

FCC Test Report

FCC ID	:	IPH-04780	
Equipment	:	IVI Unit	
Model No.	:	TGWW	
Brand Name	:	GARMIN	
Applicant	:	Garmin International, Inc.	
Address	:	1200 E. 151st Street Olathe, KS States	66062 United
Standard	:	47 CFR FCC Part 15.407	
Received Date	:	Dec. 15, 2023	
Tested Date	:	Dec. 18 ~ Dec. 29, 2023	

We, International Certification Corporation, would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by:

Approved by:

ong Chen

Along Cheid/ Assistant Manager

Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	7
1.3	Test Setup Chart	8
1.4	The Equipment List	9
1.5	Test Standards	10
1.6	Reference Guidance	10
1.7	Deviation from Test Standard and Measurement Procedure	10
1.8	Measurement Uncertainty	11
2	TEST CONFIGURATION	12
2.1	Testing Facility	12
2.2	The Worst Test Modes and Channel Details	12
3	TRANSMITTER TEST RESULTS	13
3.1	Emission Bandwidth	13
3.2	Conducted Output Power	14
3.3	Power Spectral Density	15
3.4	Unwanted Emissions	16
3.5	Frequency Stability	19
4	TEST LABORATORY INFORMATION	20

- Appendix A. Emission Bandwidth
- Appendix B. Conducted Output Power
- Appendix C. Power Spectral Density
- Appendix D. Unwanted Emissions
- Appendix E. Frequency Stability

Release Record

Report No.	Version	Description	Issued Date
FR3D1301AN	Rev. 01	Initial issue	Jan. 25, 2024

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	AC Power Line Conducted Emissions	Note ¹	N/A
15.407(b)	Linwanted Emissions	[dBuV/m at 3m]: 40.11MHz	Page
15.209		32.58 (Margin -7.42dB) - PK	F d 3 3
15.407(a)	Emission Bandwidth	Meet the requirement of limit	Pass
15.407(e)	6dB bandwidth	Meet the requirement of limit	Pass
15.407(a)	Conducted Output Power	Max Power [dBm]: 5725~5850MHz: 5.75	Pass
15.407(a)	Power Spectral Density	Meet the requirement of limit	Pass
15.407(g)	Frequency Stability	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

N/A means Not Applicable.

Note¹: The EUT consumes DC power from battery, so the test is not required.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information							
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N⊤x)	Data Rate / MCS		
5725-5850	а	5745-5825	149-165 [5]	2	6-54 Mbps		
5725-5850	n (HT20)	5745-5825	149-165 [5]	2	MCS 0-15		
5725-5850	ac (VHT20)	5745-5825	149-165 [5]	2	MCS 0-9		
Note: OFDM BPS	K, QPSK, 16QAN	I, 64QAM and 256	QAM modulation.				

1.1.2 Antenna Details

Ant.	Brand	Model	Type	Connector	Operating Frequencies (MHz) / Antenna Gain (dB	
No.	Brand	model	Type	Connector	2400~2483.5	5725~5850
1	HARADA	39215	RHCP	R-SMA	0.3	-0.3
2	HARADA	39216	RHCP	R-SMA	1.2	0.8

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type 12Vdc	Power Supply Type	12Vdc
-------------------------	-------------------	-------

1.1.4 Accessories

N/A

1.1.5 Channel List

Channel	Frequency(MHz)
149	5745
153	5765
157	5785
161	5805
165	5825

1.1.6 Test Tool and Duty Cycle

Test Tool	adb tool					
	Mode	Mode Duty Cycle (%)				
Duty Cycle and Duty Easter	11a	95.83%	0.18			
Duly Cycle and Duly Factor	HT20	93.73%	0.28			
	VHT20	86.95%	0.61			

1.1.7 Power Index of Test Tool

Modulation Mode	Test Frequency (MHz)	Power Index
11a	5745	9
11a	5785	9
11a	5825	9
HT20	5745	9
HT20	5785	9
HT20	5825	9
VHT20	5745	9
VHT20	5785	9
VHT20	5825	9

