3 April	Pass				
9.0	Nadiated IX Efficient	KDB 558074 D01v05	§15.209	2024	1 455				
10.0	Radiated Rx Emissions	ANSI C63.10-2013	§15.249(d)(e)	2-3 April	Pass				
10.0	Naulateu IX Ellissions	KDB 558074 D01v05	§15.209	2024	rass				
11.0	Pow er Line Conducted Emissions	ANSI C63.4-2014	§15.107	5 April 2024	Pass				
11.0	1 OW OF LINE CONTROLLED IN 18510115	7.1701.000.7-2014	g10.101	0 April 2024	1 433				
12.0	Frequency Stability	ANSI C63.10-2013	§15.225	5 April 2024	Page				
12.0	Trequency Stability	KDB 558074 D01v05	810.220	5 April 2024	Pass				

Test Station Day Log										
Ambient Relative Barometric Test Tests										
Date	Temp	Humidity	Pressure	Station	Performed					
	(°C)	(%)	(kPa)		Section(s)					
2 Apr 2024	10.0	60	101.9	OATS	7,8,9,10					
3 Apr 2024	9.0	36	101.9	OATS	7,8,9,10					
5 Apr 2024	17.0	37	100.7	LISN	11					
5 Apr 2024	17.0	37	100.7	TC	12					

EMC - EMC Test Bench
 OATS - Open Area Test Site
 LISN - LISN Test Area
 SAC - Semi-Anechoic Chamber
 TC - Temperature Chamber
 ESD - ESD Test Bench

IMM - Immunity Test Area RI - Radiated Immunity Chamber

I attest that the data reported herein is true and accurate w ithin the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance w ith accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.

Sul Yours

Art Voss, P.Eng. Technical Manager Celltech Labs Inc.

17 May 2024

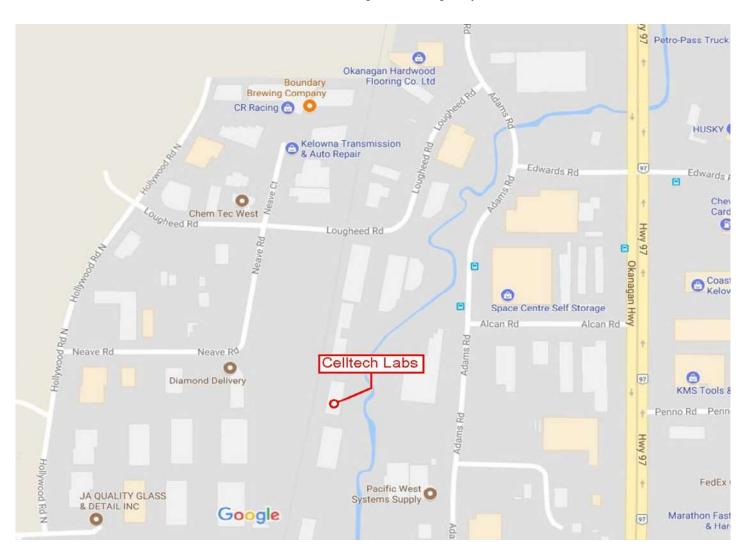
Date

45461930 R1.0

31 May 2024

5.0 NORMATIVE REFERENCES

		Normative References
ISO/IEC 17025:2017		General requirements for the competence of testing and calibration laboratories
ANSI C63.4-2014		American National Standard of Procedures for Methods of Measurement of Radio-Noise
		Emissions from Low-Voltage Electric and Electronic Equipment in the Range of 9kHz to 40GHz
ANSI	C63.10-2013	American National Standard of Procedures for Compliance Testing of
		Unlicensed Wireless Devices
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 2:	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 15:	Radio Frequency Devices
	Subpart B:	Unintentional Radiators
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 15:	Radio Frequency Devices
	Sub Part C (15.225)	Intentional Radiators



45461930 R1.0 31 May 2024

6.0 FACILITIES AND ACCREDITATIONS

Facility and Accreditation:

The facilities used to evaluate this device outlined in this report are located at 21-364 Lougheed Road, Kelowna, British Columbia, Canada V1X7R8. The radiated emissions site (OATS) conforms to the requirements set forth in ANSI C63.4 and is filed and listed with the FCC under Test Firm Registration Number CA3874 and Industry Canada under Test Site File Number IC 3874A. Celltech is accredited to ISO 17025, through accrediting body A2LA and with certificate 2470.01.

45461930 R1.0 31 May 2024

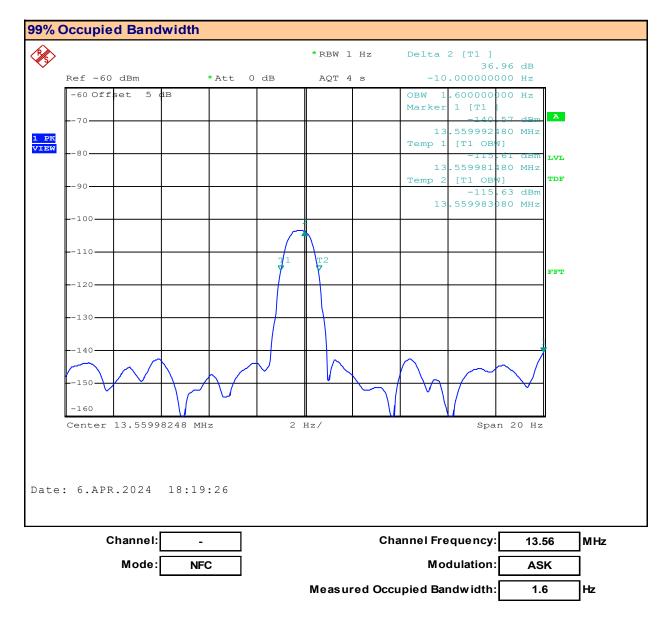
7.0 OCCUPIED BANDWIDTH

Test Procedure	
Normative	FCC 47 CFR §2.1046, §15.225
Reference	KDB 558074 (8.3.2.1), ANSI C63.10 (6.9.3)
General Procedure	
C63.10 (6.9.3)	6.9.3 Occupied bandwidth—power bandwidth (99%) measurement procedure
	The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
	a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
	c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
	d) Step a) through step c) might require iteration to adjust within the specified range.
	e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
	f) Use the 99% power bandwidth function of the instrument (if available) and report the

Test Setup

Appendix A - Figure A.1

measured bandwidth.


