

Test Report

Product Name	Communication Control Unit
Model No.	IMWW
FCC ID.	IPH-04484

Applicant	Garmin International Inc.
Address	1200 East 151st. Street Olathe KS 66062 United
	States Of America (Excluding The States Of Alaska

Date of Receipt	Sep. 06, 2022
Issued Date	Nov. 01, 2022
Report No.	2290126R-RFUSBLEV01-A
Report Version	V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd.

Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Test Report

Product Name	Communication Control Unit
Applicant	Garmin International Inc.
Address	1200 East 151st. Street Olathe KS 66062 United States Of America (Excluding
	The States Of Alaska
Manufacturer	Garmin Corporation
Model No.	IMWW
FCC ID.	IPH-04484
EUT Rated Voltage	DC 9-16V
EUT Test Voltage	AC 120V / 50Hz
Trade Name	GARMIN
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C
	ANSI C63.4: 2014, ANSI C63.10: 2013
Test Result	Complied

Documented By	•	April Chen
		(Senior Project Specialist / April Chen)
Tested By	:	Bill Lin
		(Senior Engineer / Bill Lin)
Approved By	:	Dan Chen

Page: 2 of 36

(Senior Engineer / Alan Chen)

TABLE OF CONTENTS

1. Ge	eneral Information	6
1.1.	EUT Description	6
1.2.	Tested System Details	8
1.3.	Configuration of Tested System	8
1.4.	EUT Exercise Software	8
1.5.	Test Facility	9
1.6.	List of Test Equipment	10
1.7.	Uncertainty	11
2. Co	onducted Emission	12
2.1.	Test Setup	12
2.2.	Limits	12
2.3.	Test Procedure	13
2.4.	Test Result of Conducted Emission	14
3. Pe	eak Power Output	15
3.1.	Test Setup	15
3.2.	Limit	15
3.3.	Test Procedure	15
3.4.	Test Result of Peak Power Output	16
4. Ra	adiated Emission	17
4.1.	Test Setup	17
4.2.	Limits	18
4.3.	Test Procedure	19
4.4.	Test Result of Radiated Emission	21
5. RI	F Antenna Conducted Test	23
5.1.	Test Setup	23
5.2.	Limits	23
5.3.	Test Procedure	23
5.4.	Test Result of RF Antenna Conducted Test	24
6. Ba	and Edge	25
6.1.	Test Setup	25
6.2.	Limit	
6.3.	Test Procedure	26

6.4.	Test Result of Band Edge	28
7. 6d	IB Bandwidth	30
7.1.	Test Setup	30
7.2.	Limits	30
7.3.	Test Procedure	30
7.4.	Test Result of 6dB Bandwidth	31
8. Po	ower Density	32
8.1.	Test Setup	32
8.2.	Limits	32
8.3.	Test Procedure	32
8.4.	Test Result of Power Density	33
9. Du	uty Cycle	34
9.1.	Test Setup	32
9.2.	Test Procedure	32
9.3.	Test Result of Duty Cycle	35
10. EN	MI Reduction Method During Compliance Testing	36

Appendix 1: EUT Test Photographs

Appendix 2: Product Photos-Please refer to the file: 2290126R-Product Photos

Revision History

Report No.	Version	Description	Issued Date
2290126R-RFUSBLEV01-A	V1.0	Initial issue of report.	Nov. 01, 2022

Page: 5 of 36

1. General Information

1.1. EUT Description

Product Name	Communication Control Unit		
Trade Name	GARMIN		
Model No.	IMWW		
FCC ID.	IPH-04484		
Frequency Range	2402 – 2480 MHz		
Channel Number	Bluetooth V4.2: 40 CH		
Type of Modulation	Bluetooth V4.2: GFSK(1 Mbps)		
Antenna Type	Chip		
Channel Control	Auto		
Antenna Gain	Refer to the Antenna List		

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	INPAQ	VGAP-CLA-AS-A1	Chip	1.46 dBi for 2400 MHz

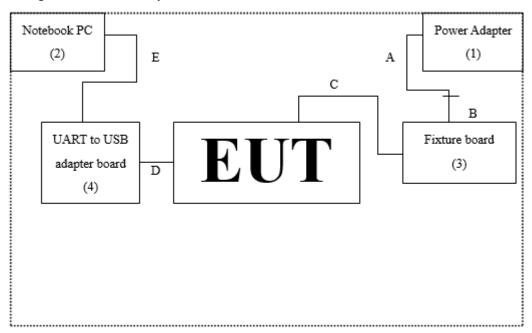
Note: The antenna of EUT is conforming to FCC 15.203.