1.2 Local Support Equipment List

Support Equipment List							
No.	Equipment	Brand	Model	FCC ID	Remarks		
1	Card reader	TCSTAR	TYC-MF007				
2	12V DC Battery	Hotai Motor Co, Ltd.	S55B24LS				
3	Cell phone	SAMSUNG	A8				
4	Speaker	GARMIN	TG SPK		Provided by applicant.		
5	Fixture Board	GARMIN	TG_FB		Provided by applicant.		
6	Laptop	DELL	Latitude E5470	DoC			

Note: The fixture board and laptop are disconnected from EUT and removed from test table when EUT is set to transmit continuously.

1.3 Test Setup Chart

1.4 The Equipment List

Test Item	Radiated Emission						
Test Site	966 chamber1 / (03CH01-WS)						
Tested Date	Dec. 18 ~ Dec. 25, 2023						
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until		
Receiver	R&S	ESR3	101657	Mar. 03, 2023	Mar. 02, 2024		
Spectrum Analyzer	R&S	FSV40	101498	Nov. 23, 2023	Nov. 22, 2024		
Loop Antenna	R&S	HFH2-Z2	100330	Oct. 31, 2023	Oct. 30, 2024		
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Jul. 31, 2023	Jul. 30, 2024		
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Nov. 27, 2023	Nov. 26, 2024		
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Oct. 30, 2023	Oct. 29, 2024		
Preamplifier	EMC	EMC02325	980225	Jun. 28, 2023	Jun. 27, 2024		
Preamplifier	EMC	EMC118A45SE	980898	Jul. 14, 2023	Jul. 13, 2024		
Preamplifier	EMC	EMC184045SE	980903	Jul. 17, 2023	Jul. 16, 2024		
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Oct. 03, 2023	Oct. 02, 2024		
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Oct. 03, 2023	Oct. 02, 2024		
LF cable 11M	EMC	EMCCFD400-NW-N W-11000	200801	Oct. 03, 2023	Oct. 02, 2024		
LF cable 1M	EMC	EMCCFD400-NM-N M-1000	160502	Oct. 03, 2023	Oct. 02, 2024		
RF Cable	EMC	EMC104-35M-35M- 8000	210920	Oct. 03, 2023	Oct. 02, 2024		
RF Cable	EMC	EMC104-35M-35M- 3000	210922	Oct. 03, 2023	Oct. 02, 2024		
Attenuator	Pasternack	PE7005-10	10-1	Oct. 05, 2023	Oct. 04, 2024		
HIGHPASS FILTER 7.5-18G	STI	STI15-9722	STI-HP7.5G-A	Oct. 05, 2023	Oct. 04, 2024		
Measurement Software	Sporton	SENSE-15407_NII	V5.11	NA	NA		
Measurement Software	Sporton	SENSE-EMI	V5.10.8	NA	NA		
Note: Calibration Interval of instruments listed above is one year.							

Test Item	RF Conducted				
Test Site	(TH01-WS)				
Tested Date	Dec. 29, 2023				
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101910	Apr. 14, 2023	Apr. 13, 2024
Power Meter	Anritsu	ML2495A	1241002	Nov. 21, 2023	Nov. 20, 2024
Power Sensor	Anritsu	MA2411B	1207366	Nov. 21, 2023	Nov. 20, 2024
TEMP&HUMIDITY CHAMBER	GIANT FORCE	GCT-225-40-SP-SD	MAF1212-002	Jun. 21, 2023	Jun. 20, 2024
AC POWER SOURCE	APC	AFC-500W	F312060012	Dec. 16, 2023	Dec. 15, 2024
Attenuator	Pasternack	PE7005-10	10-2	Oct. 05, 2023	Oct. 04, 2024
Measurement Software	Sporton	SENSE-15407_NII	V5.11	NA	NA
Note: Calibration Inter	rval of instruments liste	d above is one year.		•	

1.5 Test Standards

47 CFR FCC Part 15.407 ANSI C63.10-2013

1.6 Reference Guidance

FCC KDB 412172 D01 Determining ERP and EIRP v01r01 FCC KDB 662911 D01 Multiple Transmitter Output v02r01 FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01

1.7 Deviation from Test Standard and Measurement Procedure

None

1.8 Measurement Uncertainty

The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)).