Measurement Procedure

The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as described above using the 99% Occupied Bandwidth function. The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the device. The DUT was set to transmit at its maximum Duty Cycle. The 99% Occupied Bandwidth was measured and recorded.

45461930 R1.0 31 May 2024

Plot 7.1 - Occupied Bandwidth, NFC

45461930 R1.0 31 May 2024

Table 7.1 - Summary of Occupied Bandwidth Measurements (NFC)

99% Occupied Bandwidth Results: NFC									
Channel	Channel			Measured					
Number	Frequency (MHz)	Mode	Modulation	Occupied Bandwidth (Hz)	Emission Designator				
-	- 13.56 NFC		ASK	1.60	1H60K1D				
	Result: Complies								

45461930 R1.0 31 May 2024

8.0 NFC FIELD STRENGTH / EMISSIONS MASK

Test Procedure	
Normative Reference	FCC 47 CFR §2.1046, §15.225
	KDB 558074 (8.3.2), ANSI C63.10 (11.9.2.2.6)
Limits	
§15.225	Operation within the band 13.110-14.010 MHz.
	(a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
	(b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
	(c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
	(d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in §15.209.
RSS-210 B.10(6)	Band 13.110-14.010 MHz
	(a) the field strength of any emission shall not exceed the following limits:
	(i)15.848 mV/m (84 dBµV/m) at 30 m, within the band 13.553-13.567 MHz
	(ii)334 $\mu\text{V/m}$ (50.5 dB $\mu\text{V/m}$) at 30 m, within the bands 13.410-13.553 MHz and13.567-13.710 MHz
	(iii)106 $\mu V/m$ (40.5 dB $\mu V/m$) at 30 m, within the bands 13.110-13.410 MHz and13.710-14.010 MHz
	(iv)RSS-Gen general field strength limits for frequencies outside the band13.110-14.010 MHz
General Procedure	

C63.10 (6.5.4)

6.5.4 Final radiated emission tests

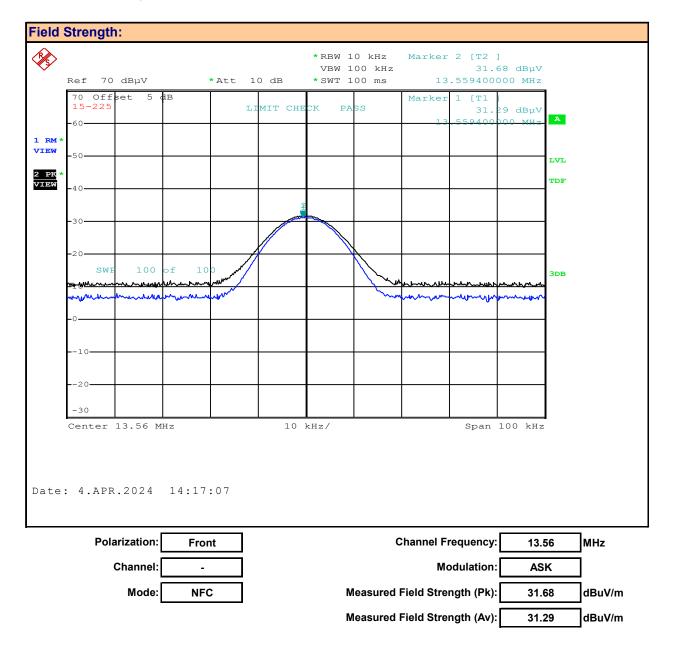
Using the orientation and equipment arrangement of the EUT, and based on the measurement results found during the exploratory measurement in 6.5.3, the EUT arrangement, appropriate modulation, and modes of operation that produce the emissions that have the highest amplitude relative to the limit shall be selected for the final measurement. The final measurement shall follow all the procedures in 6.3 with the EUT operating on frequencies per 5.6. For each mode selected, record the frequency and amplitude of the highest fundamental emission (if applicable) and the frequency and amplitude of the six highest spurious emissions relative to the limit; emissions more than 20 dB below the limit do not need to be reported.

Measurements are performed with the EUT rotated from 0° to 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations. Variations in cable or wire placement shall be explored to maximize the measured emissions.

Test Setup

Appendix A

Figure A.2


Measurement Procedure

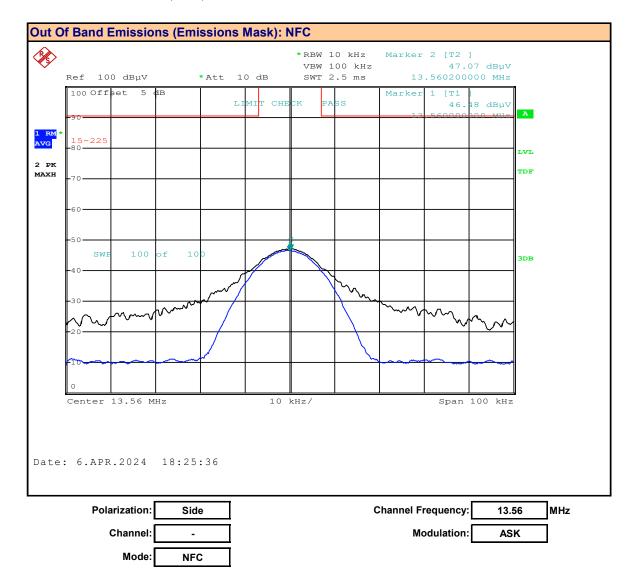
The DUT place on a 80cm high turntable on an Open Area Test Site (OATS) at a distance of 3m from the measurement antenna. The DUT was set to transmit at maximum power and duty cycle. The DUT was rotated 360 degrees and scanned with the receive antenna elevated from 1 to 4m. The emissions were measured and recorded.