Center Frequency of Each Channel:

Channel	Frequency (MHz)						
00	2402	01	2404	02	2406	03	2408
04	2410	05	2412	06	2414	07	2416
08	2418	09	2420	10	2422	11	2424
12	2426	13	2428	14	2430	15	2432
16	2434	17	2436	18	2438	19	2440
20	2442	21	2444	22	2446	23	2448
24	2450	25	2452	26	2454	27	2456
28	2458	29	2460	30	2462	31	2464
32	2466	33	2468	34	2470	35	2472
36	2474	37	2476	38	2478	39	2480

Note:

- 1. The EUT is a Communication Control Unit with built-in Bluetooth (4.2 and V3.0+HS, V2.1+EDR) transceiver, this report for Bluetooth V4.2.
- 2. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report
- 3. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 4. DEKRA has evaluated each test mode. Only the worst case is shown in the report.
- 5. These tests were conducted on a sample for the purpose of demonstrating compliance of transmitter with Part 15 Subpart C Paragraph 15.247 for spread spectrum devices.


1.2. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Product		Manufacturer	Model No.	Serial No.	Power Cord
	Power Adapter	PHIHONG	PSAC24A-120L6	N/A	N/A
4	2 Notebook PC	ASUS	P5430U	G8NXCV07J11032C	N/A
1	Fixture board	GARMIN	Fixture board	N/A	N/A
4	4 UART to USB adapter board	GARMIN	UART to USB	N/A	N/A
			adapter board		

Signal Cable Type		Signal cable Description
A	Power Cable	Non-Shielded, 1.5m
В	Fixture board Cable	Non-Shielded, 0.1m
С	Signal Cable	Non-Shielded, 0.4m
D	UART adapter cable	Non-Shielded, 0.4m
Е	USB A to mini-B cable	Shielded, 0.5m

1.3. Configuration of Tested System

1.4. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.3.
- (2) Execute software "CyBluetool Ver.0.1.97.1" on the Notebook PC.
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Press "OK" to start the continuous Transmit.
- (5) Verify that the EUT works properly.

1.5. Test Facility

Ambient conditions in the laboratory:

Performed Item	Items	Required	Actual
Caralanda 1 Engineiro	Temperature (°C)	10~40 °C	24.5 °C
Conducted Emission	Humidity (%RH)	10~90 %	56.2 %
D 1' / 1E ' '	Temperature (°C)	10~40 °C	23.4 °C
Radiated Emission	Humidity (%RH)	10~90 %	59.5 %
Cara la atian	Temperature (°C)	10~40 °C	24.0 °C
Conductive	Humidity (%RH)	10~90 %	56.0 %

USA : FCC Registration Number: TW0033

Canada : CAB Identifier Number: TW3023 / Company Number: 26930

Site Description : Accredited by TAF

Accredited Number: 3023

Test Laboratory : DEKRA Testing and Certification Co., Ltd

Address : No. 5-22, Ruishukeng Linkou District, New Taipei City, 24451, Taiwan Performed Location : No. 26, Huaya 1st Rd., Guishan Dist., Taoyuan City 333411, Taiwan, R.O.C.

Phone Number : +886-3-275-7255

Fax Number : +886-3-327-8031

Email Address : info.tw@dekra.com

Website : http://www.dekra.com.tw

1.6. List of Test Equipment

For Conduction Measurements /HY-SR01

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
V	EMI Test Receiver	R&S	ESR7	101601	2022/06/23	2023/06/22
V	Two-Line V-Network	R&S	ENV216	101306	2022/05/23	2023/05/22
V	Two-Line V-Network	R&S	ENV216	101307	2022/05/04	2023/05/03
V	Coaxial Cable	SUHNER	RG400_BNC	RF001	2022/05/24	2023/05/23

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "V" are used to measure the final test results.
- 3. Test Software Version: E3 210616 dekra V9.