Measurement Uncertainty	
Parameters	Uncertainty
Bandwidth	±34.130 Hz
Conducted power	±0.808 dB
Frequency error	±1x10 ⁻⁹
Power density	±0.583 dB
Conducted emission	±2.715 dB
AC conducted emission	±2.92 dB
Unwanted Emission ≤ 1GHz	±3.41 dB
Unwanted Emission > 1GHz	±4.59 dB
Time	±0.1%
Temperature	±0.4 °C

2 Test Configuration

2.1 Testing Facility

Test Laboratory	International Certification Corporation
Test Site	03CH01-WS, TH01-WS
Address of Test Site	No.3-1, Lane 6, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.)
> EQO Designation No.	

FCC Designation No.: TW2732

➢ FCC site registration No.: 181692

> ISED#: 10807A

➤ CAB identifier: TW2732

2.2 The Worst Test Modes and Channel Details

Test item	Modulation Mode	Test Frequency (MHz)	Data Rate	Test Configuration
Unwanted Emissions ≤1GHz	11a	5825	6 Mbps	
Unwanted Emissions >1GHz Conducted Output Power Emission Bandwidth Power Spectral Density	11a HT20 VHT20	5745 / 5785 / 5825 5745 / 5785 / 5825 5755 / 5795	6 Mbps MCS 0 MCS 0	
Frequency Stability	Un-modulation	5785		

NOTE:

 The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The **Z-plane** results were found as the worst case and were shown in this report.

3 Transmitter Test Results

3.1 Emission Bandwidth

3.1.1 Limit of Emission Bandwidth

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

3.1.2 Test Procedures

26dB Bandwidth

- 1. Set RBW = approximately 1% of the emission bandwidth.
- 2. Set the VBW > RBW, Detector = Peak.
- 3. Trace mode = max hold.
- 4. Measure the maximum width of the emission that is 26 dB down from the peak of the emission.

Occupied Bandwidth

- 1. Set RBW = 1 % to 5 % of the OBW.
- 2. Set VBW \geq 3 RBW.
- 3. Sample detection and single sweep mode shall be used.
- 4. Use the 99 % power bandwidth function of the instrument.

6dB Bandwidth

- 1. Set RBW = 100kHz, VBW = 300kHz.
- 2. Detector = Peak,Trace mode = max hold.
- 3. Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.1.3 Test Setup

3.1.4 Test Results

	Ambient Condition	22°C / 63%	Tested By	Roger Lu
--	-------------------	------------	-----------	----------

Refer to Appendix A.

3.2 Conducted Output Power

3.2.1 Limit of Conducted Output Power

Fre	quency Band (MHz)	Limit
\boxtimes	5725 ~ 5850	Conducted Power: 1 W
Note	e: "B" is the 26dB emission bandwidth i	n MHz.

3.2.2 Test Procedures

Method PM-G (Measurement using a gated RF average power meter)

Measurements is performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

3.2.3 Test Setup

3.2.4 Test Results

Ambient Condition22°C / 63%Tested ByRoger Lu	Ambient Condition	22°C / 63%	Tested By	Roger Lu
--	-------------------	------------	-----------	----------

Refer to Appendix B.

3.3 **Power Spectral Density**

3.3.1 Limit of Power Spectral Density

Free	quency Band (MHz)	Limit
\boxtimes	5725 ~ 5850	30 dBm /500 kHz

3.3.2 Test Procedures

Duty cycle ≥ 98 %

- 1. Set RBW = 500 kHz, VBW = 3 MHz, Sweep time = auto, Detector = RMS.
- 2. Trace average 100 traces.
- 3. Use the peak marker function to determine the maximum amplitude level.