45461930 R1.0 31 May 2024

Plot 8.1 - Field Strength, NFC, Front

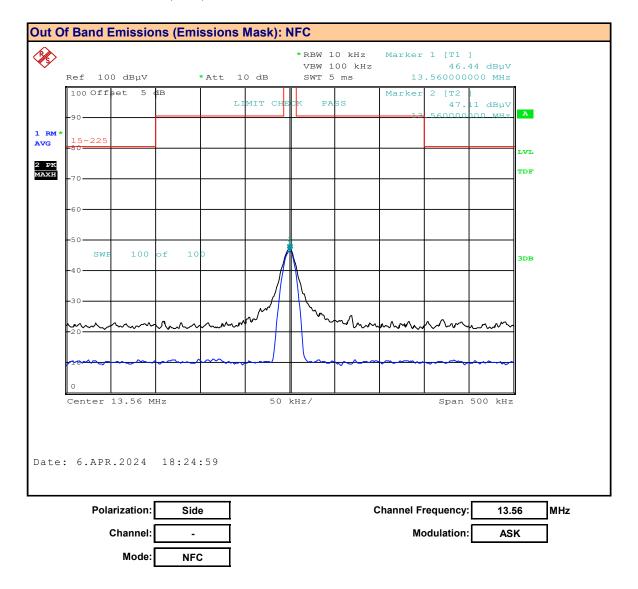
45461930 R1.0 31 May 2024

Plot 8.2 - Field Strength, NFC, Side



Polarization:	Side	Channel Frequency:	13.56	MHz
Channel:	-	Modulation:	ASK]
Mode:	NFC	Measured Field Strength (Pk):	42.95	dBuV/m
		Measured Field Strength (Av):	42.8	dBuV/m

45461930 R1.0 31 May 2024


Plot 8.3 - Emissions Mask, NFC, Side

45461930 R1.0 31 May 2024

Plot 8.4 - Emissions Mask, NFC, Side

Test Report S/N:

45461930 R1.0

Test Report Issue Date: 31 May 2024

Table 8.1 – Summary of Field Strength Measurements (NFC)

Radiated	Radiated Field Strength													
			Modulation			Antenna	Measured	Cable .	Receive	Corrected	Limit	Limit*		Emissions
Frequency	Mode	Mode		Detector		Field Strength	Loss	Antenna	Field Strength	@30m	@3m	Margin		
				Polarization	[FS _{Meas}]	[L _c]	[ACF]	[FS _{Corr}]	[Lim _{30m}]	[Lim _{3m}]		Mask		
(MHz)				Polarization	(dBuV @ 3m)	(dBm)	(dB)	(dBuV/m @3m)	(dBuV/m)	(dBuV/m)	(dB)	Wask		
			RMS	Front	31.29			42.29	84.00	124.0	81.7	Pass		
13.56	NFC	ASK	KIVIO	Side	42.80	0.5	10.5	53.80	04.00	124.0	70.2	Pass		
13.50	NI C AS	ASK	Peak	Front	31.68	0.5	10.5	42.68	104.00	144.0	101.3	Pass		
				Side	42.95			53.95	104.00	144.0	90.1	Pass		
Result: Complies														

^{*} Limit @ 3m = Limit @ 30m + 40dB/decade = 84dBuV/m + 40dB = 124dBuV/m (Average)

 $FS_{Corr} = FS_{Meas} + ACF + L_{C}$

Margin = $Limit_{3m}$ - FS_{Corr}

^{*} Limit @ 3m = Limit @ 30m + 40dB/decade = 104dBuV/m + 40dB = 144dBuV/m (Peak)

Test Report S/N:

45461930 R1.0

Test Report Issue Date: 31 May 2024

Table 8.1 – Summary of Field Strength Measurements (NFC) – Cont.

Radiated	Radiated Field Strength																	
		Modulation Detector	Detector	Antenna	Measured	Cable	Receive	Corrected	Limit	Limit**		Emissions						
Frequency	Mode			Antenna	Field Strength	Loss	Antenna	Field Strength	@30m	@3m	Margin	EIIIISSIOIIS						
	Wode		Polarization	[FS _{Meas}]	[L _c]	[ACF ^H]	[H _{Corr}]	[Lim _{30m}]	[Lim _{3m}]		Mask							
(MHz)						(dBuA/m @3m)	(dBuV/m)	(dBuA/m)	(dB)	IVIASK								
		ASK	ASK	VCK	RMS	Front	31.29			-9.21	84.00	72.5	81.7	Pass				
13.56	NFC				VOK	VCK	VCK	VOK	A CIV	KIVIO	Side	42.80	0.5	-41	2.30	04.00	72.5	70.2
13.50	MFC			Peak	Front	31.68	0.5	-41	-8.82	104.00	92.5	101.3	Pass					
			r eak	Side	42.95			2.45	104.00	92.5	90.1	Pass						
	Result:								Co	mplies								

^{**} Limit @ 3m = Limit @ 30m + 40dB/decade = 84dBuV/m + 40dB = 124dBuV/m (Average)