For Conducted Measurements /HY-SR02

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
V	Spectrum Analyzer	R&S	FSV40	101149	2022/10/03	2023/03/24
V	Peak Power Analyzer	KEYSIGHT	8990B	MY51000410	2022/08/06	2023/08/05
V	Wideband Power Sensor	KEYSIGHT	N1923A	MY56080003	2022/08/05	2023/08/04
V	Wideband Power Sensor	KEYSIGHT	N1923A	MY56080004	2022/08/05	2023/08/04

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "V" are used to measure the final test results.
- 3. Test Software Version: RF Conducted Test Tools R3 V3.0.1.19.

For Radiated Measurements /HY-CB03

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
	Loop Antenna	AMETEK	HLA6121	49611	2022/03/18	2023/03/17
V	Bi-Log Antenna	SCHWARZBECK	VULB9168	9168-675	2021/08/11	2023/08/10
V	Horn Antenna	RF SPIN	DRH18-E	210503A18ES	2022/06/08	2023/06/07
V	Horn Antenna	Com-Power	AH-840	101100	2021/10/04	2023/10/03
V	Pre-Amplifier	SGH	0301-9	20211007-11	2022/02/22	2023/02/21
V	Pre-Amplifier	EMCI	EMC051835SE	980632	2021/09/07	2022/09/06
V	Pre-Amplifier	EMCI	EMC05820SE	980285	2021/12/16	2022/12/15
	Pre-Amplifier	EMCI	EMC184045SE	980369		
	Coaxial Cable	EMCI	EMC102-KM-KM-600	1160314	2022/05/12	2023/05/11
	Coaxial Cable	EMCI	EMC102-KM-KM-7000	170242		
17	/ lHiltor l	MICRO	BRM50702	G251	2021/09/16	2022/09/15
V		TRONICS				
	Filter	MICRO	BRM50716	G188	2021/09/16	2022/09/15
		TRONICS	DKW130710	G100	2021/09/10	2022/09/13
V	EMI Test	R&S	ESR	102793	2021/12/15	2022/12/14
Ľ	Receiver	Ræb	Lor	102773	2021/12/13	2022/12/14
V	Spectrum	R&S	FSV3044	101114	2022/02/11	2023/02/10
Ľ	Analyzer				2022/02/11	2023/02/10
			HA800	GD20110223-2		
V			HA800	GD20110223-2 GD20110222-4 2021005-2	2022/01/05	2023/01/04
ľ	Coaxial Cable	SGH	SGH18	2021005-2	2022/01/03	2023/01/04
	Coaxial Cable	SGH	SGH18	202108-5		

Note:

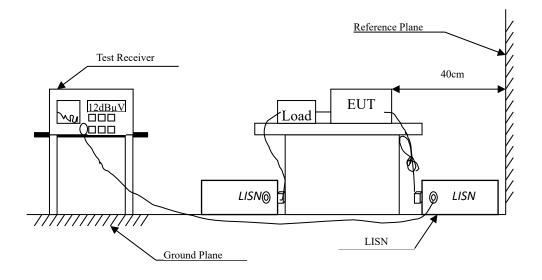
- 1. Bi-Log Antenna and Horn Antenna(AH-840) is calibrated every two years, the other equipments are calibrated every one year.
- 2. The test instruments marked with "V" are used to measure the final test results.
- 3. Test Software Version: E3 210616 dekra V9.

1.7. Uncertainty

Uncertainties have been calculated according to the DEKRA internal document.

The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system but are based on the results of the compliance measurement.