Duty cycle < 98 %

- 1. Set RBW = 500 kHz, VBW = 3 MHz, Detector = RMS.
- 2. Set sweep time \geq 10 * (number of points in sweep) * (total on/off period of the transmitted signal).
- 3. Perform a single sweep.
- 4. Use the peak marker function to determine the maximum amplitude level.
- 5. Add 10 $\log(1/x)$, where x is the duty cycle.

3.3.3 Test Setup

3.3.4 Test Results

Ambient Condition	22°C / 63%	Tested By	Roger Lu
-------------------	------------	-----------	----------

Refer to Appendix C.

3.4 Unwanted Emissions

3.4.1 Limit of Unwanted Emissions

	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

	Un-restricted band emissions above 1GHz Limit
Operating Band	Limit
5.725 - 5.850 GHz	All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
Note 1: Measurements ma performed in the n equipment. When be extrapolated to linear distance for measurements).	y be performed at a distance other than the limit distance provided they are not ear field and the emissions to be measured can be detected by the measurement performing measurements at a distance other than that specified, the results shall the specified distance using an extrapolation factor of 20 dB/decade (inverse of field-strength measurements, inverse of linear distance-squared for power-density

3.4.2 Test Procedures

- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

3.4.3 Test Setup

3.4.4 Test Results

Refer to Appendix D.

3.5 Frequency Stability

3.5.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.5.2 Test Procedures

- 1. The EUT is installed in an environment test chamber with external power source.
- 2. Set the chamber to operate at 20 centigrade and external power source to output at nominal voltage of EUT.
- 3. A sufficient stabilization period at each temperature is used prior to each frequency measurement.
- 4. When temperature is stabled, measure the frequency stability.
- 5. The test shall be performed under normal and extreme condition for temperature and voltage.

3.5.3 Test Setup

3.5.4 Test Results

|--|

Refer to Appendix E.

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corporation (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website <u>http://www.icertifi.com.tw</u>.

Linkou

Tel: 886-2-2601-1640 No.30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan (R.O.C.)

Kwei Shan

Tel: 886-3-271-8666 No.3-1, Lane 6, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.) No.2-1, Lane 6, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.)

Kwei Shan Site II

Tel: 886-3-271-8640 No.14-1, Lane 19, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.)

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0345 Email: ICC_Service@icertifi.com.tw

—END—

Summary

Mode	Max-N dB (Hz)	Max-OBW (Hz)	ITU-Code	Min-N dB (Hz)	Min-OBW (Hz)
5.725-5.85GHz	-	-	-	-	-
802.11a_Nss1,(6Mbps)_2TX	15.642M	16.255M	16M3D1D	14.982M	16.228M
802.11n HT20_Nss1,(MCS0)_2TX	15.114M	17.382M	17M4D1D	14.652M	17.371M
802.11ac VHT20_Nss1,(MCS0)_2TX	15.708M	17.412M	17M4D1D	15.048M	17.359M

Max-N dB = Maximum 6dB down bandwidth

Max-OBW = Maximum 99% occupied bandwidth;

Min-N dB = Minimum 6dB down bandwidth

Min-OBW = Minimum 99% occupied bandwidth

Result

Mode	Result	Limit	Port 1-N dB	Port 1-OBW	Port 2-N dB	Port 2-OBW
		(Hz)	(Hz)	(Hz)	(Hz)	(Hz)
802.11a_Nss1,(6Mbps)_2TX	-	-	-	-	-	-
5745MHz	Pass	500k	15.114M	16.234M	14.982M	16.255M
5785MHz	Pass	500k	15.246M	16.228M	14.982M	16.252M
5825MHz	Pass	500k	15.642M	16.231M	14.982M	16.253M
802.11n HT20_Nss1,(MCS0)_2TX	-	-	-	-	-	-
5745MHz	Pass	500k	14.652M	17.371M	15.114M	17.373M
5785MHz	Pass	500k	14.916M	17.382M	14.982M	17.379M
5825MHz	Pass	500k	14.982M	17.382M	15.048M	17.38M
802.11ac VHT20_Nss1,(MCS0)_2TX	-	-	-	-	-	-
5745MHz	Pass	500k	15.048M	17.361M	15.642M	17.406M
5785MHz	Pass	500k	15.048M	17.363M	15.114M	17.412M
5825MHz	Pass	500k	15.048M	17.359M	15.708M	17.411M