In accordance with ISED Notice 2020 - DRS0023:

"Guidance on Magnetic Field Strength Radiated Emissions Measurements 9kHz - 30MHz"

Limit Correction

 $Limit^{H}$ (dBuA/m) = $Limit^{E}$ (dBuV/m) - Z_0 (dB Ω)

Where Z_0 = Free-Space Impedance = $120\pi\Omega$ = 377Ω => $20\text{Log}377\Omega$ = $51.5\text{dB}\Omega$

 $Limit^{H}$ (dBuA/m) = $Limit^{E}$ (dBuV/m) - Z_0 (dB Ω) = 124dBuV/m - 51.5dB Ω = 72.5dBuA/m @ 3m (Average)

 $Limit^{H}$ (dBuA/m) = $Limit^{E}$ (dBuV/m) - Z_{0} (dB Ω) = 144dBuV/m - 51.5dB Ω = 92.5dBuA/m @ 3m (Peak)

Measurement Correction

 $H_{Corr}(dBuA/m) = E_{Meas}(dBuV) + ACF^{H}(dB/\Omega m) + L_{C} - G_{A}$

Where ACF^H is the Magnetic Antenna Correction Factor, L_C is Cable Loss, G_A is Pre-Amplifier Gain

External Pre-Amplifier (G_A) not used

Margin = $Limit_{3m}$ - H_{Corr}

^{**} Limit @ 3m = Limit @ 30m + 40dB/decade = 104dBuV/m + 40dB = 144dBuV/m (Peak)

45461930 R1.0 31 May 2024

9.0 RADIATED SPURIOUS EMISSIONS - RESTRICTED BANDS

Test Procedure									
Normative Reference	FCC 47 CFR §2.1051, §	, §15.205(a), §15.205(c), §15.209(a)							
Normative Reference	KDB 558074 (8.6), ANSI C63.10 (11.12)								
Limits	Limits								
47 CFR §15.209(a)	§15.209 Radiated emission limits; general requirements. (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:								
	Frequency (MHz)	Field Strength (microvolts/meter)							
	0.009 - 0.490	2400/F (kHz) @300m							
	0.490 - 1.705	24000/F (kHz) @30m							
	1.705 - 30	30 @ 30m							
	30 - 88	100 @3m							
	88 - 216	150 @3m							
	216 - 960	200 @3m							
	Above 960	500 @3m							

Test Report S/N:

45461930 R1.0

Test Report Issue Date: 31 May 2024

Table 9.1 – Summary of Radiated Tx Emissions

See Appendix I for Measurement Plots

Summary of	Summary of Radiated Tx Emissions									
Measured	Channel	Antenna	Emission	Measured	Antenna	Cable	Amplifier	Corrected		
Frequency	Citatillei	Antenna	Lillission	Emission	ACF	Loss	Gain	Emission	Limit	Margin
Range	Frequency	Polarization	Frequency	[E _{Meas}]	[ACF]	[L _c]	[G _A]	[E _{Corr}]		
(MHz)	(MHz)		(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV)	(dB)
30-1000 MHz	13.6	Horizontal	ND	(1) AV	n/a	n/a	0.00 (3)	ND	n/a	(1)
30-1000 WII 12	13.0	Vertical	ND	(1) AV	n/a	n/a	0.00 (3)	ND	n/a	(1)
	_				_			Results:	Com	plies

- (1) No Emissions Detected (ND) above ambient or within 20dB of the limit
- (2) Antenna ACF, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor
- (3) External Amplier not used

$$E_{Corr} = E_{Meas} + ACF^{E} + L_{C} - G_{A}$$

Where ACF^E is the Electric Antenna Correction Factor

^{*} Without Manufacturer's Accessories, ** With Manufacturer's Accessories

45461930 R1.0 31 May 2024

10.0 RADIATED RX SPURIOUS EMISSIONS

Test Procedure					
Normative Reference FCC 47 CFR §2.1046					
	KDB 558074 (8.3.2), ANSI C63.10 (11.9.2.2.6)				

General Procedure

C63.10 (6.5.4)

6.5.4 Final radiated emission tests

Using the orientation and equipment arrangement of the EUT, and based on the measurement results found during the exploratory measurement in 6.5.3, the EUT arrangement, appropriate modulation, and modes of operation that produce the emissions that have the highest amplitude relative to the limit shall be selected for the final measurement. The final measurement shall follow all the procedures in 6.3 with the EUT operating on frequencies per 5.6. For each mode selected, record the frequency and amplitude of the highest fundamental emission (if applicable) and the frequency and amplitude of the six highest spurious emissions relative to the limit; emissions more than 20 dB below the limit do not need to be reported.

Measurements are performed with the EUT rotated from 0° to 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations. Variations in cable or wire placement shall be explored to maximize the measured emissions.

Test Setup Appendix A Figure A.2

Measurement Procedure

The DUT place on a 80cm high turntable on an Open Area Test Site (OATS) at a distance of 3m from the measurement antenna. The DUT was set to transmit at maximum power and duty cycle. The DUT was rotated 360 degrees and scanned with the receive antenna elevated from 1 to 4m. The emissions were measured and recorded.