Test item	Uncertainty		
Conducted Emission	±3.4	2 dB	
Peak Power Output	±0.8	9dB	
Radiated Emission	Under 1GHz	Under 1GHz	
urated Emission	±4.05 dB	±4.05 dB	
RF Antenna Conducted Test	±2.06 dB		
Band Edge	Under 1GHz	Under 1GHz	
Band Edge	±4.05 dB	±4.05 dB	
6dB Bandwidth	±1544.74 Hz		
Power Density	±2.06 dB		
Duty Cycle	±2.31 ms		

Page: 11 of 36

2. Conducted Emission

2.1. Test Setup

2.2. Limits

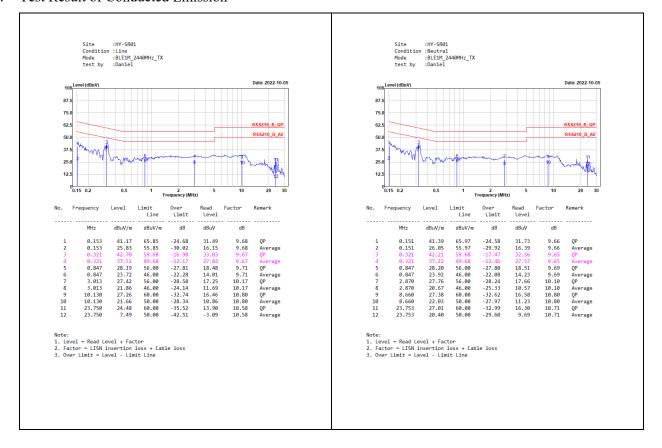
FCC Part 15 Subpart C Paragraph 15.207 (dBμV) Limit				
Frequency	Lir	mits		
MHz	QP	AV		
0.15 - 0.50	66-56	56-46		
0.50-5.0	56	46		
5.0 - 30	60	50		

Remarks: In the above table, the tighter limit applies at the band edges.

2.3. Test Procedure

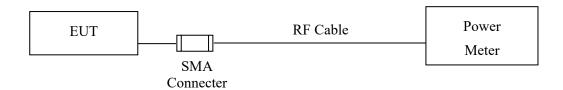
The EUT and Peripherals are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement.


Conducted emissions were invested over the frequency range from 0.15 MHz to 30 MHz using a receiver bandwidth of 9 kHz.

The EUT was setup to ANSI C63.4, 2014; tested to DTS test procedure of FCC KDB-558074 for compliance to FCC 47CFR Subpart C requirements.

Page: 13 of 36


2.4. Test Result of Conducted Emission

3. Peak Power Output

3.1. Test Setup

3.2. Limit

The maximum peak power shall be less 1Watt.

3.3. Test Procedure

The EUT was tested according to C63.10:2013 for compliance to FCC 47CFR 15.247 requirements. The maximum peak conducted output power using C63.10:2013 Section 11.9.1.3 PKPM1 Peak power meter method.

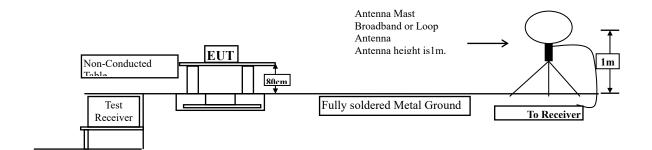
3.4. Test Result of Peak Power Output

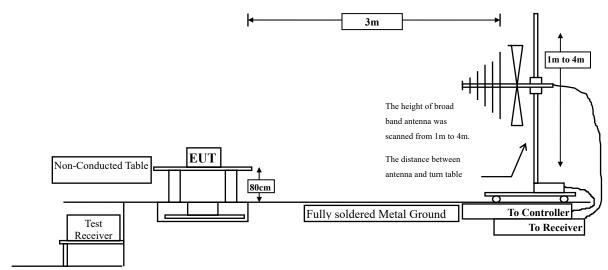
Product : Communication Control Unit

Test Item : Peak Power Output
Test Mode : Transmit - 1 Mbps-BLE

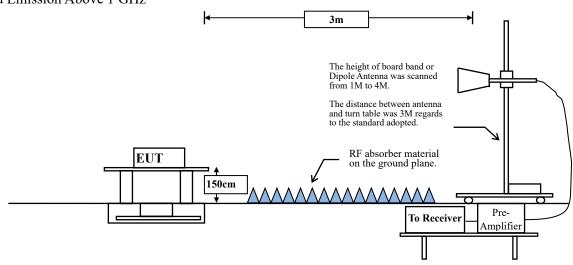
Test Date : 2022/10/03

Channel No.	Channel No. Frequency Measuremen		Required Limit	Result
	(MHz)	(dBm)		
00	2402	1.53	1 Watt= 30 dBm	Pass
19	2440	1.95	1 Watt= 30 dBm	Pass
39	2480	2.20	1 Watt= 30 dBm	Pass