Port X-N dB = Port X 6dB down bandwidth

Port X-OBW = Port X 99% occupied bandwidth

5825MHz 10-10 CF CF 5.825GHz 5.825GHz 0-0-Span Span -10-OBW-IL-Intelate shalad BW-h -10-132MHz 60MHz -20-RBW RBW -20 100kHz 200kHz -30--30-VBW VBW -40-300kHz 1MHz -40 Sweep Time Sweep Time -50-Red Holder 100ms 100ms -50--60-Detector Type Detector Type -60--70-Peak Peak -80-5.759G -70-5.795G 5.8G Port 1 5.78G 5.8G 5.82G 5.84G 5.86G 5.88G 5.891G 5.81G 5.82G 5.83G 5.84G 5.85G 5.855G Port 2 6dB(Hz) FI-6dB(Hz) Fh-6dB(Hz) OBW(Hz) FI-OBW(Hz) Fh-OBW(Hz) Limit(Hz) Port 5.816285G 5.833644G 5.816266G 5.833677G 15.048M 5.817476G 5.832524G 17.359M 500k 15.708M 5.816816G 5.832524G 17.411M 5.816266G 500k 2 EBW 5.725-5.85GHz_802.11ac VHT20_Nss1,(MCS0)_2TX 5825MHz 10-Port 1 CF 5.825GHz Port 2 📝 0-Span 60MHz -10-RBW -20-200kHz VBW -30-1MHz -40-Sweep Time A STATE OF THE AND A STATE OF THE OWNER OF THE 100ms -50-Detector Type -60-Peak -70-5.795G 5.8G 5.815G 5.82G 5.825G 5.83G 5.835G 5.84G 5.845G 5.85G 5.855G 5.805G 5.81G 26dB(Hz) FI-26dB(Hz) Fh-26dB(Hz) Limit(Hz) Port 19.65M 5.81513G 5.83478G Inf 19.41M 5.81525G 5.83466G Inf 2

Summary

Mode	Total Power (dBm)	Total Power (W)	EIRP (dBm)	EIRP (W)
5.725-5.85GHz	-	-	-	-
802.11a_Nss1,(6Mbps)_2TX	5.75	0.00376	6.55	0.00452
802.11n HT20_Nss1,(MCS0)_2TX	5.61	0.00364	6.41	0.00438
802.11ac VHT20_Nss1,(MCS0)_2TX	5.70	0.00372	6.50	0.00447

Result

Mode	Result	DG	Port 1	Port 2	Total Power	Power Limit	EIRP	EIRP Limit
		(dBi)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
802.11a_Nss1,(6Mbps)_2TX	-	-	-	-	-	-	-	-
5745MHz	Pass	0.80	2.54	2.16	5.36	30.00	6.16	36.00
5785MHz	Pass	0.80	2.45	2.32	5.40	30.00	6.20	36.00
5825MHz	Pass	0.80	2.62	2.85	5.75	30.00	6.55	36.00
802.11n HT20_Nss1,(MCS0)_2TX	-	-	-	-	-	-	-	-
5745MHz	Pass	0.80	2.45	2.11	5.29	30.00	6.09	36.00
5785MHz	Pass	0.80	2.32	2.04	5.19	30.00	5.99	36.00
5825MHz	Pass	0.80	2.46	2.73	5.61	30.00	6.41	36.00
802.11ac VHT20_Nss1,(MCS0)_2TX	-	-	-	-	-	-	-	-
5745MHz	Pass	0.80	2.42	2.03	5.24	30.00	6.04	36.00
5785MHz	Pass	0.80	2.22	2.16	5.20	30.00	6.00	36.00
5825MHz	Pass	0.80	2.57	2.81	5.70	30.00	6.50	36.00