Test Report S/N:

45461930 R1.0

Test Report Issue Date: 31 May 2024

Table 10.1 - Summary of Radiated Rx Emissions

See Appendix J for Measurement Plots

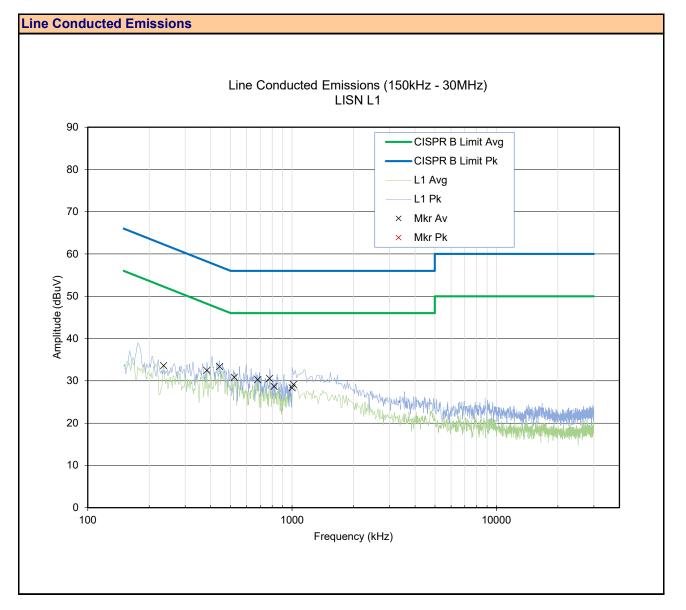
Summary of	Summary of Radiated Rx Emissions									
Measured	Channel	Antonno	Emission	Measured	Antenna	Cable	Amplifier	Corrected		
Frequency	Channel	Antenna	Emission	Emission	ACF	Loss	Gain	Emission	Limit	Margin
Range	Frequency	Polarization	Frequency	[E _{Meas}]	[ACF]	[L _c]	[G _A]	[E _{Corr}]		
(MHz)	(MHz)		(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV)	(dB)
30-1000	-	Horizontal	(1)	(1) AV	-	-	0.00 (3)	(1)	-	(1)
30-1000	-	Vertical	(1)	(1) AV	-	-	0.00 (3)	(1)	-	(1)
			_	_				Results:	Com	plies

(1) No Emissions Detected (ND) above ambient or within 20dB of the limit

(3) External Amplier not used

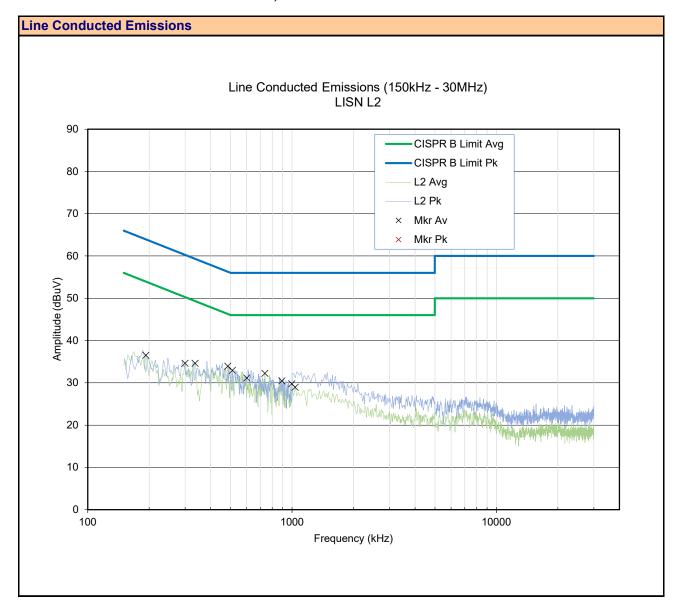
 $E_{Corr} = E_{Meas} + ACF^{E} + L_{C} - G_{A}$

Where ACF^E is the Electric Antenna Correction Factor


45461930 R1.0 31 May 2024

11.0 POWER LINE CONDUCTED EMISSIONS

Test Procedure	
Normative Reference	FCC 47 CFR §15.107, ICES-003(6.1)
Normative Reference	ANSI C63.4-2014
Limits	
47 CFR §15.107	(a) Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges. 0.15-0.5MHz: 66-56 dBuV Quasi Peak, 56-46 dBuV Average, Decreases with the logrithm of the frequency
	0.5 - 5.0 MHz: 56 dBuV Quasi Peak, 46 dBuV Average
ICES-003(6.1)	5.0 - 30.0 MHz: 60 dBuV Quasi Peak, 50 dBuV Average 6.1 - AC Power Line Conducted Emissions Limits
10E3-003(0.1)	Class B: ITE that does not meet the conditions for Class A operation shall comply with the Class B radiated limits set out in Table 2.
	0.15-0.5MHz: 66-56 dBuV Quasi Peak, 56-46 dBuV Average, Decreases with the logrithm of the
	0.5 - 5.0 MHz: 56 dBuV Quasi Peak, 46 dBuV Average
	5.0 - 30.0 MHz: 60 dBuV Quasi Peak, 50 dBuV Average
Test Setup	Appendix A Figure A.7



Plot 11.1 - Power Line Conducted Emissions, Line 1

Plot 11.2 - Power Line Conducted Emissions, Line 2

45461930 R1.0 31 May 2024

Table 11.1 – Summary of Power Line Conducted Emissions – L1

§15.107, ICES-0	§15.107, ICES-003 (6.1)							
Emission	LISN	Detector	Corrected Emission	Limit	Margin			
Frequency	Port	Detector	[E _{Corr}]*	[Limit]	[Margin]			
ricquericy	1 011		(W)	(dBuV/m)	(dB)			
235.0 kHz	L1	Average	33.59	52.6	19.0			
382.9 kHz	L1	Average	32.43	48.3	15.9			
442.4 kHz	L1	Average	33.36	47.1	13.7			
522.3 kHz	L1	Average	30.82	46.0	15.2			
678.7 kHz	L1	Average	30.27	46.0	15.7			
775.6 kHz	L1	Average	30.55	46.0	15.5			
818.1 kHz	L1	Average	28.68	46.0	17.3			
1000.0 kHz	L1	Average	28.34	46.0	17.7			
1018.0 kHz	L1	Average	29.13	46.0	16.9			
			Results:	Comp	olies			