Page: 16 of 36


4. Radiated Emission

4.1. Test Setup


Radiated Emission Under 30 MHz

Radiated Emission Below 1 GHz

Radiated Emission Above 1 GHz

Page: 17 of 36

4.2. Limits

➤ General Radiated Emission Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209 Limits					
Frequency	Field strength	Measurement distance			
MHz	(microvolts/meter)	(meter)			
0.009-0.490	2400/F(kHz)	300			
0.490-1.705	24000/F(kHz)	30			
1.705-30	30	30			
30-88	100	3			
88-216	150	3			
216-960	200	3			
Above 960	500	3			

Remarks:

- 1. RF Voltage $(dB\mu V) = 20 \log RF \text{ Voltage } (uV)$
- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

4.3. Test Procedure

The EUT was setup according to ANSI C63.10: 2013 and tested according to C63.10:2013 Section 11.12.1 for compliance to FCC 47CFR 15.247 requirements.

Measuring the frequency range below 1 GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1 GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level.

The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30 MHz setting on the field strength meter is 9 kHz and 30 MHz~1 GHz is 120 kHz and above 1 GHz is 1 MHz.

Radiated emission measurements below 30 MHz are made using Loop Antenna and 30 MHz~1 GHz are made using broadband Bilog antenna and above 1 GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna.

The measurement frequency range form 9 kHz - 10th Harmonic of fundamental was investigated.

Page: 19 of 36

RBW and **VBW** Parameter setting:

According to C63.10 Section 11.12.2.4 Peak measurement procedure.

RBW = as specified in Table 1.

 $VBW \ge 3 \times RBW$.

Table 1 —RBW as a function of frequency

Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

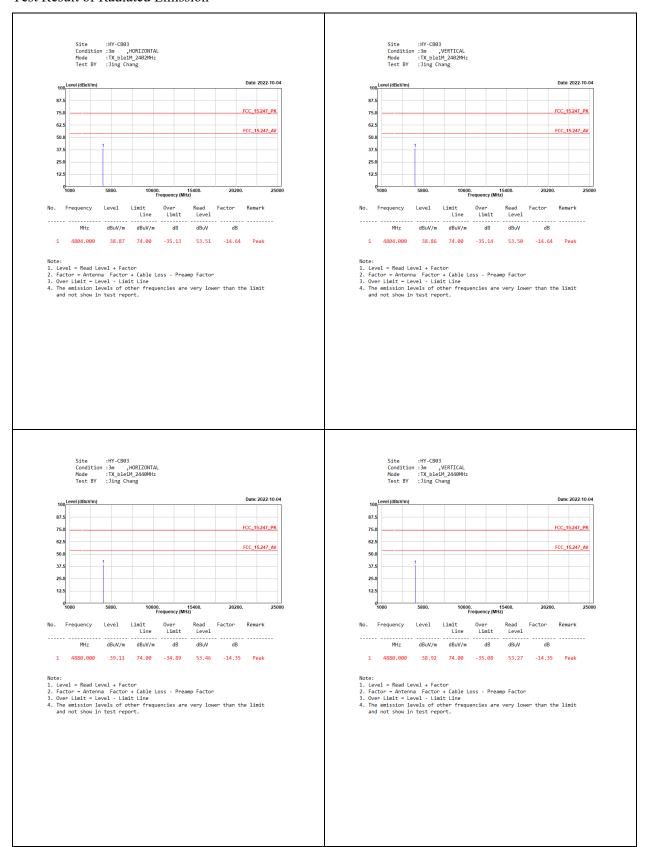
According to C63.10 Section 11.12.2.5 Average measurement procedure.