DG = Directional Gain; Port X = Port X output power

Summary

Mode	PD	EIRP PD
	(dBm/RBW)	(dBm/RBW)
5.725-5.85GHz	-	-
802.11a_Nss1,(6Mbps)_2TX	-7.84	-4.56
802.11n HT20_Nss1,(MCS0)_2TX	-7.76	-4.48
802.11ac VHT20_Nss1,(MCS0)_2TX	-8.27	-4.99

RBW = 500kHz for 5.725-5.85GHz band / 1MHz for other band;

Result

Mode	Result	DG	Port 1	Port 2	PD	PD Limit	EIRP PD	EIRP PD Limit
		(dBi)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)
802.11a_Nss1,(6Mbps)_2TX	-	-	-	-	-	-	-	-
5745MHz	Pass	3.28	-10.88	-11.27	-8.15	30.00	-4.87	36.00
5785MHz	Pass	3.28	-11.27	-11.27	-8.31	30.00	-5.03	36.00
5825MHz	Pass	3.28	-10.89	-10.65	-7.84	30.00	-4.56	36.00
802.11n HT20_Nss1,(MCS0)_2TX	-	-	-	-	-	-	-	-
5745MHz	Pass	3.28	-11.09	-11.04	-8.13	30.00	-4.85	36.00
5785MHz	Pass	3.28	-11.22	-11.25	-8.33	30.00	-5.05	36.00
5825MHz	Pass	3.28	-10.96	-10.47	-7.76	30.00	-4.48	36.00
802.11ac VHT20_Nss1,(MCS0)_2TX	-	-	-	-	-	-	-	-
5745MHz	Pass	3.28	-11.26	-11.44	-8.63	30.00	-5.35	36.00
5785MHz	Pass	3.28	-11.82	-11.79	-8.90	30.00	-5.62	36.00
5825MHz	Pass	3.28	-11.29	-11.04	-8.27	30.00	-4.99	36.00

DG = Directional Gain; RBW = 500kHz for 5.725-5.85GHz band / 1MHz for other band;

PD = trace bin-by-bin of each transmits port summing can be performed maximum power density; Port X = Port X Power Density;

DG = Directional gain = 10 * log $((10^{-0.3/20}+10^{0.8/20})^2/2) = 3.28 \text{ dBi}$

Summary							
Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Condition
Mode 1	Pass	PK	40.11M	32.58	40.00	-7.42	Vertical

Summary											
Mode	Result	Туре	Freq	Level	Limit	Margin	Dist	Condition	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(m)		(°)	(m)	
5.725-5.85GHz	-	-	-	-	-	-	-	-	-	-	-
802.11a_Nss1,(6Mbps)_2TX	Pass	PK	17.475G	60.43	68.20	-7.77	3	Vertical	128	1.00	-
802.11ac VHT20_Nss1,(MCS0)_2TX	Pass	PK	17.475G	60.44	68.20	-7.76	3	Vertical	152	1.00	-

17.235G

59.89

68.20

-8.31

53.20

3

Vertical

226

1.00

47.09

Frequency: 5785 MHz	Frequency Drift (ppm)							
Temperature (°C)	0 minute	2 minutes	5 minutes	10 minutes				
T20°CVmax	2.76	2.79	2.64	2.61				
T20°CVmin	4.21	4.60	4.42	3.98				
T70°CVnom	6.44	6.41	6.99	6.32				
T60°CVnom	5.15	5.18	4.01	3.74				
T50°CVnom	5.85	5.68	5.64	5.97				
T40°CVnom	3.61	3.87	3.59	3.45				
T30°CVnom	2.85	2.71	2.73	2.60				
T20°CVnom	3.19	3.59	3.09	3.13				
T10°CVnom	3.51	3.62	4.09	3.99				
T0°CVnom	3.29	3.63	3.94	3.57				
T-10°CVnom	2.43	2.53	2.47	3.04				
T-20°CVnom	1.94	2.00	2.26	1.76				
Vnom [V]: 12	Vma	ıx [V]: 16	Vmin [V]: 10	Vmin [V]: 10				
Tnom [°C]: 20	Tma	ıx [°C]: 70	Tmin [°C]: -20	Tmin [°C]: -20				