^{*} Measurement Compensated for Cable Loss and Antenna Correction Factor

 $E_{Corr} = E_{Meas} + L_{C} + AFC$

Margin = Limit - E_{Corr}

45461930 R1.0 31 May 2024

Table 11.2 – Summary of Power Line Conducted Emissions – L2

§15.107, ICES-003 (6.1)							
Emission	LISN	Detector	Corrected Emission	Limit	Margin		
Frequency	Port	Detector	[E _{Corr}]*	[Limit]	[Margin]		
. ,			(W)	(dBuV/m)	(dB)		
192.5 kHz	L2	Average	36.50	54.3	17.8		
299.6 kHz	L2	Average	34.59	50.4	15.9		
335.3 kHz	L2	Average	34.60	49.5	14.9		
484.9 kHz	L2	Average	33.92	46.3	12.3		
510.4 kHz	L2	Average	32.95	46.0	13.1		
600.5 kHz	L2	Average	31.11	46.0	14.9		
736.5 kHz	L2	Average	32.24	46.0	13.8		
891.2 kHz	L2	Average	30.46	46.0	15.5		
996.6 kHz	L2	Average	29.75	46.0	16.2		
1036.0 kHz	L2	Average	28.94	46.0	17.1		
			Results:	Comp	olies		

^{*} Measurement Compensated for Cable Loss and Antenna Correction Factor

 $E_{Corr} = E_{Meas} + L_{C} + AFC$

45461930 R1.0

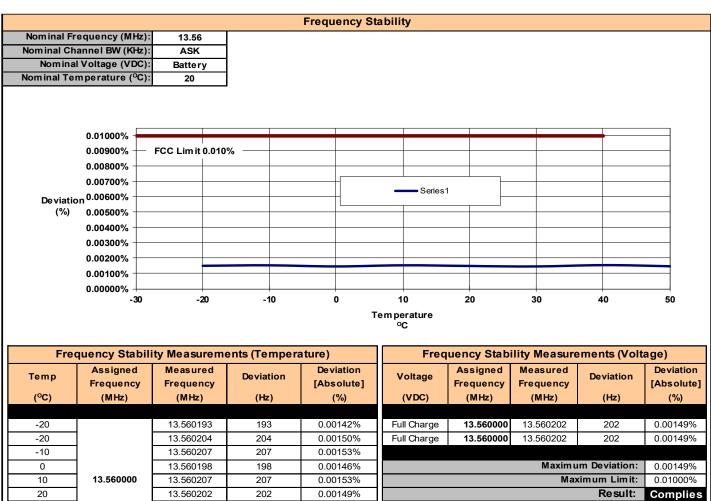
31 May 2024

12.0 FREQUENCY STABILITY (NFC)

Test Conditions	Test Conditions							
Normative Reference	FCC 47 CFR §2.1055, §15.225							
Limits								
47 CFR §15.225	(e) The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to $+$ 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.							

Measurement Procedure

47 CFR §2.1055 Frequency Stability


- (a) The frequency stability shall be measured with variation of ambient temperature as follows:
- (1) From -30° to +50° centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.
- (b) Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10° centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement.
- (d) The frequency stability shall be measured with variation of primary supply voltage as follows:
- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

Test Setup	Appendix A	5	l
------------	------------	---	---

45461930 R1.0 31 May 2024

Table 12.1 - Summary of Frequency Stability Measurements - FCC

45461930 R1.0

31 May 2024

APPENDIX A – TEST SETUP DRAWINGS AND EQUIPMENT

Table A.1 - Setup - Conducted Measurements Equipment List

Equipm	Equipment List									
Asset	Manufacturer	Model	Serial	Description						
Number	Mariaracturer	Number	Number	Description						
00241	R&S	FSU40	100500	Spectrum Analyzer						
00263	Koaxis	KP10-1.00M-TD	263	1m Armoured Cable						

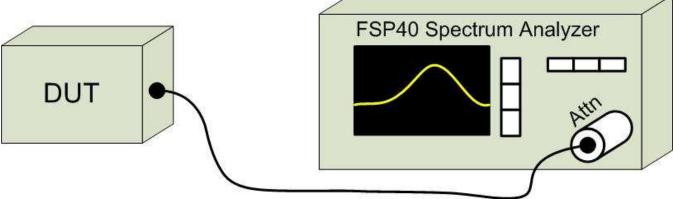


Figure A.1 – Test Setup Conducted Measurements

45461930 R1.0 31 May 2024

Table A.2 - Setup - Radiated Emissions Equipment List

Equipm	Equipment List								
Asset Number	Manufacturer	Model Number	Serial Number	Description					
00050	Chase	CBL-6111A	1607	Bilog Antenna					
00034	ETS	3115	6267	Double Ridged Guide Horn					
00035	ETS	3115	6276	Double Ridged Guide Horn					
00085	EMCO	6502	9203-2724	Loop Antenna					
00161	Waveline Inc.	889		Standard Gain Horn 18-26GHz					
00162	Waveline Inc.	889		Standard Gain Horn 18-26GHz					
00165	Waveline Inc.	801-KF		Waveguide Adapter 18-26GHz					
00166	Waveline Inc.	801-KF		Waveguide Adapter 18-26GHz					
00333	HP	85685A	3010A01095	RF Preselector					
00049	HP	85650A	2043A00162	Quasi-peak Adapter					
00051	HP	8566B	2747A05510	Spectrum Analyzer					
00241	R&S	FSU40	100500	Spectrum Analyzer					
00265	Miteq	JS32-00104000-58-5P	1939850	Microwave L/N Amplifier					
00071	EMCO	2090	9912-1484	Multi-Device Controller					
00072	EMCO	2075	0001-2277	Mini-mast					
00073	EMCO	2080	0002-1002	Turn Table					
00263	Koaxis	KP10-1.00M-TD	263	1m Armoured Cable					
00263B	Koaxis	KP10-1.00M-TD	263B	1m Armoured Cable					
00275	TMS	LMR400	n/a	25m Cable					
00278	TILE	34G3	n/a	TILE Test Software					