RBW = 1 MHz.

VBW = 10 Hz, when duty cycle \geq 98 %

VBW \geq 1/T, when duty cycle \leq 98 %

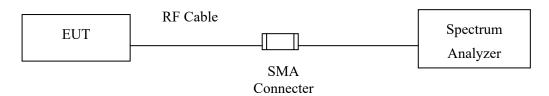
(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)


2.4GHz band	Duty Cycle	T	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
BLE 1M	85.20	2.1300	469	500

Note: Duty Cycle Refer to Section 9.

Page: 20 of 36

4.4. Test Result of Radiated Emission



5. RF Antenna Conducted Test

5.1. Test Setup

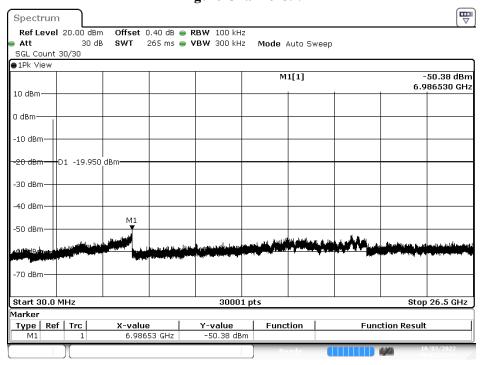
5.2. Limits

According to FCC Section 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

5.3. Test Procedure

The EUT was tested according to C63.10:2013 Section 11.11 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.



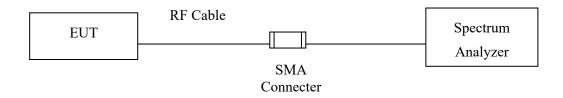
5.4. Test Result of RF Antenna Conducted Test

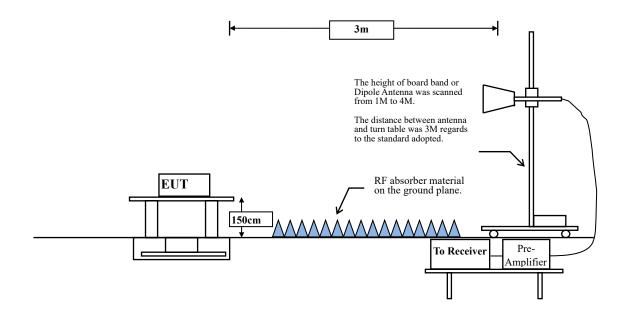
Product : Communication Control Unit
Test Item : RF Antenna Conducted Test
Test Mode : Transmit - 1 Mbps-BLE

Test Date : 2022/10/03

Figure Channel 39:

Date: 3.OCT.2022 18:01:55


Note: The above test pattern is synthesized by multiple of the frequency range.


6. Band Edge

6.1. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

6.2. Limit

According to FCC Section 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

6.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013 and tested according to C63.10:2013 Section 11.12.1 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.

Page: 26 of 36

RBW and **VBW** Parameter setting:

According to C63.10 Section 11.12.2.4 Peak measurement procedure.

RBW = as specified in Table 1.

 $VBW \ge 3 \times RBW$.

Table 1—RBW as a function of frequency

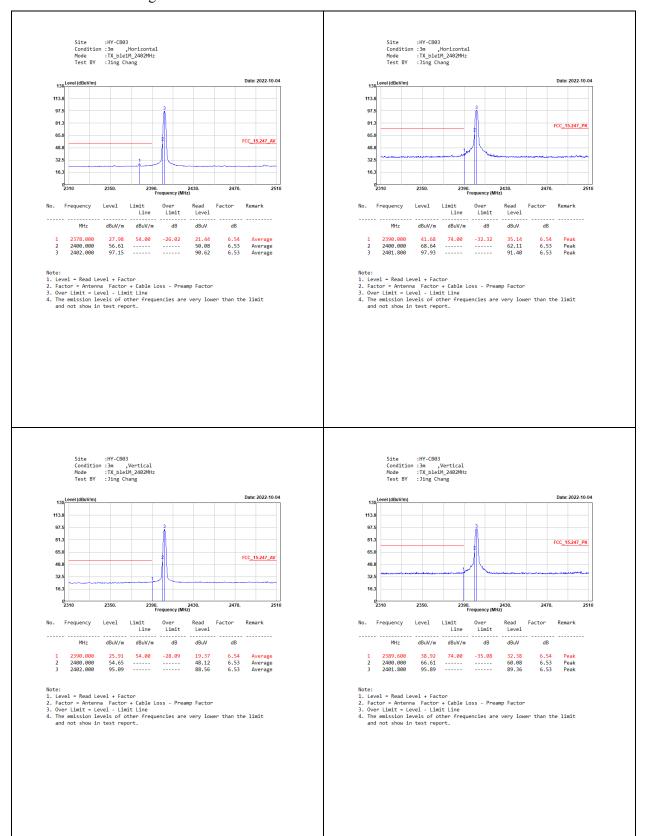
Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

According to C63.10 Section 11.12.2.5 Average measurement procedure.

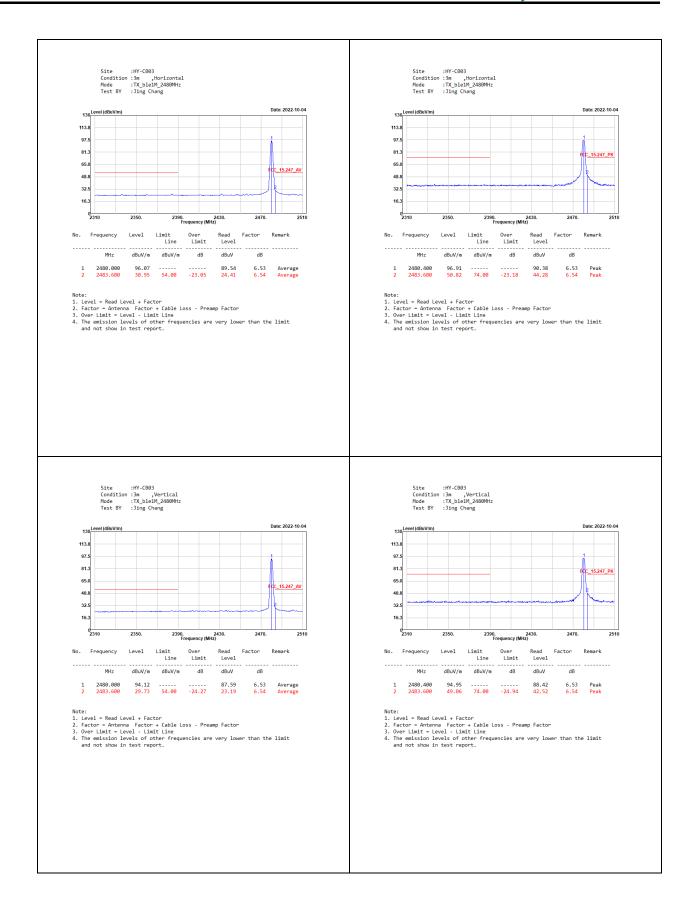
RBW = 1 MHz.

VBW = 10 Hz, when duty cycle \geq 98 %

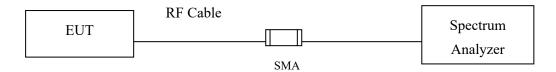
VBW \geq 1/T, when duty cycle \leq 98 %


(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

2.4GHz band	Duty Cycle	Т	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
BLE 1M	85.20	2.1300	469	500


Note: Duty Cycle Refer to Section 9.

6.4. Test Result of Band Edge



7. 6dB Bandwidth

7.1. Test Setup

7.2. Limits

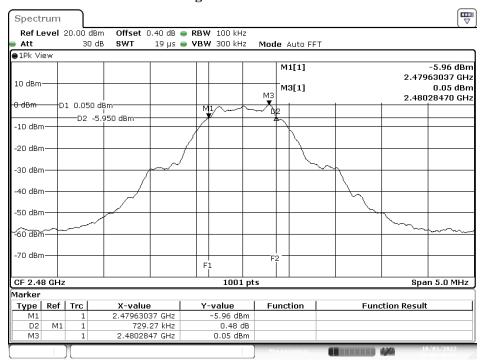
The minimum bandwidth shall be at least 500 kHz.