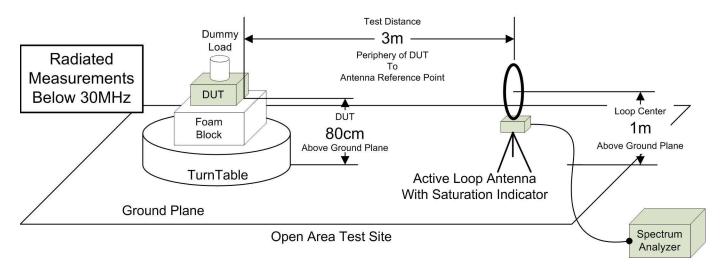


Figure A.2 - Test Setup Radiated Emissions Measurements Below 30MHz

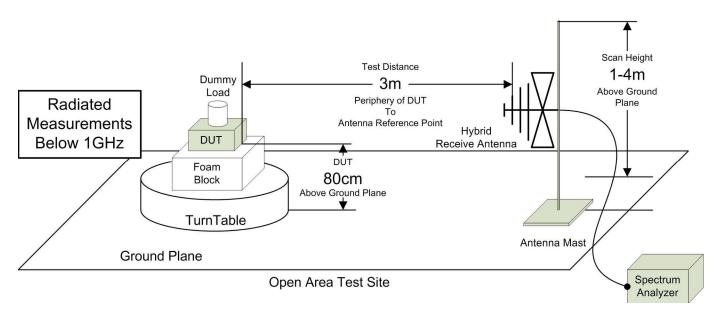


Figure A.3 - Test Setup Radiated Emissions Measurements 30 - 1000MHz

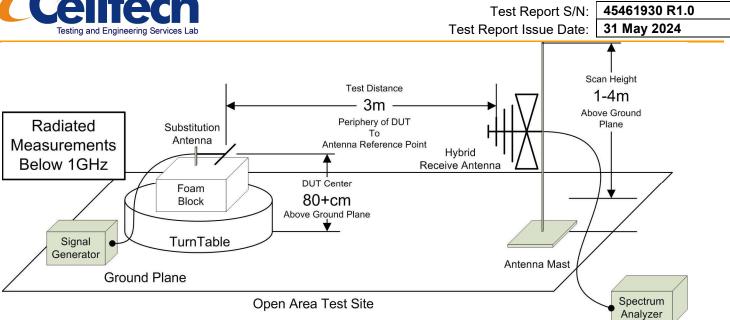


Figure A.4 - Test Setup Radiated Emissions Measurements 30 - 1000MHz Signal Substitution

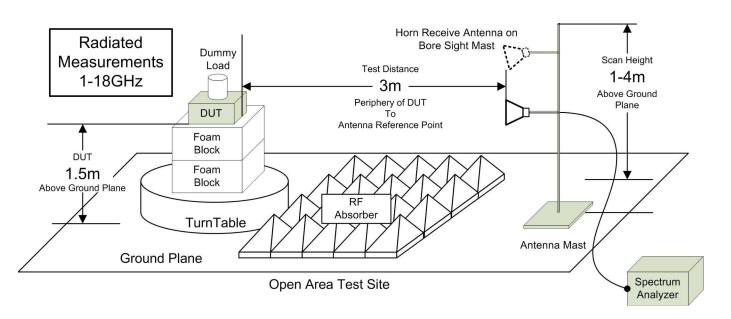


Figure A.5 – Test Setup Radiated Emissions Measurements 1 – 18GHz

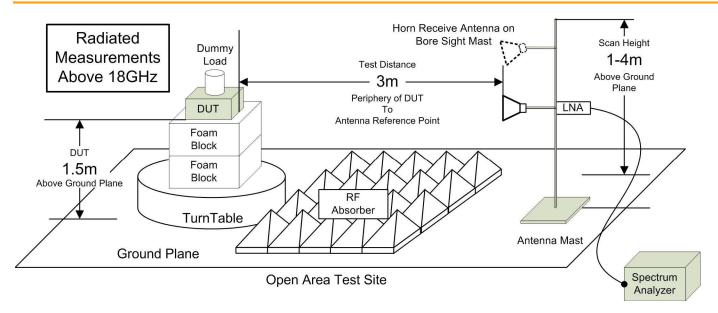


Figure A.6 – Test Setup Radiated Emissions Measurements Above 18 GHz

Table A.3 – Power Line Conducted Measurement Equipment

Equipment List				
Asset Number	Manufacturer	Model Number	Description	
00241	R&S	FSU40	Spectrum Analyzer	
00275	Coaxis	LMR400	25m Cable	
00276	Coaxis	LMR400	4m Cable	
00278	TILE	34G3	TILE Test Software	
00257	Comm Power	LI-215A	LISN	