7.3. Test Procedure

The EUT was setup according to ANSI C63.4, 2014; tested according to ANSI C63.10 Section 11.8 for compliance to FCC 47CFR 15.247 requirements.

Page: 30 of 36

7.4. Test Result of 6dB Bandwidth

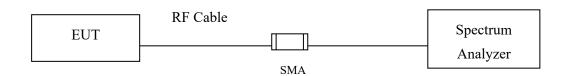

Product : Communication Control Unit

Test Item : 6dB Bandwidth Data
Test Mode : Transmit - 1 Mbps-BLE

Test Date : 2022/10/03

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
00	2402	734	>500	Pass
19	2440	734	>500	Pass
39	2480	729	>500	Pass

Figure Channel 00:



Date: 3.OCT.2022 18:00:41

8. Power Density

8.1. Test Setup

8.2. Limits

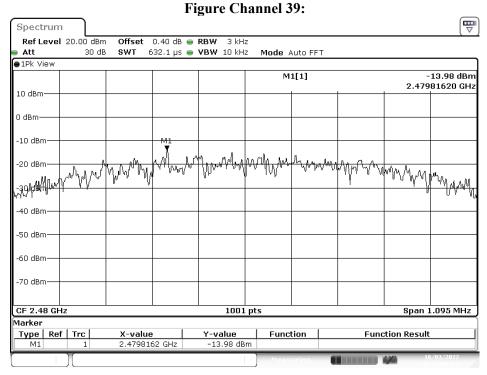
The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3 kHz bandwidth.

8.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013; tested according to DTS test procedure of KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

The maximum power spectral density using C63.10 Section 11.10.2 Method PKPSD (peak PSD)

Page: 32 of 36

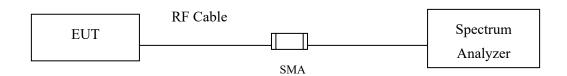

8.4. Test Result of Power Density

Product : Communication Control Unit

Test Item : Power Density Data
Test Mode : Transmit - 1 Mbps-BLE

Test Date : 2022/10/03

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
00	2402	-14.66	≦8dBm	Pass
19	2440	-14.27	≦8dBm	Pass
39	2480	-13.98	≦8dBm	Pass



Date: 3.OCT.2022 18:01:00

9. Duty Cycle

9.1. Test Setup

9.2. Test Procedure

The EUT was setup according to ANSI C63.10 2013; tested according to ANSI C63.10 2013 for compliance to FCC 47CFR 15.247 requirements.

9.3. Test Result of Duty Cycle

Product : Communication Control Unit

Test Item : Duty Cycle

Test Mode : Transmit - 1 Mbps-BLE

Formula:

 $Duty \ Cycle = Ton \ / \ (Ton + Toff)$

Duty Factor = 10 Log (1/Duty Cycle)

2.4GHz Band	Ton	Ton + Toff	Duty Cycle	Duty Factor
	(ms)	(ms)	(%)	(dB)
BLE 1M	2.1300	2.5000	85.20	0.70

Spectrum Ref Level 20.00 dBm Offset 0.40 dB RBW 10 MHz 10 ms • **VBW** 10 MHz 30 dB 🅌 SWT Att ●1Pk View -0.46 dBm 1.58000 ms M1[1] 10 dBm--0.13 dB 2.13000 ms D2[1] 0 dBm -10 dBm -20 dBm--30 dBm--40 dBm-MAN -50 dBm--60 dBm--70 dBm-CF 2.402 GHz 1001 pts 1.0 ms/ Marker Type Ref Trc Y-value Function **Function Result** X-value 1.58 ms -0.46 dBm М1 2.13 ms 2.5 ms -0.13 dB -0.03 dB D2 D3 М1

BLE 1M

Date: 3.OCT.2022 17:55:15

10. EMI Reduction Method During Compliance Testing

No modification was made during testing.

Page: 36 of 36