Figure A.7 – Test Setup Power Line Conducted Measurements

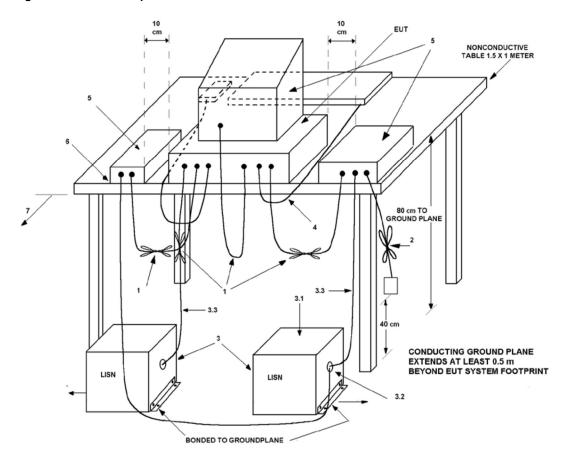


Table A.4 – Setup – Frequency Stability Equipment List

Equipment List				
Asset Number	Manufacturer	Model Number	Serial Number	Description
00241	R&S	FSU40	100500	Spectrum Analyzer
00081	ESPEC	ECT-2	0510154-B	Environmental Chamber
00234	WR	61161-378	140320430	Temp/Humidity Meter

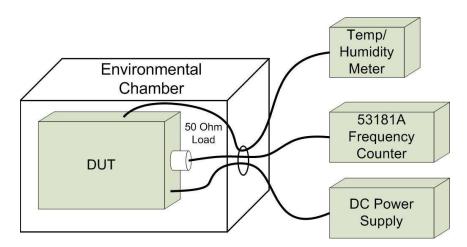


Figure A.8 – Frequency Stability

45461930 R1.0

31 May 2024

APPENDIX B - EQUIPMENT LIST AND CALIBRATION

Equipment List							
Asset Number	Manufacturer	Model Number	Serial Number	Description	Last Calibrated	Calibration Interval	Calibration Due
00050	Chase	CBL-6111A	1607	Bilog Antenna	16 Nov 2023	Triennial	16 Nov 2026
00035	ETS	3115	6276	Double Ridged Guide Horn	4 Mar 2022	Triennial	4 Mar 2025
00085	EMCO	6502	9203-2724	Loop Antenna	6 Sep 2022	Triennial	6 Sep 2025
00161	Waveline Inc.	889		Standard Gain Horn 18-26GHz	NCR	n/a	NCR
00165	Waveline Inc.	801-KF		Waveguide Adapter 18-26GHz	NCR	n/a	NCR
00241	R&S	FSU40	100500	Spectrum Analyzer	10 Aug 2021	Triennial	10 Aug 2024
00005	HP	8648D	3847A00611	Signal Generator	28 Jun 2023	Triennial	28 Jun 2026
00003	HP	53181A	3736A05175	Frequency Counter	28 Jun 2023	Triennial	28 Jun 2026
00257	Com-Power	LI-215A	191934	LISN	27 Dec 2021	Triennial	27 Dec 2024
00071	EMCO	2090	9912-1484	Multi-Device Controller	n/a	n/a	n/a
00072	EMCO	2075	0001-2277	Mini-mast	n/a	n/a	n/a
00073	EMCO	2080	0002-1002	Turn Table	n/a	n/a	n/a
00081	ESPEC	ECT-2	0510154-B	Environmental Chamber	NCR	n/a	CNR
00234	VWR	61161-378	140320430	Temp/Humidity Meter	New	Triennial	New
00263	Koaxis	KP10-1.00M-TD	263	1m Armoured Cable	COU	n/a	COU
00275	TMS	LMR400	n/a	25m Cable	COU	n/a	COU
00276	TMS	LMR400	n/a	4m Cable	COU	n/a	COU
00278	TILE	34G3	n/a	TILE Test Software	NCR	n/a	NCR

NCR: No Calibration Required COU: Calibrate On Use

45461930 R1.0 31 May 2024

APPENDIX C - MEASUREMENT INSTRUMENT UNCERTAINTY

CISPR 16-4 Measurement Uncertainty (U _{LAB})			
This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence interval using a coverage factor of k=2			
Radiated Emissions 30MHz - 200MHz			
$U_{LAB} = 5.14dB$ U_{C}	ISPR = 6.3dB		
Radiated Emissions 200MHz - 1000MHz			
$U_{LAB} = 5.90 dB U_{C}$	ISPR = 6.3dB		
Radiated Emissions 1GHz - 6GHz			
U _{LAB} = 4.80dB U _C	ISPR = 5.2dB		
Radiated Emissions 6GHz - 18GHz			
U _{LAB} = 5.1dB U _C	ISPR = 5.5dB		
Power Line Conducted Emissions 9kHz to 150kHz			
$U_{LAB} = 2.96dB$ U_{C}	ISPR = 3.8dB		
Power Line Conducted Emiss	sions 150kHz to 30MHz		
U _{LAB} = 3.12dB U _C	ISPR = 3.4dB		
If the calculated uncertainty U _{lab} i	is less than U_{CISPR} then:		
1 Compliance is deemed to occur if NO measured disturbance exceeds the disturbance limit			
Non-Compliance is deemed to occur if ANY measured disturbance EXCEEDS the disturbance limit			
If the calculated uncertainty U _{lab} is greater than U _{CISPR} then:			
3 Compliance is deemed to occur if NO measured disturbance, increased by (U _{lab} - U _{CISPR}), exceeds the disturbance limit			
4 Non-Compliance is deemed to occur if ANY measured disturbance, in	creased by (U _{lab} - U _{CISPR}), EXCEEDS the disturbance limit		

Other Measurement Uncertainties (U _{LAB})		
RF Conducted Emissions 9kHz - 40GHz		
$U_{LAB} = 1.0 dB$ $U_{CISPR} = n/a$		
Frequency/Bandwidth 9kHz - 40GHz		
$U_{LAB} = 0.1ppm$ $U_{CISPR} = n/a$		
Temperature		
$U_{LAB} = 1^{O}C$ $U_{CISPR} = n/a$		

END OF REPORT

45461930 R1.0 31 May 2024

APPENDIX I- RADIATED TX EMISSIONS MEASUREMENT PLOTS

APPENDIX J- RADIATED RX MEASUREMENT PLOTS